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Abstract

Despite thermal imaging primarily used for nighttime
surveillance, uniform temperature of object and back-
ground makes it difficult to acquire details in the scene be-
ing observed and thereby object detection. Further, ther-
mal images collected over long distances degrade the spa-
tial resolution of the acquired objects and so do the moving
objects leading to noisy features. We present a computa-
tionally efficient object detection approach using Depthwise
Deep Convolutional Neural Network (DDCNN) for detect-
ing and classifying objects in nighttime images under low
resolution. The Depthwise Convolution (DC) employed in
the proposed approach minimises the network’s computa-
tional complexity resulting in the lowest number of train-
ing parameters (i.e., 3M ) as compared to the other exist-
ing state-of-the-art methods such as FRCNN (52M ), SSD
(24M ) and YOLO-v3 (61M ) parameters. Further, by in-
troducing novel Tversky and Intersection over Union (IoU)
loss functions into the compact architectural design, we im-
prove nighttime object detection accuracy. The validity of
the proposed model is assessed on numerous datasets such
as FLIR, KAIST, MS, and our internal dataset having mul-
tiple objects in each image. The experimental results from
the proposed method indicate both quantitative and qualita-
tive improvements over the recent state-of-the-art methods
for nighttime imaging. The proposed approach achieves a
mean Average Precision (mAP) of 52.39% and a highest in-
dividual object detection accuracy of 72.70% accuracy for
cars in nigh-time situations suggesting applications in real-
time use cases.

1. Introduction
Object detection consists of finding and classifying areas

of interest in the image and has been extensively studied in
the past. Given an image, the object detection algorithm
outputs one or more detection hypotheses with a probabil-
ity score. An object detection algorithm not only finds the
class of objects but also identifies the extent of the objects

Figure 1. The examples of nighttime images. These images have
been acquired with absence of artificial light source and in darker
regions. The first and second row show the visible and its cor-
responding thermal images, respectively.The third row shows the
detected objects obtained using the proposed method on thermal
images.

in the image. As objects can be placed anywhere in the im-
age and can be of any size, object detectors are typically
designed to detect multiple objects [17,48,49]. Such object
detection approaches have a number of applications, espe-
cially in nighttime surveillance. The performance of the
object detector in such applications decides the accuracy of
the overall system. A robust and sophisticated object detec-
tor in night surveillance systems can therefore be asserted as
a basic need for keeping society safe by detecting and clas-
sifying the objects of interest accurately in the area under
surveillance.

Over the last few decades, research on automated vi-
sual systems has grown rapidly, and visible spectrum cam-
eras have become the standard imaging device for acquiring
those images for surveillance. Such cameras are usually
equipped with regular Charge-Coupled Devices (CCDs),
and hence, the visibility and color of the acquired objects
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depend on the sources of illumination present during the
acquisition process. Generally, these cameras have the ad-
vantage of high spatial resolution and are suitable for day-
time and nighttime with proper lighting setup. However, the
acquired objects are not clearly visible due to inherent hard-
ware limitations in the absence of proper lighting sources.
Hence, they tend to perform inadequately for no and/or poor
lighting conditions for nighttime surveillance [58]. Further-
more, even in cases where the images can be captured dur-
ing nighttime using visible spectrum cameras, the objects
are often unclear due to the absence of proper illuminating
sources [41].

Most common objects such as vehicles and pedestri-
ans are difficult to be identified by humans during night-
time [19], and such an argument also holds for automated
surveillance systems operating during the night. For in-
stance, most automated night vision systems for monitor-
ing intelligently moving objects assume that the input im-
age has a clear view under lane light, but unfortunately, this
does not always hold [58]. The quality of these images is
affected by several atmospheric conditions that change the
key characteristics of the light source due to scattering (i.e.,
intensity, color, polarization, coherence) [10,44]. It is there-
fore essential to obtain a better solution for major safety
issues due to the collisions of vehicles in dark or in poor
lighting conditions.

To deal with the limitations of CCD sensors during
nighttime, a number of works have proposed using ther-
mal cameras as an alternative [19, 27]. Thermal cam-
eras, in particular, have the innate ability to capture images
with/without the presence of light [33, 54]. Despite their
advantage of capturing images in low lit conditions, object
detection from thermal images remains a challenge [40,56].
As depicted in the Fig. 1, infrared cameras are rarely af-
fected by changes in ambient lighting, and they can capture
sufficient quality images in darkness, fog and other com-
plex environments. This enables the proper and widespread
use of thermal images in scenarios involving high-value tar-
gets, such as remote surveillance applications that monitor
distant vehicles, pedestrians, or buildings [4]. However, ob-
ject detection in the thermal images is still difficult due to
its unique features [40] as depicted in Fig. 1. One of the
challenges in detecting objects in thermal images is the per-
ceived temperature of the object of interest being similar to
the perceived temperature of the background. Such a chal-
lenge results in low contrast of the acquired image and ad-
versely reduces automatic object detection/recognition per-
formance in thermal images. It, therefore, manifests a se-
rious obstacle to real-world applications where detecting
objects is critical, such as in nighttime surveillance or au-
tonomous driving.

As a result, the vision community has recently started
showing a great interest in developing efficient object de-

tection techniques that can perform satisfactorily on night
vision images, such as thermal images. Along the same
lines, we introduce a computationally compact object de-
tection algorithm for thermal images to address the above
limitations. Our key aim is to develop an efficient and
computationally compact algorithm for object detection in
nighttime thermal images. The proposed object detection
approach for thermal images is based on Depthwise Con-
volution (DC) in a DCNN to reduce the total number of
parameters. Further, the use of loss functions such as Tver-
sky and Intersection over Union (IoU) helps to improve the
detection accuracy of the proposed method. In addition,
we provide an extensive set of experiments to demonstrate
the performance of our proposed approach on three pub-
licly available datasets such as (1) FLIR validation [55],
(2) KAIST testing dataset [26] and (3) MSOD dataset [57].
We further create a new dataset consisting of 998 images
acquired in fully dark conditions to test the proposed ap-
proach’s generalizability. We present both quantitative and
qualitative results to support the applicability of our pro-
posed approach. The object detection output obtained us-
ing the proposed method on sample images is depicted in
Fig. 1, where one can inspect that the proposed detector can
identify the objects in a thermal image. Therefore, the con-
tributions of this work are highlighted as follows:

• We propose a computationally efficient object detection
framework for nighttime situations. The compactness
of the proposed object detector module is attributed to
Depthwise Convolution (DC), resulting in approximately
3M parameters. The proposed detector is computation-
ally efficient as compared to the other existing detector
methods both in terms of parameters and inference time
(see Fig. 7).

• Further, the generalizability of the proposed network is
verified by conducting experiments on disjoint datasets
unseen during training. The results are demonstrated on
three publicly available datasets on which the proposed
approach obtains better results than state-of-the-art meth-
ods.

• Owing to limited datasets captured using thermal cam-
eras at nighttime, a new dataset has been constructed with
998 images, and this dataset has been specifically used
to study the effectiveness and generalizability of the pro-
posed approach on images acquired under darker condi-
tions (sample images are shown in Fig. 1).

The rest of the paper is organized as follows. The next
section thoroughly reviews the literature related to object
detection approaches for thermal images. Then, in Sec-
tion 3, we elaborate on the proposed approach for object
detection for nighttime thermal images. Next, we report an
extensive set of experiments performed to evaluate the ef-
fectiveness of the proposed approach in Section 4, and in
Section 5, we conclude the work with a discussion on our
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contributions.

2. Related works
Object detection is difficult in many common situations,

such as nighttime illumination and bad weather conditions
due to fog, rain, and dust [29, 34]. In such situations, most
object detectors fail as they are trained on visible images
which do not capture all variations [5, 39, 63]. As a result,
object detection in thermal images for nighttime has rarely
been investigated in the past [1, 6, 12].

With the breakthrough of CNNs in object detection, al-
ternative and better object detection approaches [6, 35, 59]
have started utilizing CNN-based approaches [13]. These
methods can be categorized as region proposal-based and
Single-Shot Detectors (SSDs), depending on the network
forwarding pipeline [20, 38, 48, 50]. Fast R-CNN [20] ap-
plies selective search [60] to obtain region proposals, while
Faster R-CNN [50] proposes to learn a Region Proposal
Network (RPN) to accelerate the proposal generation pro-
cess. In the most common region-based object detection
methods [14, 20, 36, 50], category-related region proposals
are assumed in the first phase, and then those proposals
are refined and classified based on the CNN features us-
ing Region of Interest (RoI) pooling or align layer. The
approaches mentioned above provide high detection accu-
racy, but the inference speed is usually slow due to the two-
step mechanism. To speed up the discovery pipeline, region
proposal generation is discarded in the region-free frame-
work [38,47–49]. To further reduce the computational need
for proposal generation, single-shot approaches [38,47–49]
deploy a fixed set of predefined anchor boxes as proposals
that directly predicts the category and offsets for each an-
chor box. Although these methods achieve state-of-the-art
performance, such success hinges on the substantial amount
of labelled training data, which requires a high labour cost.
These methods can further overfit the training domain, mak-
ing it difficult to generalize the approaches to many real-
world scenarios. Despite real-time processing speed, de-
tection accuracy is also sacrificed compared to best in class
region-based approaches. Recently, Deconvolutional Single
Shot Detector (DSSD) [18] and RetinaNet [36] have been
proposed that provide competitive detection performance
compared to the top of the region-based methods. Unfor-
tunately, a very deep feature extractor (ResNet-101 [24])
is used in those methods, and due to the additional layers,
these tend to have a computational overload.

The use of a deep learning model in object detection
helps to obtain substantial detection efficacy on thermal im-
ages in terms of the various detection metrics (such as pre-
cision, recall, f1 score, etc.) over the traditional methods;
however, there are many limitations associated with those
methods. Therefore, some key challenges based on review-
ing the aforementioned existing object detection methods
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Figure 2. The block schematic of the proposed object detection
algorithm.

can be listed as provided here:
• As mentioned earlier, the performance of object detection

on thermal image using deep learning methods is better
over the traditional methods. Hence, many of aforemen-
tioned existing works [15,16,22,37] achieve superior per-
formance; however, they are limited to the images cap-
tured under the presence of sufficient natural or artificial
lighting conditions. In the case of poor lighting sources
and/or darker regions, they show inferior detection accu-
racy (see Fig. 6).

• Nighttime images often have multiple objects similar to
daytime images and require multiple object detection.
However, most of the works on night time images fo-
cus on detecting single object alone (i.e., people or car)
[1–3,6,7,12,19,21,25,27,30,33,35,37,52] which limits
their use in many applications for surveillance systems. In
the proposed object detection approach, we perform mul-
tiple object detection simultaneously on thermal images
such as person, car and bicycle (see Fig. 3, Fig. 5-Fig. 6).

• Most of the existing works [11,28,31,32,42,53,62] utilize
pre-trained object detection models such as FRCNN [50],
YOLO-v3 [48] and SSD [38] which is proven to be inef-
ficient in the case of more diverse data (see Fig. 3-Fig. 6).

• Finally, the existing state-of-the-art methods for object
detection [8, 9, 16, 18, 22, 22, 49, 50] employ a complex
architecture that could be difficult to deploy in real-time
applications. In the proposed method, we present an ar-
chitecture which is computationally cheaper (utilizes only
3M training parameters) when compared to other existing
object detection algorithms (see Fig. 7).

3. Proposed Methodology
The proposed approach aims to implement a computa-

tionally compact and efficient object detection algorithm
that can work with different illumination conditions at
nighttime. The schematic representation of the proposed
method is provided in Fig. 2. It mainly consists of five mod-
ules to perform specific tasks:
• Adaptive Histogram Equalization (AHE),
• Convolutional Backbone Network (CBN),
• Region Proposal Network (RPN),
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Table 1. A detailed description of convolutional layers utilized in
each module of the proposed object detection model. Here, DC(·)
and G represent depthwise convolution and number of groups con-
sidered in DC, respectively. f , s and FC denote output feature
maps, stride value and fully connected layer, respectively.

Modules Layers Discription

CBN

Conv 1 7 × 7, f = 32, s = 2

Conv 2

DC(3 × 3, f = 32, G = 32)
DC(3 × 3, f = 32, G = 32)
DC(1 × 1, f = 64, G = 32)

× 3

Conv 3

DC(3 × 3, f = 64, G = 32)
DC(3 × 3, f = 64, G = 32)

DC(1 × 1, f = 128, G = 32)
× 3

Conv 4

DC(3 × 3, f = 128, G = 32)
DC(3 × 3, f = 128, G = 32)
DC(1 × 1, f = 256, G = 32)

× 3

Conv 5

DC(3 × 3, f = 256, G = 32)
DC(3 × 3, f = 256, G = 32)
DC(1 × 1, f = 512, G = 32)

× 3

RPN
Conv 1 DC(3 × 3, f = 256, G = 128)
Conv 2 conv(1 × 1, 6)
Conv 3 conv(1 × 1, 12)

RoI

Conv 1 conv(1 × 1, 128)
DC(3 × 3, f = 128, G = 64)

Conv 2 conv(1 × 1, f = 128)
DC(3 × 3, f = 128, G = 64)

Conv 3 conv(1 × 1, f = 128)
DC(3 × 3, f = 128, G = 64)

Conv 4 conv(1 × 1, f = 128)
DC(3 × 3, f = 128, G = 64)

Classifier
Conv 1 conv(7 × 7, 512 nodes)

FC linear, 256 nodes
FC linear, 3 nodes

Functions
Activation = ELU,
Optimizer = Adam,

Loss Function = Tversky IoU

• Region of Interest (RoI) Align Layer, and
• Classifier (object detection).

Initially, to enhance the details present in the thermal
image, we pass it through Adaptive Histogram Equaliza-
tion (AHE) block. The salient features in the enhanced
thermal images are then extracted using the Convolutional
Backbone Network (CBN). Next, a shallow Region Pro-
posal Network (RPN) is employed to propose the bound-
ing boxes of objects. Further, the alignment of the features
of interest available at the Region of Interest (RoI) is per-
formed through the alignment layer, and then the classifi-
cation and bounding-box regression are carried out as de-
picted in Fig. 2. A detailed description of each module em-

ployed in the proposed object detection model is elaborated
below, and its architecture is tabulated in Table 1.

3.1. Adaptive Histogram Equalization (AHE)

In low-contrast imagery, usually, the important regions
occupy a small portion of gray-level intensities, while un-
interesting regions such as background and noise occupy
the majority of gray-level. Thus, a large number of pix-
els and hence large peaks in the histogram correspond to
those uninteresting regions. Adaptive Histogram Equalisa-
tion (AHE) in such a case can improve the contrast using
local image data. The basic idea of AHE is to partition the
given image into a grid of rectangular contextual sections
and apply standard histogram equalisation to each of them.
The number of contextual regions and their sizes are deter-
mined by the type of input image, with 8× 8 (pixels) being
the most frequent region size [43, 45, 46].

3.2. Convolutional Backbone Network (CBN)

The most popular algorithms such as FRCNN [50], MR-
CNN [23], YOLO-v3 [49] and SSD [18] employ the ResNet
and VGG structures for high-level feature extraction. Since
these deep networks are composed of many hidden lay-
ers, the models above are computationally intensive (i.e.,
consume more than 40-50 M number of training parame-
ters), and hence, they increase the overall complexity of the
network. To overcome this deficiency, we present a com-
putationally cheaper CBN module with approximately 85-
90% lesser parameters than the abovementioned algorithms.
This module takes an image and extracts high-level features
from it. The number of layers and structure of this mod-
ule are mentioned in Table 1. The use of Depthwise Con-
volution (DC) in the proposed CBN module further helps
to reduce the overall computational complexity of the net-
work. It divides the channels into G-groups and performs
the convolution independently for each group. If the num-
ber of groups equals the number of channels, the grouped
convolutions are reduced to depth-wise convolutions. The
CBN module consists of five convolutional layers in which
the size of the kernel and number of output channels gener-
ated from each layer are represented as m×n, f in Table 1.
All convolutional layers except the first layer utilize three
DC layers. Here, a group of three DC layers is considered
as one block and each block is recursively repeated a num-
ber of times. We repeat it three times (i.e., ×3) to extract
meaningful features available in the thermal image in the
proposed CBN network.

3.3. Region Proposal Network (RPN)

This module predicts the presence of objects based on
the region of the feature map from CBN. A small convolu-
tional network is slid over the feature maps output by the
last shared convolutional layer to generate region propos-
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als. This small network takes as input of n× n spatial win-
dow of the input convolutional feature map. Each sliding
window is mapped to a lower-dimensional feature. Hence,
it works by passing a sliding window over the CNN fea-
ture map, and each window outputs l potential bounding
boxes and scores for how good each of that boxes is ex-
pected to be. Then, the available features are fed into two
sibling fully-connected layers, i.e., a box-regression layer
(reg) and a box-classification layer (CLS) (see Table 1). In-
tuitively, objects in an image must fit certain common as-
pect ratios and sizes. For that, it requires some rectangular
boxes that resemble the shapes of objects. Hence, it creates
l such common aspect ratios as anchor boxes. Each such
anchor box outputs one bounding box and score per posi-
tion in the image. Hence, the classification layer has 2×
times the Number of classes (i.e., 6) output parameters that
represent class name along with a score of each class, and
the regression layer has 4× Number of classes (i.e., 12) out-
put parameters that describe the coordinates of the bounding
box of each class.

3.4. Region of Interest (RoI) Alignment Layer

At this stage, another neural network with four convolu-
tional layers is used, taking the proposed regions from the
previous stage and fitting them into several specific areas in
a feature map. A single block of convolutional layer con-
sists of pair of simple and Depthwise Convolutions (DC). It
scans those areas, assigns bounding boxes, and then predicts
the score for each object in the feature map. The regions of
the feature map selected by the RoI layer are slightly mis-
aligned from the regions of the original image. Hence, it
is adjusted and precisely aligned using the RoI Align layer
that converts all the regions to the same shape.

3.5. Classifier

The fixed size feature maps obtained by RoI layer are
passed through two Fully Connected (FC) layers followed
by a convolutional layer Hence, 7× 7 convolution with 512
nodes is applied to the backbone feature map of RoI to pro-
vide a feature map of single vector dimension. Here, first
and second FC layers have 256 and 3 nodes, respectively.
It is then fed to the Softmax classifier module to predict the
class labels and bounding boxes.

3.6. Loss Functions

Further, the proposed method is trained on the combi-
nation of Tversky and Intersection over Union (IoU) losses
inspired by earlier work [50]. The Tversky loss [51] adds
weight to False Positive (FP) and False Negative (FN) with
the help of a constant coefficient, and it calculates the sim-
ilarity between two objects. Our choice of Tversky loss
is further motivated to mitigate the false detection arising
out of low lit images. Mathematically, the Tversky loss

(ℓtversky) can be formulated as,

ℓtversky =
|P ∩ T |

(|P | ∩ |T |) + α((1− T ) ∗ P ) + β((1− P ) ∗ T )
.

(1)
Here, P and T represent predicted and target output im-
ages. α and β coefficient values are considered 0.7 and 0.3,
respectively as suggested in [51]. Additionally, the IoU loss
(ℓIoU ) is calculated as the ratio between the overlap of the
positive instances between two sets, and their mutual com-
bined values which can be calculated as [61],

ℓIoU =
|P ∩ T |

|P |+ |T | − |P ∩ T |
. (2)

Finally, the proposed object detection module is trained
with ℓs loss function which is the combination of Tver-
sky and IoU losses by exploiting the benefits of both ap-
proaches, and same can be represented as,

ℓs = ℓtversky + ℓIoU . (3)

4. Experimental Analysis
Numerous experiments have been performed on different

datasets of night-vision thermal images to evaluate the per-
formance of the proposed compact object detection model
and the detailed description associated to this is depicted
here. All experiments have been performed on a com-
puter with Intel Xeon(R) CPUE5 − 2620 v4 processor
@2.10GHz × 32 running on a 128GB RAM and two
NV IDIA Quadro P5000 with 16GB GPUs. Further, the
proposed method is implemented in the PyTorch library.

The proposed object detection method is trained on FLIR
dataset [55] which consists of visible and its corresponding
thermal images with annotation of three different classes
such as person, car and bicycle. Hence, it consists ground-
truth of the objects present in the thermal images. It has
10,228 images and same is divided for training (8,862 im-
ages) and validation (1,366 images) purposes. Addition-
ally, the training images are also augmented with random
rotation of 0 or 90, random horizontal flipping and random
cropping operations in order to avoid the problem of under-
fitting.

The proposed method is trained upto 4× 105 number of
iteration with batch size of 8 and it is optimized using Adam
optimizer. Additionally, the learning rate and IoU threshold
is set to 2× 10−3 and 0.9, respectively.

4.1. Testing Details

The quantitative and qualitative evaluations of the pro-
posed and other existing methods are presented by testing
it on four different datasets: (1) FLIR validation [55] (2)
KAIST testing dataset [26], and (3) MSOD dataset [57] and
(4) our internal dataset.
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The FLIR validation dataset contains 1366 thermal im-
ages utilized for testing in our work. It consists of annota-
tions of car, bicycle and person classes. Additionally, the
KAIST testing dataset consists of 32, 770 number of im-
age pairs, from that 2000 number of nighttime images are
selected for testing purposes. It consists of details of one
class: person. Further, the MSOD dataset contains 3,772
nighttime images; out of these, 300 images are randomly
selected for testing. Similar to the FLIR dataset, it has an-
notations of those three classes. Moreover, to check the gen-
eralizability of the proposed method on real-time night situ-
ations, we have prepared our dataset and performed the test-
ing of the proposed method on that dataset. This dataset in-
cludes 998 images that have been acquired under total dark-
ness at nighttime without any artificial and/or natural light
around the premises of interest. The FLIR E8-XT camera
is used to capture the images under different weather condi-
tions during the nighttime. This camera covers the spectral
range of 7.5-13 µm with a spatial resolution of 320 × 240
pixels. In the internal dataset, there are two classes: person
and car. Thus, the potential of the proposed method is val-
idated on numerous datasets of having multiple classes on
nighttime scenarios.

4.2. Ablation study

To show the effectiveness of various modules used in the
proposed method, many experiments have been conducted
in ablation study. It includes utilization of AHE, role of
activation functions (i.e., ReLU, Leaky ReLU (LReLU),
Parametric ReLU (PReLU) and Exponential Linear Unit
(ELU)), importance of proposed loss function, optimizer
and depthwise convolution in the architectural design. The
detail description of each module is elaborated in the sup-
plementary material.

4.3. Comparison with State-of-the-art Methods

To verify the efficacy of the proposed approach, the qual-
itative and quantitative assessments have been conducted
and their detailed demonstration is presented in this section.

4.3.1 Quantitative fidelity

The proposed method is evaluated quantitatively in terms of
various detection metrics such as Average Precision (AP),
recall, f1 score and mean of AP (mAP). The higher value
of these measures represents better detection accuracy. Ad-
ditionally, we also add the inference time taken by each
method to obtain the detection results which must be as
minimum as possible. Here, in order to understand the ef-
fectiveness of the proposed object detection module over
the different state-of-the-art detector methods, we add its
comparison in Table 2. Here, the different state-of-the-
art detectors such as YOLO-v3 [49], SSD [18] and FR-

Table 2. The quantitative comparison of the proposed object detec-
tion model. The red color fonts indicate the highest value among
all.

Metrics/Methods YOLO-v3 [49] SSD [18] FRCNN [50] Proposed

person bicycle car person bicycle car person bicycle car person bicycle car

FLIR Validation Dataset : Person, Bicycle and Car Detection

AP 19.44 32.91 36.29 25.36 18.54 58.44 14.41 0.21 44.05 43.72 40.77 72.70
recall 12.41 42.13 26.50 40.98 39.65 28.40 7.92 0.21 25.22 35.83 40.33 47.87
f1 score 21.66 41.69 39.21 24.48 41.04 32.08 14.62 0.42 39.72 40.16 46.12 62.31
mAP 29.55 34.11 19.56 52.39

Inference Time/image
(in sec.) 0.778132 0.231047 0.018554 0.0000013

KAIST Dataset : Person Detection

AP 28.12 - - 30.56 - - 27.65 - - 59.43 - -
recall 15.85 - - 14.22 - - 13.89 - - 42.91 - -
f1 score 27.05 - - 21.08 - - 20.74 - - 55.88 - -
mAP 28.12 30.56 27.65 59.43

Inference Time/image
(in sec.) 0.860113 0.239660 0.029388 0.0000016

MSOD dataset : Person, Bicycle and Car Detection

AP 6.94 0.15 3.75 11.50 0.27 9.64 26.84 - 8.46 63.94 0.74 4.98
recall 10.30 0.25 10.80 18.34 0.19 6.65 15.51 - 5.37 44.03 0.74 3.75
f1 score 13.89 0.47 9.01 22.62 1.46 10.89 26.55 - 9.97 57.70 1.47 7.09
mAP 3.62 7.29 11.76 23.22

Inference Time/image
(in sec.) 0.559803 0.229065 0.037591 0.00000037

Our Internal Dataset: Person and Car detection

AP 1.36 - 18.59 5.22 - 11.79 0.33 - 24.78 13.61 - 33.59
recall 16.91 - 32.54 32.48 - 21.71 2.77 - 21.91 53.20 - 35.49
f1 score 4.89 - 26.84 13.09 - 24.71 2.07 - 32.13 21.24 - 42.14
mAP 9.97 8.50 12.56 23.60

Inference Time/image
(in sec.) 0.473345 0.223567 0.013533 0.0000000750

CNN [50] are used to show the effectiveness of the pro-
posed object detection module. All the above mentioned
existing methods have been re-trained on the training pro-
tocol of the proposed method and their detection scores are
obtained and tabulated in Table 2.

The FLIR validation and MSOD datasets contain anno-
tations of common objects such as person, bicycle and car;
hence, performance of the proposed algorithm along with
the existing methods is verified by evaluating metrics on
these three objects. While KAIST dataset includes annota-
tion of person only. Therefore, its quantitative performance
is measured on object of person. Further, we have prepared
our internal dataset by annotating person and car. Thus,
the detection accuracy of these two objects are measured in
terms of different detection metrics. By inspecting Table 2,
one can observe that the proposed object detection model
performs better than the existing state-of-the-art object de-
tection methods such as FRCNN, YOLO-v3 and SSD for
most of the datasets. In case of FLIR validation dataset, re-
call scores for person and bicycle classes are better for SSD
and YOLO-v3 models, respectively. Further, the car class
for MSOD dataset is detected accurately by SSD method.
Additionally, one can compare the inference time required
by the proposed method which is optimum when compared
to the other existing methods.

4.3.2 Visual fidelity

The visual fidelity of the proposed method has been quanti-
fied by comparing it with the existing state-of-the-art meth-
ods. In Fig. 3 - Fig. 6, we show the bounding boxes ob-
tained on FLIR, KAIST, MSOD and our internal datasets,
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(a) YOLO-v3 [49] (b) SSD [18]

(c) FRCNN [50] (d) Proposed

Figure 3. The qualitative comparison of proposed method with ex-
isting state-of-the-art methods on FLIR dataset (zoom it for better
visualization).

(a) YOLO-v3 [49] (b) SSD [18]

(c) FRCNN [50] (d) Proposed

Figure 4. The qualitative comparison of proposed method with
existing state-of-the-art methods on KAIST dataset (zoom it for
better visualization).

(a) YOLO-v3 [49] (b) SSD [18]

(c) FRCNN [50] (d) Proposed

Figure 5. The qualitative comparison of proposed method with
existing state-of-the-art methods on MSOD dataset (zoom it for
better visualization).

(a) YOLO-v3 [49] (b) SSD [18]

(c) FRCNN [50] (d) Proposed

Figure 6. The qualitative comparison of proposed method with
existing state-of-the-art methods on our internal dataset (zoom it
for better visualization).
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respectively. The qualitative comparison of proposed ob-
ject detection model (i.e., Fig. 3(d)-Fig. 6(d)) are compared
with YOLO-v3 [49] (i.e., Fig. 3(a)-Fig. 6(a)), SSD [18]
(i.e., Fig. 3(b)-Fig. 6(b)), and FRCNN [50] (i.e., Fig. 3(c)-
Fig. 6(c)). For better visualisation, Fig. 3-Fig. 6 can be
zoomed to see the differences among all these results.

The Fig. 3 shows the comparison of the proposed method
along with other existing methods on FLIR dataset. It can
be observed that the bicycle is not detected in most of the
cases of existing methods (see Fig. 3(a-c)). However, the
bicycle object is easily identified along with persons in the
proposed method (see Fig. 3(d) by zooming it). It can
be noted that the existing methods are unable to perform
well on night-vision images. Further, the proposed method
shows its superiority among the state-of-the-art methods.
Hence, it can be deduced that the proposed method is help-
ful to obtain superior detection efficiency (i.e., more persons
are detected with better accuracy).

The visual comparison of the proposed method along
with the existing methods on the KAIST dataset is depicted
in Fig. 4. This dataset contains very noisy images; hence,
it is difficult to extract salient features. However, while
comparing the above mentioned existing object detection
methods, the proposed object detection model works well
on noisy data (See Fig. 4(d)). The SSD method also detects
all persons successfully (see Fig. 4(b)); However, it also re-
sults in the wrong detection of the front boundary of a car
as a person. The proposed model improves the detection ac-
curacy by providing accurate bounding boxes surrounding
the object (i.e., person) that can be observed by zooming
Fig. 4(d). Further, Fig. 5 displays the detection results on
the MSOD dataset. Similar to the earlier dataset, the images
in this dataset are also very noisy and low resolution. It can
be observed that the state-of-the-art object detection meth-
ods such as YOLO-v3 (i.e., Fig. 5(a)), SSD (i.e., Fig. 5(b)),
and FRCNN (i.e., Fig. 5(c)) have challenges in detecting
objects in noisy and low-resolution images when compared
to the proposed object detection model (i.e., Fig. 5(d)).

In addition to that, our internal dataset contains images
captured in total darker situations, which are depicted in
Fig. 6. Here, it is worth noting that the thermal cameras also
provide insufficient information about objects due to night-
time illumination. Thus, it is difficult to retain sufficient
information about the objects. Hence, most of the existing
detection techniques fail to obtain better accuracy on this
dataset (see Fig. 6(a-c)). However, the proposed method
detects objects in nigh-time situations, and its performance
proves its efficiency for real-time darker region scenarios.
The additional detection results obtained using the proposed
method on this dataset are also displayed in Fig. 1.

Figure 7. The computational complexity of different existing ob-
ject detection methods in terms of number of parameters required
to train their models.

4.3.3 Computational Complexity

The compactness of the proposed object detection module is
attributed to 3M parameters only. The computational com-
plexity of the different methods along with the proposed
module is depicted in Fig. 7. One can deduce that the pro-
posed object detection module needs the lowest number of
training parameters (i.e., 3M ) as compared to the other ex-
isting state-of-the-art methods such as FRCNN [50], SSD
[38], and YOLO-v3 [49] which are computationally inten-
sive as they need 52M , 24M and 61M number of param-
eters, respectively. The computational complexity of the
proposed object detection module is, therefore, consider-
ably less than the existing state-of-the-art methods without
the loss of performance.

5. Conclusion

An efficient object detection approach using Depthwise
DCNN for nighttime images was proposed in this work.
The proposed network architecture utilizes AHE prior to
the object detection task, which enhances the feature of
the thermal input data. The design of the CBN mod-
ule builds the proposed model efficient to extract features
where the use of depthwise convolution makes it com-
putationally inexpensive. The efficacy of the proposed
method is validated on four different diverse datasets on
night images. The qualitative and quantitative evalua-
tions show that the proposed approach is generalizable
and superior to the existing state-of-the-art object detec-
tion methods for nighttime scenarios. The proposed ob-
ject detection model also reduces the computational com-
plexity significantly compared to the other existing meth-
ods.
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