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Abstract

Previous research in multi-view 3D reconstruction have
used different convolution neural network (CNN) architec-
tures to obtain a 3D voxel representation. Even though
CNN works well, they have limitations in exploiting the
long-range dependencies in sequence transduction tasks
such as multi-view 3D reconstruction. In this paper, we
propose TMVNet – a two-layer transformer encoder that
can better use long-range dependencies information. In
contrast to using a 2D CNN decoder by the previous ap-
proaches, our model uses a 3D CNN encoder to capture
the relations between the voxels in the 3D space. Also, our
proposed 3D feature fusion network aggregates 3D posi-
tion feature from CNN and long-range dependencies feature
from transformer together. The proposed TMVNet is trained
and tested on the ShapeNet dataset. Comparison against
ten state-of-the-art multi-view 3D reconstruction methods
and the reported quantitative and qualitative results show-
case the superiority of our method.

1. Introduction
3D reconstruction from single or multiple views is an

ill-posed problem, making it a very challenging research
problem. Structure from Motion (SfM) [18] is one of the
classical approaches for 3D reconstruction, which requires
capturing the subject from multiple views and then process-
ing them with reconstruction algorithms [8]. However, ex-
tracting 2D-feature points is time-consuming and results in
sparse reconstruction. In addition, establishing correspon-
dence between feature points in multi-view reconstruction
is more complicated when the view is separated by a large
distance.

Inspired by the limitations of the prior approaches, re-
searchers have proposed deep-learning based 3D recon-
struction techniques [14, 19, 34], which can be classified
into three categories: : 1) point-cloud based [19], 2) mesh
based [14], and 3) voxel based [34]. The point-cloud ap-
proach outputs a series of points in 3D space, which de-
scribes the object with no connection between any of the

Figure 1. Voxel Reconstruction Results from 3 views in 323

resolution. An example from the ShapeNet dataset [2]. Our model
estimates accurate voxel grids and shows more details.

points. In contrast to the point-cloud-based method, the
mesh-based technique modeled the relationship between in-
dividual points in the point cloud. In voxel-based 3D recon-
struction, a volume for the object is created and divided into
small boxes. Each box can either be occupied or empty. If
the box is occupied, it will be rendered as a pixel [34].

Recently, researchers used a transformer-based encoder-
decoder for 3D reconstruction, which outperformed prior
approaches. Zhao et al. [39] introduced a method using
a transformer architecture for 3D point cloud processing,
which proposed a point transformer layer that applies self-
attention in the local neighborhood of 3D points. Guo et
al. [10] presented a transformer framework for point cloud
learning which included a coordinate-based position en-
coder and an offset attention module that used neighbor em-
bedding. In this paper, we use transformers for encoding the
long-range dependencies between CNN features. Below,
we provide the motivations behind the use of transformers.

1.1. Motivations for using Transformer

Although the previous works demonstrate satisfactory
accuracy in 3D reconstruction, few of them discuss the
long-range dependencies [29] in multi-view 3D reconstruc-
tion. The definition of long-range dependencies is: in a se-
quence signal (x1, ...xi...xj ...xn), xj has relation not only
with xj−1 but also with xi, where i < j. Long-range de-
pendencies also exist in multi-view 3D reconstruction. For
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example, the first input image has overlapping parts with the
last input image. A pixel in (i, j) in the m-th input image
may move to (x, y) in the n-th input image. Such phenom-
ena explain why RNN+CNN could perform better than pure
CNN [4] in multi-view 3D reconstruction. However, the
RNN layer has high computational complexity compared
with self-attention in transformer [29]. This reason moti-
vates us to apply transformer in 3D reconstruction.

Another benefit is that the transformer could also learn
object’s 3D position feature from image [21]. Such a 3D po-
sition feature could improve model accuracy. Meanwhile,
CNN layers learn object surface detail features from image.
Having two different features require them to be fused to-
gether to reconstruct the final 3D object. However, CNN
features and transformer features may have different distri-
butions. In our paper, we use 3D convolution decoder to
upsample the features from the transformer, and later use
2D convolution to adapt the different distributions and ag-
gregate them.

1.2. Contributions

The major contributions of this paper are as follows:

• A novel two-layer transformer neural network is pro-
posed for voxel-based reconstruction from single or
multiple views.

• We propose the 3D Feature Fusion Network to refine
voxel reconstruction results.

• Our model uses fewer convolutional layers and only
two transformer layers but preforms better than other
voxel based reconstruction methods.

2. Related Work
In this section, we discuss relevant previous works. First,

we discuss recent approaches that performing voxel 3D re-
construction. Then we discuss the works that use trans-
former and self-attention to perform object reconstruction.

Voxel-based 3D Reconstruction Early deep learning
based 3D reconstruction techniques primarily used voxel
representations of the subject to produce a 3D model. This
approach allows represent a 3D shapes as voxel grids, which
can be easily represented in binary form. A voxel is set
to zero if it is not included in the object and vice versa.
[5] presents an algorithm to reconstruct complex geometric
models by turning the object into three voxel spaces where
each voxel in the voxel space is encoded as a 2D texture.
However, this algorithm required pre-processing before re-
construction. To solve this issue, [7] proposes a binary hier-
archical voxel representation using a binary octree that does
not rely on any pre-processing and produces a finished rep-
resentation of the subject without holes.

Voxel grids are the most common form in deep learn-
ing based reconstruction methods. [4] proposes a recurrent

neural network architecture that uses CNN layers as well as
an LSTM. It takes one or more images of an object from
different angles as the input and outputs a 3D occupancy
grid as the reconstructed model. [13] proposes an image-to-
semantic voxel model using a generator and discriminator
to generate a voxel reconstruction, semantic segmentation,
and object poses as the combined output.

Though these methods perform well, they are expensive
in terms of memory requirements. To reduce the memory
consumption, researchers aimed to lower the resolution of
3D volume reconstruction. [33] proposes a convolutional
deep belief network that learns the distribution of complex
3D shapes and hierarchical representations between differ-
ent object categories. To reconstruct an object from a single
given image, [32] adds the MarrNet, which is an end-to-end
deep learning model that can reconstruct 3D objects given
an estimated 2.5D sketch with two-step disentangled for-
mulation. The first step uses an encoder-decoder neural net-
work to create 2.5D sketches, which are used as input for a
second encoder-decoder model to create a 3D object. [24]
used this two-step approach to create Pix3D, which is a
multi-task learning approach to perform reconstruction and
pose estimation from a single image.

Inspired by [33], [28] proposes the view consistency net-
work by using differentiable ray consistency (DRC). They
incorporate DRC into deep learning frameworks to regress
the voxel grids. With DRC, deep learning frameworks can
leverage different types of observations of a subject, such
as foreground masks, depth, color, and semantics. [27] out-
lines a method of multi-view consistency to regress voxel
grids. This method enforces the predicted voxels consis-
tent with each other in the input image using their depth
value. [36] proposes a unified framework that can use differ-
ent types of data, like pose-annotated images and unlabeled
images to perform regression. [16] introduces the Varia-
tional Shape Learner (VSL) with skip-connections which
performs voxel regression by learning the underlying struc-
ture of 3D shapes in an unsupervised manner. This ap-
proach encodes 2D features into a latent variable, which is
decoded into voxel grids.

Transformers for 3D Reconstruction: Transformer
and self-attention are popular in natural language process-
ing (NLP) and perform well in various NLP tasks, such as
machine translation [29]. This performance attracted the in-
terest of the computer vision community. Many researchers
attempted to apply the transformer and self-attention to var-
ious computer vision tasks like image recognition, object
detection, and 3D reconstruction. However, NLP tasks and
the structure of NLP data are different from image and vi-
sion, which means transformer and self-attention is not al-
ways suitable for image-based workloads. As a result, many
novel networks tried to make transformer and self-attention
available to 3D reconstruction. [39] outlines self-attention
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Figure 2. Voxel Reconstruction Network Architecture Overview: The model first extracts 2D features from a sequence of images using
a residual CNN encoder. Those features are then passed through two transformer encoder layers with independent input dimensions. The
obtained 3D feature vectors are then used by a 3D CNN decoder to obtain the 3D voxel features. Finally, a feature fusion layer is used to
fuse the decoded 3D voxel features to obtain the final 3D reconstruction of the object.

layers to analyze point-clouds and uses self-attention lay-
ers to construct a point transformer. The point transformer
models the relationship of the local neighbors of a point
and encodes the 3D position information into a feature vec-
tor for the self-attention layers. However, this point cloud
data is still highly irregular and lacks any ordering infor-
mation. To solve this, [10] proposes a point cloud trans-
former that uses the order invariance of the transformer to
define the order of points in the point cloud. The paper also
proposes offset-attention with a Laplacian operator to refine
the order of points. [38] introduces an iterative transformer
network (IT-Net) that iteratively learns the 3D point shape
and semantic segmentation of an object. [31] introduces a
global voxel transformer network based on U-Net and built
on Global Voxel Transformer Operators (GVTOs). GVTOs
enable voxel transformers to aggregate the global informa-
tion of an object while also retaining local information.

In our approach, we draw inspiration from [4,15,31] and
propose a multi-layer transformer encoder, which takes im-
age features as input from a CNN encoder to estimate 3D
voxel representation from one or many images. The multi-
layer transformer encoder can more accurately model the
space position information for each voxel grid compared to
the LSTM approach proposed in [4].

3. TMVNet Architecture

In this section, we discuss the network architecture. The
overview of the model is illustrated in Figure 2. The pro-
posed TMVNet consists of four separate layers – a 2D-CNN
layer, a two-layered transformer Encoder layer, a 3D-CNN

decoder, and a 3D feature fusion layer. It should be noted
that there is only one each of the 2D CNN Encoder, the two-
layer transformer encoder, and the 3D CNN Decoder. The
figure shows them multiple times to denote that our pro-
posed approach can work either take as input a single view
or multiple views as a sequence. The following subsections
detail the network architecture.

3.1. 2D-CNN Encoder Layer

The first part of our model utilizes the residual CNN
in [4] as an encoder to extract 2D image features for
each input view. We do not pre-train our CNN encoder
on datasets, such as ImageNet [23], because the object
shapes are not consistent between ImageNet and our train-
ing dataset, which could negatively impact model accuracy.

3.2. Transformer Encoder Layer

The extracted features from the 2D-CNN are forwarded
to the two-layered transformer encoder layer. While exist-
ing transformer encoder architectures set constant dimen-
sions for all transformer layers [1, 6], this is not suitable
for voxel reconstruction. To overcome this limitation, we
use linear projections in our transformer encoder to dynam-
ically adjust the dimension of each output, performing grad-
ual dimension reduction with several blocks, which was in-
spired by [11,15]. Because the output dimensions of a CNN
encoder are quite small when given input images with a
small size (i.e., 127×127 image), we set a small size square
(3× 3). The final output vectors of our transformer encoder
are 3D feature vectors, which contain the 3D information
required for a voxel as shown in Figure 2. To clarify, the
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Figure 3. 3D Feature Fusion Network Overview: The model first extracts 2D image features using the triple-layered CNN encoder.
Those features are passed through two transformer encoder layers with independent input dimensions. Finally, the output of the second
transformer is used to model the object.

extracted 2D features from each input view are processed
by the two-layer transformer encoder one by one as a se-
quence. Hence, there is only a single two-layer transformer
encoder, not one each for each view.

3.3. 3D-CNN Decoder Layer

The next layer of our model is the 3D CNN decoder. It
takes as input the 3D feature vectors from the transformer
decoder and performs 3D convolution to produce a 32×32×
32 vector. To save the computation time and memory usage,
we propose a simple decoder network with four layers of
3× 3× 3 convolutions (each layer follows a 3D relu layer).
Different from [4, 34], our decoder is the 3D convolution
and has no residual branches, which makes a better trade-
off between accuracy and GPU memory usage.

3.4. Feature Fusion Layer

To fuse each 3D voxel feature from the 3D-CNN de-
coder, we propose the feature fusion layer. Figure 3 shows
the overview of the fusion layer. The fusion layer takes
as input the 3D voxel features from the 3D-CNN de-
coder. Assuming there are n 3D voxel features, namely,
m1,m2, · · ·mn. The 3D Feature Fusion Network uses
mi−1 as input of the first branch that has three 3D convolu-
tion layers and uses mi as input of the second branch that
has two 3D convolution layers. After concatenation, the
output from each branch in the channel direction, the con-
catenation output follows a 3D convolution layer and is nor-
malized by a softmax layer, which gives a learned weight
wi−1. With wi−1, mi and mi−1 are fused as follows:

vi = wi−1 ×mi−1 + (1− wi−1)×mi (1)

Then vi repeats the fusion steps with mi+1 until the last
3D voxel feature mn. The final outputs are denoted as vn. It
passes through a softmax layer to normalize it to a range of
(0, 1), which is denoted as pi,j,k. pi,j,k indicates the proba-
bility of the voxel being occupied at position (i, j, k).

3.5. Loss Function

The loss function is defined using the sum of voxel-wise
cross-entropy (Eq. 2) [4]. The x denotes the input image
(or images), pi,j,k represents the probability that the voxel
at position (i, j, k) is occupied in the final reconstruction.
The corresponding voxel in the ground truth is defined as
y(i, j, k) ∈ (0, 1) and the sum of our voxel-wise cross-
entropy loss function is defined as follows:

L(x, y) =
∑
i,j,k

yi,j,k log pi,j,k + (1− yi,j,k) log (1− pi,j,k)

(2)

4. Experiments
In this section, discuss the experiment setup, implemen-

tation details and the datasets.

4.1. Implementation Details

Our model is built on the PyTorch framework [20], and
trained on the ShapeNet dataset, as explained below in Sec-
tion 4.2. The training is performed on a NVIDIA RTX
3080 GPU for 60 epochs with a batch size of 4. We used
the Adam optimizer [12] with the settings β1 = 0.9 and
β2 = 0.999. We utilize an adaptive learning rate, starting at
0.0001 and decreasing it by half every ten epochs after the
20th epoch.
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Category 3D-R2N2 OGN AtlasNet Pixel2Mesh OccNet IM-Net AttSets Pix2Vox++/F Pix2Vox++/A Mem3D Ours
airplane 0.513 0.587 0.493 0.508 0.532 0.702 0.594 0.607 0.674 0.767 0.691
bench 0.421 0.481 0.431 0.379 0.597 0.564 0.552 0.544 0.608 0.651 0.659
cabinet 0.716 0.729 0.257 0.732 0.674 0.680 0.783 0.782 0.799 0.840 0.853
car 0.798 0.828 0.282 0.670 0.671 0.756 0.844 0.841 0.858 0.877 0.870
chair 0.466 0.483 0.328 0.484 0.583 0.644 0.559 0.548 0.581 0.712 0.721
display 0.468 0.502 0.457 0.582 0.651 0.585 0.565 0.529 0.548 0.631 0.595
lamp 0.381 0.398 0.261 0.399 0.474 0.433 0.445 0.448 0.457 0.535 0.534
speaker 0.662 0.637 0.296 0.672 0.655 0.683 0.721 0.721 0.721 0.778 0.712
rifle 0.544 0.593 0.573 0.468 0.656 0.723 0.601 0.594 0.617 0.746 0.783
sofa 0.628 0.646 0.354 0.622 0.669 0.694 0.703 0.696 0.725 0.753 0.701
table 0.513 0.536 0.301 0.536 0.659 0.621 0.590 0.609 0.620 0.685 0.660
telephone 0.661 0.702 0.543 0.762 0.794 0.762 0.743 0.782 0.809 0.823 0.801
watercraft 0.513 0.63 0.355 0.471 0.579 0.607 0.601 0.583 0.603 0.684 0.685
Overall 0.560 0.596 0.352 0.552 0.626 0.659 0.642 0.645 0.670 0.729 0.712

Table 1. IoU Results on ShapeNet [2] for Single-View Reconstruction: Thirteen test categories (first column) with one input view and
the average IoU for each category. Best results for each metric are in bold; second best are underlined.

Category 3D-R2N2 OGN AtlasNet Pixel2Mesh OccNet IM-Net AttSets Pix2Vox++/F Pix2Vox++/A Mem3D Ours
airplane 0.412 0.487 0.415 0.376 0.494 0.589 0.489 0.493 0.583 0.671 0.594
bench 0.345 0.364 0.439 0.313 0.318 0.361 0.406 0.399 0.478 0.525 0.571
cabinet 0.327 0.316 0.350 0.450 0.449 0.345 0.367 0.363 0.408 0.517 0.453
car 0.481 0.514 0.319 0.486 0.315 0.304 0.497 0.523 0.564 0.590 0.602
chair 0.238 0.226 0.406 0.386 0.365 0.442 0.334 0.262 0.309 0.503 0.520
display 0.227 0.215 0.451 0.319 0.468 0.466 0.310 0.253 0.296 0.498 0.475
lamp 0.267 0.249 0.217 0.219 0.361 0.371 0.315 0.287 0.315 0.403 0.368
speaker 0.231 0.225 0.199 0.190 0.249 0.200 0.211 0.256 0.152 0.262 0.242
rifle 0.521 0.541 0.405 0.340 0.219 0.407 0.524 0.553 0.574 0.626 0.678
sofa 0.274 0.290 0.337 0.343 0.324 0.354 0.334 0.320 0.377 0.434 0.481
table 0.340 0.352 0.373 0.502 0.549 0.461 0.419 0.385 0.406 0.569 0.584
telephone 0.504 0.528 0.545 0.485 0.273 0.423 0.469 0.588 0.633 0.674 0.695
watercraft 0.305 0.328 0.296 0.266 0.347 0.369 0.315 0.346 0.390 0.461 0.470
Overall 0.351 0.368 0.362 0.398 0.393 0.405 0.395 0.394 0.436 0.517 0.518

Table 2. F-Score@1% Results on ShapeNet [2] for Single-View Reconstruction: Thirteen test categories (first column) with one input
view and the average F-Score@1% for each category. Best results for each metric are in bold; second best are underlined.

4.2. Datasets

We used the following two datsets for our study:
ShapeNet [2] contains 3D CAD models and is orga-

nized according to their WordNet classification. For con-
venience, we use a subset of the ShapeNet dataset that con-
sists of 50, 000 models across 13 categories, such as plane
and bench. We randomly split 2/3 of the subset into the
training set and the remaining 1/3 into the testing set.

Pix3D [24] contains 395 3D models of nine object
classes. It provides a set of real-world images for each CAD
model. Following [24, 34], we use 2,894 untruncated and
unoccluded images from the chair category for testing.

5. Results

We report two types of results for each experiment com-
pared with other state-of-the-art voxel reconstruction meth-
ods: quantitative and qualitative. For quantitative analy-

sis, Intersection-over-Union (IoU) and F-Score are used as
the primary evaluation metrics, similarly to previous works
[4, 25, 34]. IoU computes the intersecting areas between
a 3D voxel reconstruction and its ground truth. Follow-
ing [26], we take F-Score as a metric to evaluate the perfor-
mance of 3D reconstruction results. We follow [34] for the
evaluation on F-Score for all the reconstruction methods.
For qualitative analysis, we visually compare the results of
our approach against other methods.

5.1. TMVNet with ShapeNet Dataset [2]

Single-view reconstruction results: Tables 1 and 2
show the quantitative results, specifically IoU and F-score
values respectively, for single view voxel reconstruction on
the ShapeNet dataset. We compare our model with several
state-of-the-art methods: 3D-R2N2 [4], OGN [25], Atlas-
Net [9], Pixel2Mesh [30], OccNet [17], IM-Net [3], AttSets
[35], Pix2Vox++/F [34], and Pix2Vox++/A [34],Mem3D
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Methods 1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views
3D-R2N2 0.560 0.603 0.617 0.625 0.634 0.635 0.636 0.636
AttSets 0.642 0.662 0.670 0.675 0.677 0.685 0.688 0.692
Pix2Vox++/F 0.645 0.669 0.678 0.682 0.685 0.690 0.692 0.693
Pix2Vox++/A 0.670 0.695 0.704 0.708 0.711 0.715 0.717 0.718
Ours 0.712 0.715 0.715 0.718 0.718 0.719 0.719 0.721

Table 3. IoU Results on ShapeNet [2] for Multi-View Reconstruction: Comparison of multi-view 3D object reconstruction on ShapeNet
at 323 resolution. Best results for each metric are in bold; second best are underlined.

Methods 1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views
3D-R2N2 0.351 0.368 0.372 0.378 0.382 0.383 0.382 0.382
AttSets 0.395 0.418 0.426 0.430 0.432 0.444 0.445 0.447
Pix2Vox++/F 0.394 0.422 0.432 0.437 0.440 0.446 0.449 0.450
Pix2Vox++/A 0.436 0.452 0.455 0.457 0.458 0.459 0.460 0.461
Ours 0.518 0.518 0.539 0.541 0.546 0.546 0.547 0.550

Table 4. F-Score@1% Results on ShapeNet [2] for Multi-View Reconstruction: Comparison of multi-view 3D object reconstruction
on ShapeNet at 323 resolution. Best results for each metric are in bold; second best are underlined.

[37]. As seen from the results, our model outperforms all
other competitive methods on overall average IoU and av-
erage F-score results.

Multi-view reconstruction results: To evaluate the per-
formance of 3D voxel reconstruction from multi-view im-
ages, we compare our model with 3D-R2N2 [4], AttSets
[35], Pix2Vox++/F [34], and Pix2Vox++/A [34]. As shown
in Tables 3 and 4, we conduct experiments on 8 different
input view categories, namely 1-, 2-, 3-, 4-, 5-, 8-, 12-, and
16-views. Our model performs the best in 7 input view cat-
egories and second best in 1 input view category (4-views).

Figure 4 shows visual qualitative results of our multi-view
voxel reconstruction approach on images from ShapeNet
dataset on 3-views. From visual inspection, we can see that
our model performs better in terms of the capture of details,
as opposed to other methods.

High resolution reconstruction results: To further test
the model performance at higher resolutions, namely, 643

and 1283, we compare our model in single and multi-
views situations against other state-of-the-art methods, in-
cluding: OGN [25], Matryoshaka [22], Pix2Vox++/F [34],
and Pix2Vox++/A [34]. We use the same experimental

Figure 4. Qualitative Results on ShapeNet [2] for Multi-View Reconstruction: Comparison of our approach against against other
approaches on four different test cases with ground truth data.
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Methods 1 view 2 views 3 views
Resolution: 643

OGN 0.771 N/A N/A
Matryoshka 0.784 N/A N/A
Pix2Vox++/F 0.793 0.807 0.809
Pix2Vox++/A 0.803 0.813 0.814
Ours 0.805 0.813 0.818
Resolution: 1283

OGN 0.782 N/A N/A
Matryoshka 0.794 N/A N/A
Pix2Vox++/F 0.817 0.832 0.838
Pix2Vox++/A 0.826 0.837 0.841
Ours 0.831 0.843 0.849

Table 5. IoU Results on ShapeNet [2] Cars at Higher Resolu-
tions: Comparison of single and multi-view reconstruction at 643

resolution. Best results for each metric are in bold; second best
are underlined.

Methods 1 view 2 views 3 views
Resolution: 643

OGN 0.361 N/A N/A
Matryoshka 0.380 N/A N/A
Pix2Vox++/F 0.401 0.429 0.433
Pix2Vox++/A 0.418 0.448 0.450
Ours 0.436 0.451 0.456
Resolution: 1283

OGN 0.390 N/A N/A
Matryoshka 0.426 N/A N/A
Pix2Vox++/F 0.459 0.502 0.517
Pix2Vox++/A 0.475 0.509 0.521
Ours 0.476 0.513 0.530

Table 6. F-Score@1% Results on ShapeNet [2] Cars at Higher
Resolutions: Comparison of single and multi-view reconstruction
at 643 resolution. Best results for each metric are in bold; second
best are underlined.

setup as [34], predicting 3D voxels of cars in the ShapeNet
dataset. Tables 5 and 6 show the result of 643 and 1283 res-
olutions respectively. As seen from the results, our model
outperforms other state-of-the-art methods in both 643 and
1283 resolution. The only exception is the result of 2
views at 643 resolution, our model obtains the same IoU
as Pix2Vox++/A [34].

5.2. TMVNet with Pix3D Dataset [24]

We evaluated the performance of our network in single-
view reconstruction on real-world images from the Pix3D
Dataset [24]. We trained our network on ShapeNetChairs
and tested it on the chair category of the Pix3D dataset. As
shown in Table 7, our networks trained on ShapeNetChairs
have better results than Pix2Vol++/A [34] and Pix2Vol++/F
[34] trained on ShapeNet-Chairs.

Method IoU F-Score@1%
Pix2Vox++/F 0.179 0.012
Pix2Vox++/A 0.204 0.018
Ours 0.210 0.021

Table 7. IoU and F-Score@1% Results on Pix3D [24]
for Single-View Reconstruction: Comparison F-Score@1% of
single-view 3D object reconstruction on Pix3D at 323 resolution.
Best results for each metric are in bold.

5.3. Ablation Study

We conduct an ablation study on the ShapeNet dataset
to better understand the importance of the proposed mod-
ules: two-layers Transformer Encoder and 3D feature Fu-
sion Network (3D FF). Table 8 shows the results of the dif-
ferent variants of our model on the ShapeNet dataset. As
seen in the results, the baseline model with a 2D CNN En-
coder, Res3D-GRU [4], and a 3D CNN Decoder neural,
but without the proposed modules performs poorly com-
pared to the others. On the other hand, the model with
all our proposed modules - two-layer Transformer Encoder
and 3D feature Fusion Network - performs the best with
significant improvements compared to the baseline model
and other partial configurations. This proposed two Trans-
former Encoder is the primary contributor towards success-
ful voxel reconstruction. However, we also find that the
baseline model can be improved highly even only using the
3D feature Fusion Network without the two Transformer
Encoders. The variant with one Transformer Encoder works
the second best. But the three Transformer Encoders per-
form worse than the one- and two-layer Transformer ver-
sions. The reason for this is that by adding too many trans-
former layers, the model easily overfits the dataset, resulting
in poor performance.

Avg IoU in Diffrernt View(s)
3D FF 1 2 3 4 5

0.558 0.604 0.619 0.622 0.631Res3D-GRU
baseline ✓ 0.583 0.606 0.626 0.638 0.635

0.482 0.436 0.512 0.511 0.541One layer
Transformer ✓ 0.628 0.632 0.637 0.645 0.651

0.571 0.575 0.607 0.614 0.627Two layer
Transformer ✓ 0.712 0.715 0.715 0.718 0.718

0.543 0.504 0.529 0.537 0.563Three layer
Transformer ✓ 0.615 0.622 0.640 0.641 0.643

Table 8. ShapeNet [2] Ablation Study: Ablation study of our
model on all the categories from the ShapeNet [2]. Best results for
each metric are in bold; second best are underlined.

5.4. Limitations & Future Work

Our approach for voxel reconstruction extracts image
features from 2D image(s). There could be some edge areas
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Figure 5. Failure Case - ShapeNet Dataset [2]: Our model fail
to model the connection between chair legs.

in the image(s) that are hard to model. As Figure 5 shows,
our model fails to model the connection between chair legs.
This is because our CNN encoder may not be able to model
object’s detail when it is occluded. Another limitation is
that the edge areas are not smooth, e.g., the edge area on the
seat back. Adding gradient information into training may
help us solve this issue. We will investigate such specific
cases further as part of our future work and try to address
the limitations of our proposed method.

6. Conclusion

In this paper, we proposed TMVNet – a novel and ef-
fective multi-layer transformer network to perform voxel-
based multi-view 3D reconstruction using a transformer en-
coder and a convolutional decoder. A 2D CNN encoder was
used to extract 2D image features for the proposed trans-
former encoder, which used a two-layer transformer and
self-attention model to represent the 3D position of each
voxel grid. To learn the mapping from 2D to 3D, a 3D CNN
decoder was used to decode the output from the transformer
encoder to generate voxel occupation probabilities. We also
proposed a 3D feature fusion layer to fuse all the 3D voxel
features. We showed experimental results on the widely-
used ShapeNet and Pix3D datasets, which demonstrated the
effectiveness of our proposed approach to voxel-based 3D
reconstruction. The ablation study also showed that our pro-
posed two-layer transformer encoder and 3D feature fusion
network provided significant improvements.
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[21] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun.
Vision transformers for dense prediction. arXiv preprint
arXiv:2103.13413, 2021. 2

[22] Stephan R Richter and Stefan Roth. Matryoshka networks:
Predicting 3d geometry via nested shape layers. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 1936–1944, 2018. 6

[23] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115(3):211–252, 2015. 3

[24] Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong
Zhang, Chengkai Zhang, Tianfan Xue, Joshua B Tenenbaum,
and William T Freeman. Pix3d: Dataset and methods for
single-image 3d shape modeling. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2974–2983, 2018. 2, 5, 7

[25] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox.
Octree generating networks: Efficient convolutional archi-
tectures for high-resolution 3d outputs. In Proceedings of the
IEEE International Conference on Computer Vision, pages
2088–2096, 2017. 5, 6

[26] Maxim Tatarchenko, Stephan R Richter, René Ranftl,
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