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Abstract

Honey fraud and adulteration are an increasing con-
cern globally. Hyperspectral imaging and machine learn-
ing can detect adulterated honey within a known set of
honey, where we have captured data at different sugar con-
centrations. Previous work in this area has used a mini-
mal number of honey types, as sample preparation and data
capture is a time-consuming process. This paper develops
a new approach using variational autoencoders (VAEs) for
generating adulterated honey data for unseen honey types.
The results show that the binary adulteration detector can
achieve on average 81.3% accuracy on unseen honey types
by adding the generated data to the existing training data.
Without including the generated data while training, the
classifier can only achieve 44% on unseen honey types.

1. Introduction

There is an increasing risk of honey fraud [1], as honey is
a large and growing industry globally and a high-value ex-
port in New Zealand (NZ) [8]. Quality assurance is essential
to protecting high-quality honey, as honey is the third most
adulterated food product globally [3, 8, 20]. Honey fraud
typically involves the dilution of honey with cheap sugar
syrups, processing honey unnaturally to change its proper-
ties, incorrect labelling of geographical or botanical origin,
or feeding bees sugars rather than botanical nectars [3].

There are existing quality assurance measures for pre-
mium honey types such as NZ Manuka honey [4]. Hy-
perspectral imaging can be used as a tool for detecting
the botanical origins and quality of pure honey [7, 12–16].
NZ honey is a premium product and sells for 20% more
than other honey sold in the USA [8]. These honey types
should not be adulterated with other ingredients such as
sugar syrup.

Honey adulteration can also be detected using spec-
troscopy and hyperspectral imaging. Most of the exist-

ing work on honey adulteration detection has focussed on
a minimal set of different honey types, or in many cases,
one honey type. Several different types of sugar syrup were
added to Manuka honey and captured using near-infrared
spectroscopy, and aquaphotomics [24]. This work shows
promise in using spectral approaches to classify adulter-
ation with many different adulterants. The experiment used
one type of Manuka honey, so it is uncertain if this approach
is suitable for other types of honey. Several papers have
investigated the use of Fourier transform infrared (FTIR)
spectroscopy to detect the adulteration of honey with cane
sugar [6,23]. The honey was adulterated between 0.5% and
25% cane sugar concentration. Only one type of honey was
used in [6] which predicted the sugar concentration with
an accuracy of 93.75%. When using three different honey
types to classify adulteration [23], the classification accu-
racy was below 80%.

Previous research has been done on hyperspectral imag-
ing to detect adulteration. A small dataset of 56 samples
was used to detect adulteration with 95% accuracy [21].
This approach uses a neural network to calculate a per-
centage of pixels in the image to be either sugar or honey.
Recent work has captured a much larger database of 8525
training and testing examples from 341 honey samples cov-
ering 11 different honey botanical origin types from seven
unique brands. The honey was adulterated at 5%, 10%,
25%, and 50% for each honey type [18].

While a larger data set of adulterated honey with 8525
examples covering 11 different honey types have been de-
veloped using hyperspectral imaging [18], it still covers far
fewer kinds of honey than have been captured as pure honey
samples [19]. Sample preparation and hyperspectral image
capture are time-consuming. Hence, the datasets used for
adulteration detection have typically been tiny. A larger
dataset of adulterated honey is required to detect adulter-
ation of many different honey types.

Recent advances in machine learning have improved data
generation techniques. Generative adversarial networks
(GANs) and variational autoencoders (VAEs) can generate
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very realistic fake data using deep neural networks trained
on the actual data. GANs work by using two networks, a
generator and an adversary. The generator network learns
how to generate realistic fake data, and the adversary learns
how to determine if the data is real or fake [5]. These two
networks are trained in parallel; thus, the other also has to
improve as each one improves. This technique can generate
very realistic fake data, including images that are difficult
for humans to detect as fake.

Variational autoencoders extend a traditional autoen-
coder structure, where they learn a distribution in the latent
(feature) space for every training example. [22]. VAEs cre-
ate new data by reconstructing the sampled latent space with
the decoder network. The latent space created by VAEs sat-
isfies certain conditions, which make it easy to manipulate
to create variations on the data. The latent space must be
continuous and map similar data close together in an organ-
ised way. Using regularisation on the latent space enforces
these conditions [2]. This regularisation uses the Kullbeck-
Leibler (KL) divergence between the returned latent distri-
bution and a standard Gaussian [2, 22]. By including this
regularisation term in the loss function for the VAE, we can
now manipulate the latent space [2].

The variational class embodiment autoencoder
(VCEAE) was developed to have higher generalisa-
tion performance on unseen data [15]. This technique is a
combination of a VAE and a class embodiment autoencoder
(CEAE) [14], which is a semi-supervised autoencoder that
utilises weighted class labels to train the latent space. We
consider this technique for data generation, as the latent
space has the properties for data transformation similar to
a VAE. The generated data is trained using class labels and
input data for the VCEAE technique.

This work aims to generate fake honey adulteration data
with a VAE and VCEAE by utilising the small adulteration
dataset. The data generator can then create a generated
dataset covering a more comprehensive set of honey types
for adulteration detection.

Specifically, the objectives are:

• Construct a VAE to generate fake data from new
honey types trained on the existing honey adulteration
dataset.

• Evaluate the data generated using a leave one out eval-
uation strategy.

• Apply the data generation to the existing honey botan-
ical origins dataset.

The organisation of the paper is as follows: Material and
Methods describes the data preparation, the design of the
VAEs and the evaluation strategy used. Results and discus-
sion shows the generated data compared to the real data,

Figure 1. Showing the sample preparation process for one honey
type in our database.

along with tabulated results and a short discussion. The pa-
per is then concluded, and future work presented.

2. Material and Methods
This section details the methods used to generate fake

adulteration data for honey using variational autoencoders
and an existing dataset. This section discusses the dataset
collected and used for honey adulteration and the subset we
apply for this work. We also discuss variational autoen-
coder architectures used to generate the new data and the
evaluation techniques.

2.1. Honey adulteration dataset

This section provides an overview of the methodolo-
gies we use to capture hyperspectral images of adulterated
honey. The dataset is available online [18]. Figure 1 il-
lustrates the procedure followed for sample preparation and
capturing of this dataset.

2.1.1 Data preparation

Homogenous samples from a wide range of honey types
were prepared to the desired sugar concentrations of
5%, 10%, 25%, 50% [10]. Existing work has developed and
used a dome system with halogen bulbs which ensures an
even broadband light source over the entire sample [10].
The images of honey have been captured with a hyperspec-
tral imager SOC-710 from Surface Optic. The hypercubes
captured are between 400 − 1000nm in wavelength with a
5nm increment and 520x696 spatial resolution. This wide
range of wavelengths has been used in previous work in this
application [9, 10].

Because a hyperspectral imaging system measures the
intensity of light reflected into the camera, the calibration
process is crucial to obtaining consistent images. Calibra-
tion is performed using a dynamic white reference tech-
nique [11].

Segmentation is a key preprocessing step in our work.
This technique is a point of difference between the two
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Figure 2. Segmentation process for our dataset, showing how the
image is split into a five by five grid to obtain 25 samples.

groups working in this area [10, 21]. The approach we take
is to use segmentation rather than directly using the entire
hyperspectral images, as this enables training of machine
learning techniques with more training examples. Figure 2
clearly illustrates this process.

Normalisation is applied to the final dataset before us-
ing machine learning techniques to speed up the training
process. The normalisation technique is a standard scalar,
which scales the standard deviation and means to one and
zero, respectively [12].

2.1.2 Data makeup

The dataset [18] comprises 12 different honey products
from seven different brands with 11 different botanical ori-
gins labels. Half of the samples are from Manuka honey, a
premium NZ honey type, and the other half are from other
NZ honey. Table 1 shows the makeup of the dataset from
these different kinds of honey.

Table 1. Overall make-up of the adulterated honey dataset from
each brand and botanical origins label of honey.

Brand Class Adulteration Concentration
0% 5% 10% 25% 50% Sum

C1 Clover 150 150 300 300 300 1200

C10

MultiFloral 150 150 150 450
ManukaUMF5 150 150 150 150 600
ManukaUMF15 150 150 150 150 600
ManukaUMF20 150 150 150 150 600

C4 ManukaUMF10 150 150 150 125 575
C5 ManukaBlend 150 150 150 450

C7
BorageField 150 150 150 150 150 750
Kamahi 150 150 150 150 150 750
Rewarewa 150 150 150 450

C8 ManukaBlend 150 150 150 150 150 750
C9 Manuka 150 300 300 300 300 1350

It is only feasible to use data from classes with com-
plete information for this work on generating new data. The
dataset was limited to only include data from the following
brand and honey combinations: C4 Multifloral, C7 Borage-
Field, C7 Kamahi, and C8 ManukaBlend.

2.2. Variational Autoencoder structures

The variational autoencoder structure we used has been
explained in [15]. We consider both the traditional vari-
ational autoencoder and the variational class embodiment
autoencoder (VCEAE) for this work. The benefit of the
VCEAE over the traditional variational autoencoder is that

Figure 3. Variational autoencoder structure

Figure 4. VCEAE architecture

the feature space categorizes the class labels in a more accu-
rate way. However, a potential downside is that the overall
impact of regularisation may be less; thus, the latent space
may not be as trivial to manipulate when generating data.

The variational autoencoder structure used is given in
figure 3. The overall structure of the decoder and encoder is
two fully connected layers of size 128 and 74, respectively.
The latent space or encoding layer is of size 20. A dropout
rate of 0.001 is used to prevent over-fitting. The network is
trained with a batch size of 32 and a learning rate of 0.001
for 100 epochs.

The VCEAE network parameters are very similar to the
variational autoencoder, using the same encoding and de-
coding networks. However it also applies a classification
weight of 0.4 for training the classification output. This pa-
rameter value has been used successfully in previous work
[15]. The VCEAE architecture used is shown in detail in
figure 4.

2.3. Evaluation Strategy

Because we have selected only a small number of honey
types to be used in this work, it is critical to use a cross-
validation strategy to ensure fair evaluation of this work on
a range of data. The strategy used is a leave-one-out cross-
validation strategy, where for all the four kinds of honey,
each honey is put aside for validation, with the other three
used for training. The VAE training and the latent space
transforms only use the training honey, and this is then ap-
plied and evaluated on the validation honey.

Because there are only four kinds of honey used in this
strategy, visualisation of the results will be shown on all the
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validation honey individually, and some results are averaged
over the cross-validation performance.

2.3.1 Using regression to interpolate between concen-
trations

The benefit of a variational autoencoder is that it is pos-
sible to transform the latent space to generate new data be-
tween data points or related to the existing data in some way.
We utilise this in our work by transforming un-adulterated
honey into adulterated honey and evaluating the perfor-
mance compared to the ground truth at 5%, 10%, 25%, and
50%.

The methodology used here is to find the transform vec-
tors for each honey type and concentration, the vector from
the mean of un-adulterated honey to the mean of each con-
centration of that same honey. These vectors for all honey
types in the training set are used in a linear regression
problem to find the transformation between un-adulterated
honey and honey of any concentration. The latent space
transform is linear, as adding complexity to this model
would likely over-fit with such a small dataset.

2.4. Applying the models to the broader honey
dataset

Although evaluation of the technique is performed us-
ing cross-validation, we use the entire dataset to train the
autoencoder models for application of this technique in a
broader dataset of honey found at [19]. This dataset has no
ground-truth data, so it cannot be used for evaluation but
will provide a valuable dataset of generated data for deter-
mining adulteration in honey.

3. Results and Discussion
This section discusses the results of the variational au-

toencoders for data generation. The results are compared
to the ground truth work using the cross-validation strategy
discussed in section 2.3.

We first use t-distributed stochastic neighbour embed-
ding (t-sne) to evaluate how spaced out our data is from
each concentration to another. Figure 5 shows a t-sne rep-
resentation of our entire data space (training plus validation
data). This figure shows that our data space is generally
made up of groups; these are the individual honey types at
each concentration. The concentrations are not all aligned
to one cluster, and the transformation between each concen-
tration is non-trivial.

3.1. Cross-Validation

We now utilise each honey type as a validation set to
compare our results to ground truth data. Each honey in
the set (Manuka, ManukaBlend, Kamahi, and BorageField)

Figure 5. T-sne representation of training and validation data.

Figure 6. Average spectrum of Manuka honey, showing the mean
spectrum of the ground truth data vs the VAE generated data.

will be used as validation honey, using the rest for training.
This evaluation considers both the VAE and the VCEAE.

3.1.1 Validation - Manuka

Figure 6 shows the mean ground truth compared to the mean
generated spectrum for the validation honey type, Manuka
using the VAE. The ground truth values are labelled 0%,
5%, 10%, 25%, and 50% whereas the generated data is la-
belled as 5% fake, 10% fake, 25% fake, and 50% fake. This
data shows that the generator did well creating adulterated
honey data, particularly in the lower wavelengths. The 10%
adulterated honey was not well matched to the ground truth;
however, the spectrum looks to be within a reasonable ap-
proximation for the other concentrations. For the 50% con-
centration, the generated data does not peak to the same
value as the ground truth data. This discrepancy could be
a consequence of the linear approximation we have made
when transforming the latent space, as the 50% adulterated
honey has a much higher peak in its spectral response than
the other concentrations.

Figure 7 shows the mean ground truth compared to the
mean generated spectrum for the validation honey type,
Manuka using the VCEAE. These results show that over-
all the data generator struggled on this honey type. There
are discrepancies between the real and generated honey at
each concentration, particularly in the higher wavelengths.
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Figure 7. Average spectrum of Manuka honey, showing the mean
spectrum of the ground truth data vs the VCEAE generated data.

The 50% concentration has the closest comparison between
generated data and ground truth, however, the approxima-
tion is not entirely accurate around the peak of the spectral
response. The spectrum represents a reasonable approxima-
tion; however, a classifier might struggle to correctly clas-
sify the ground truth data when trained on the generated
data.

Compared to the VAE, the results from using the
VCEAE were not as accurate, except for 50% adulterated
honey. The VAE had a much better fit for the 10% and 5%
concentrations and was still primarily accurate for the 50%
honey. There was minimal difference between the two re-
sponses for 25% adulterated honey.

3.1.2 Validation - ManukaBlend

Figure 8 shows the mean ground truth compared to the mean
generated spectrums for the validation honey type, Manuk-
aBlend using the VAE. The spectral response matches very
well for the 50% concentration, however it does not match
well for 25%. For 5% and 10% concentrations, the spec-
tral response generally matched well; however, it would not
accurately distinguish these two concentrations from each
other. This error is likely because the honey types used in
training the VAE are struggling to generalise to this data
type.

Figure 8 shows the mean ground truth compared to the
mean generated spectrums for the validation honey type,
ManukaBlend using the VCEAE. The response differed
from the ground truth data for 25% and 50% adulterated
honey. The response for 5% and 10% adulterated honey was
reasonable; however, the generated 5% response matched
better with the 10% ground truth than 5% ground truth.
Similarly, the 10% generated data better matched with the
5% ground truth.

Comparing the VAE and VCEAE for ManukaBlend
honey, we can see that the VAE had an overall better com-
parison to the ground truth data. The 50% concentration

Figure 8. Average spectrum of ManukaBlend honey, showing the
mean spectrum of the ground truth data vs the VAE generated data.

Figure 9. Average spectrum of ManukaBlend honey, showing the
mean spectrum of the ground truth data vs the VCEAE generated
data.

matched much better, and the other concentrations of adul-
teration were comparable between the VAE and VCEAE.

3.1.3 Validation - Kamahi

Figure 10 shows the mean ground truth compared to the
mean generated spectrums for the validation honey type,
Kamahi using the VAE. Overall the results show that the
data generator can represent this honey type well; however,
it struggles on the 10% and 25% concentrations. Overall,
the generator creates data that should represent the adul-
teration; however, a classifier trained on the generated data
would struggle to accurately classify the ground truth data
for a multi-class classification problem.

Figure 10 shows the mean ground truth compared to
the mean generated spectrum for the validation honey type,
Kamahi using the VCEAE. These results show that the re-
sponse with the VCEAE is more accurate around the peak
for this honey type; however, it is not very accurate around
lower and higher wavelengths, especially for the 50% adul-
terated honey. Compared to the VAE on this honey type, the
response is better around the middle wavelength range but
worse at the lower and upper wavelengths.
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Figure 10. Average spectrum of Kamahi honey, showing the mean
spectrum of the ground truth data vs the VAE generated data.

Figure 11. Average spectrum of Kamahi honey, showing the mean
spectrum of the ground truth data vs the VCEAE generated data.

3.1.4 Validation - BorageField

Figure 12 shows the mean ground truth compared to the
mean generated spectrums for the validation honey type,
BorageField using the VAE. These results show that over-
all the data generator struggled on this honey type. For all
concentrations, the average spectrum does not line up. For
the 50% adulterated spectrum, this was in the lower wave-
lengths, and for the rest, the mid wavelength range did not
line up with the ground truth data. The shape of the spec-
trums was similar; however, the average values are not accu-
rate for any concentration. For 5% and 10% honey, the gen-
erated spectrum is close enough to the ground truth to detect
adulteration accurately, but a multi-class adulteration con-
centration classifier would struggle to classify the ground
truth accurately.

Figure 12 shows the mean ground truth compared to the
mean generated spectrums for the validation honey type,
BorageField using the VCEAE. These results show that the
VCEAE did not perform well on this data type. Similarly
to the VAE, the overall shape was reasonably accurate for
the 50% adulterated honey; however, the average values did
not match the ground truth. The generated values were very
different from the ground truth for the lower concentrations.

Figure 12. Average spectrum of BorageField honey, showing the
mean spectrum of the ground truth data vs the VAE generated data.

Figure 13. Average spectrum of BorageField honey, showing the
mean spectrum of the ground truth data vs the VCEAE generated
data.

Overall, the VAE and VCEAE did a reasonable job ap-
proximating the data for most honey types. The VAE was
typically more accurate across more concentrations, but the
VCEAE tended to fit the 50% adulterated data better.

3.2. Classification Results

We used the generated data alongside the training data
from other honey types to train classifiers for multi-class
and binary adulteration classification. The results are for
each validation fold and an average result calculated using
a macro average. We use a traditional KNN classification
technique with K = 5, which has performed well on honey
classification previously [14, 15].

Although feature reduction with autoencoders and
SVMs have commonly been used to classify honey qual-
ity [14–16], a KNN classifier will be suitable to show the
impact of the generated data on the generalisation perfor-
mance. We compare our techniques to an equivalent classi-
fier trained on only the training data without the generated
data from the same honey type.

Table 2 shows the results of this for the binary classi-
fication case, where the task is detecting adulteration in
honey. These results show that by adding the generated

219



Table 2. Binary classification results for adulteration detection on
an unseen honey type using leave one out strategy comparing dif-
ferent data generation methods.

Generator Honey Type Precision Recall F1 Avg Acc

VAE

BorageField 0.720 0.650 0.540 0.717
Kamahi 0.870 0.740 0.750 0.868
Manuka 0.750 0.600 0.500 0.753
ManukaBlend 0.920 0.800 0.830 0.915
Average 0.815 0.698 0.655 0.813

VCEAE

BorageField 0.620 0.620 0.400 0.625
Kamahi 0.800 0.690 0.660 0.804
Manuka 0.790 0.610 0.550 0.789
ManukaBlend 0.930 0.820 0.880 0.928
Average 0.785 0.685 0.623 0.787

No Data

BorageField 0.500 0.400 0.440 0.500
Kamahi 0.500 0.400 0.440 0.500
Manuka 0.260 0.400 0.320 0.260
ManukaBlend 0.500 0.400 0.440 0.500
Average 0.440 0.400 0.410 0.440

data, the classification accuracy can improve with the gen-
erated adulteration data. Both the VAE and VCEAE have
improved over the benchmark case with no data generator.
The highest accuracy on the unseen honey type is 81.3% us-
ing the VAE. This accuracy is a considerable improvement
over the average accuracy of 44% without using generated
data. Data capture for honey adulteration with a hyperspec-
tral camera is a very time-consuming process, so using this
generated data to supplement the actual adulteration data
helps to improve the generalisation performance of an adul-
teration detector.

Table 3 shows the unseen honey type results for the
multi-class adulteration concentration classification prob-
lem. These results show that the generated data is not
suitable for the multi-class problem in contrast to the bi-
nary classification problem. There is still an improvement
over using no generated data; however, the accuracy is
far from acceptable in the real world. Interestingly the
Manuka honey type struggles to get accurate classifications
for all three data generation strategies with lower perfor-
mance than the other honey types. This poor performance
might be due to the data being quite different to the other
honey types. The ManukaBlend honey type had the best
performance, especially with the VCEAE data generation
strategy. It is reasonable to assume that the data generation
strategies could be helpful for this problem in future, and
perhaps with more comprehensive data collected, we could
generate more realistic fake data.

These results are a positive step towards an overall adul-
teration detection system. With an accuracy of 81.3% on
unseen honey types for binary adulteration detection, we
can use this as part of an overall honey quality detection sys-
tem combined with botanical origins classification. By util-
ising generated data, we can extend our adulteration dataset
to the broader set of honey that has been captured previ-
ously [19]. Figure 14 shows the average spectrum for each
concentration on our new generated adulteration dataset.
We can see that the general trends that we saw in the real
adulteration data is followed in the generated data.

This new dataset is available online for the research com-

Table 3. Multi-class classification results for adulteration classifi-
cation on an unseen honey type using leave one out strategy com-
paring different data generation methods.

Generator Honey Type Precision Recall F1 Avg Acc

VAE

BorageField 0.440 0.460 0.360 0.443
Kamahi 0.330 0.330 0.270 0.333
Manuka 0.230 0.250 0.120 0.149
ManukaBlend 0.430 0.260 0.330 0.433
Average 0.358 0.325 0.270 0.339

VCEAE

BorageField 0.400 0.250 0.280 0.400
Kamahi 0.460 0.310 0.350 0.463
Manuka 0.330 0.450 0.250 0.261
ManukaBlend 0.430 0.380 0.390 0.431
Average 0.405 0.348 0.318 0.389

No Data

BorageField 0.230 0.080 0.120 0.233
Kamahi 0.210 0.100 0.140 0.211
Manuka 0.050 0.240 0.070 0.056
ManukaBlend 0.220 0.160 0.180 0.224
Average 0.178 0.145 0.128 0.181

Figure 14. Average spectrum of generated adulteration data ap-
plied to the broader honey botanical origins dataset.

munity [17]. This now provides generated adulteration data
for 21 unique botanical origins of honey from 11 brands.
This dataset includes samples of premium Manuka honey,
as well as non-Manuka honey types.

4. Conclusion

We have successfully used a VAE and VCEAE to gen-
erate realistic new data for adulterated honey hyperspectral
images. The data can improve the generalisation of differ-
ent honey types with no adulterated honey images. These
techniques were evaluated with a leave-one-out strategy for
each honey type and achieved an average of 81.3% on un-
seen honey types using a VAE to generate supplemental
data. This performance is an improvement from 44% with-
out generated data on unseen honey types. We have applied
this data to the much more comprehensive honey botanical
origins dataset, which has created a new adulteration dataset
covering many honey types and brands.
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