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Abstract

Semi-supervised learning is a highly researched prob-
lem, but existing semi-supervised object detection frame-
works are based on RGB images, and existing pre-trained
models cannot be used for hyperspectral images. To over-
come these difficulties, this paper first select fewer but suit-
able data augmentation methods to improve the accuracy
of the supervised model based on the labeled training set,
which is suitable for the characteristics of hyperspectral im-
ages. Next, in order to make full use of the unlabeled train-
ing set, we generate pseudo-labels with the model trained
in the first stage and mix the obtained pseudo-labels with
the labeled training set. Then, a large number of strong
data augmentation methods are added to make the final
model better. We achieve the SOTA, with an AP of 26.35,
on the Semi-Supervised Hyperspectral Object Detection
Challenge (SSHODC) in the CVPR 2022 Perception Be-
yond the Visible Spectrum Workshop, and win the first
place in this Challenge.

1. Introduction

In recent years, benefiting from the great success of deep
learning [7, 1 1,24], object detection [14, 19,20] has already
made great progress in the field of computer vision. By us-
ing a large amount of manually labeled data, the accuracy of
object detection has been significantly improved. However,
obtaining a large amount of manually labeled data, espe-
cially labeled data for object detection, requires precise lo-
calization and classification, which is labor-intensive. Hy-
perspectral images are images obtained by using hyperspec-
tral camera, which have more number of bands and high res-
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Figure 1. shows a brief version of our pseudo-label based object
detection method.
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olution compared with ordinary RGB images, and contain
rich spatial and spectral information. Based on these excel-
lent properties, hyperspectral images will be able to better
characterize the target if they are used as a training set for
object detection. Hyperspectral images are more difficult to
obtain compared to normal RGB images, and it is also more
challenging to label hyperspectral images, which leads to a
very small dataset on hyperspectral. Therefore, methods
that utilize large amounts of unlabeled data to improve the
performance of models are proposed in this situation. To be
able to reduce the reliance on large amount of labeled data,



semi-supervised learning(SSL) [4] becomes one of the so-
lutions to this challenge.

Semi-supervised learning can be trained on both labeled
and unlabeled data, and in recent years a large number
of methods have been proposed, which can be divided
into four main categories [17]: Consistency based Learn-
ing [15], Pseudo-label based Learning [!, 8, 28], Genera-
tive Models [10,21] and Graph based Learning [13]. Con-
sistency based learning means that if a small perturbation
is added to the unlabeled data points, the final prediction
output should be similar. In pseudo-label based learning,
the trained model which is trained on a few labeled data
is used to make predictions on unlabeled data, which are
filtered to generate pseudo-labels. These methods have sig-
nificantly boosted the application of semi-supervised learn-
ing in the field of classification [28]. However, most of the
semi-supervised learning focuses on the image classifica-
tion domain, and semi-supervised object detection has been
rarely addressed. The main reason is that object detection
involves classification and regression of multiple classes on
a single image.

Currently, semi-supervised object detection can be di-
vided into two main types, Consistency based Learn-
ing [9] and Pseudo-label based Learning [26, 27], where
the pseudo-label based semi-supervised object detection
method is the method used in this paper. Fig. 1 shows a
brief version of our pseudo-label based object detection.
We use a portion of labeled data to train the model, and
then predict the unlabeled data to get the classification and
regression results on the images. The classification and re-
gression frames with high confidence are then filtered using
Non-Maximum Suppression(NMS) [16] and thresholding,
and then retrained on the labeled and pseudo-labeled data
after data augmentation.

Inspired by the application of semi-supervised learning
in classification and object detection, Pseudo-label based
Learning is applied to this hyperspectral semi-supervised
object detection challenge. In this competition, there are
989 training sets, of which only 102 are labeled and the rest
are unlabeled data. The challenge also provides 605 val-
idation sets and 1296 test sets and the baseline of Faster
r-cnn [20] based on MobileNetV2 [22]. We do not try more
complex backbone due to the requirement of the number
of parameters and computation of the model’s backbone in
the terms and conditions, and we still use MobileNetV2 as
backbone.

For this case with less labeled data, we first exploit the
labeled data to achieve a model that performs well on super-
vised learning. To make the detection results better, we use
the better performing Cascade head [3] as the detector head,
and then try a series of data augmentation and training tricks
to improve the performance of the model, which enable us
to achieve second place(50.81) on the validation set. The
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pseudo-label, which includes the category, confidence and
the bounding box regression parameters, is used to filter the
redundant bounding boxes by Soft-NMS [2], and the boxes
with higher confidence are filtered by setting a threshold.
The semi-supervised training is applied to the hyperspec-
tral object detection, and the training is continued on the
basis of the previous training. After attempting a series of
data augmentation and training tricks, we finally win the 1st
place in Semi-Supervised Hyperspectral Object Detection
Challenge (SSHODC) held in the CVPR 2022 Perception
Beyond the Visible Spectrum Workshop (PBVS).

2. Related Work
2.1. Object detection

Object detection is one of the most important applica-
tions in computer vision tasks and has made tremendous
progress in the research community. Object detection can
be classified into single-stage and two-stage approaches
depending on whether Region Proposal Network(RPN) is
used. Single-stage object detection [14, 19] methods pro-
duce classification and regression results directly, while
two-stage methods use RPN networks to generate a series
of Rols, which are then classified and regressed separately.
Faster r-cnn [20] is a classic of two-stage object detection
methods, and many object detection networks have been
developed based on it. For example, Cascade r-cnn [3],
which uses a cascaded detector with incremental thresholds
for each head, does not produce overfitting due to a suf-
ficient number of proposals, and also solves the mismatch
phenomenon [3]. Nevertheless, if we want to obtain a model
with excellent generalization, we need a large amount of la-
beled data, which is obviously not very realistic.

2.2. Semi-supervised learning

In recent years, with the development of deep learn-
ing, the application of semi-supervised learning in the field
of classification [28] has received more and more atten-
tion from researchers. Semi-supervised learning mainly
includes two methods, Consistency regularization based
methods [15, 18,25] and Self-training-based methods [1, 8,

], where the first method adds some small perturbations
to the input and then minimizes the difference between the
output predictions, thus training the model by constraining
the data before and after the perturbation corresponding fea-
tures to train the model. The second method first trains a
model on labeled data, then uses the model to predict unla-
beled data, then filters the predictions for labels with higher
confidence, and finally trains on pseudo-labeled data.

2.3. Semi-supervised object detection

Semi-supervised object detection can be used to train
models using large amounts of unlabeled data. There are
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Figure 2. An overview of our solution.

two main approaches, Consistency based Learning [9] and
Pseudo-label based Learning [26,27]. The former uses two
deep convolutional neural networks to learn the consistency
between different perturbations (e.g. horizontal flip, differ-
ent contrast, brightness, etc.) of the same unlabeled image,
making full use of the information in unlabeled data. The
latter approach borrows ideas from semi-supervised learn-
ing, but specifically for the object detection task, the gener-
ated pseudo-labels include categories and regression bound-
ing boxes, which is more complex than the classification
task. The reason is that the labeling of object detection
is inherently more complex than classification. Finally the
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pseudo-labels are used to retrain the model.

3. Proposed Method

Fig. 2 illustrates the framework of our approach, which
can be seen in three phases, the supervised learning phase,
the pseudo-labels genetation phase and the semi-supervised
learning phase. We first train a model using the existing
labeled training set, and use this model to generate pseudo-
labels by inference on the unlabeled training set. After gen-
erating the pseudo-labels, the pseudo-labelled images are
put together with the original labeled images and then the
last stage of training is performed to obtain the final re-



sults. Different data augmentation strategies are used in
these two phases of training, and the key data augmentation
methods used and the details of generating pseudo-labels
are described below.

3.1. Data augmentation

Since the dataset is based on hyperspectral data, many
data augmentation methods based on RGB images do not
work well, and we also find that it is better to use a com-
bination of different data augmentation methods in the two
phases of training than to use the same data augmentation
method in the two phases of training. In the supervised
training phase, due to the small amount of data with labels,
directly using strong data augmentation methods will make
the accuracy of the trained model poor, and using a weaker
data augmentation method for training can instead make the
accuracy of the model higher, which in turn can improve
the quality of the obtained pseudo-labels. Unlike the super-
vised training phase, in the semi-supervise learining phase,
two problems must be considered.

1. Even if we have selected the pseudo-labels according
to the higher score filter, the pseudo-labels may not be com-
pletely accurate due to the lack of accuracy of the model
itself.

2. Since there are far more unlabeled data than labeled
data, after mixing the unlabeled data set with the labeled
data set, the percentage of unlabeled data set is very high,
which makes the overall accuracy of the labels decrease.
Therefore, in the second stage of training, we introduce
some new data augmentation methods to improve the gener-
alization and accuracy of the model, in addition to the data
augmentation methods that proved to be very effective in the
first stage. The following are some of the data augmentation
methods that we have chosen for this task. And as shown
in Tab. 1, we design experiments based on different combi-
nations of data augmentation methods and demonstrate that
all of these methods are effective.

3.1.1 BrightnessTransform

This method is used in both the first and second stage of
training. On the one hand, because the dataset is selected
from hyperspectral image values at different times of the
day over a three-day period, changing the brightness can
simulate the weather conditions at different times of the day
to some extent; on the other hand, this transformation is
very suitable for the characteristics of hyperspectral images.

3.1.2 Resize

Resize the image is a common data augmentation method in
object detection. Unlike the conventional resize operation,
we count the image ratio of the dataset and adjust the width
and height to [(1600,189), (1600,188)], and randomly select
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the above mentioned set of width-height combinations and
keep the aspect ratio constant during training. The reason
for choosing to keep the aspect ratio constant here is that the
class of the dataset contains vehicle, bus and bikes. These
vehicles have their relatively fixed rigid structures, and if
the aspect ratio is changed during Resize, it may lead to
distortion of the objects in the images and thus decrease the
final accuracy.

3.1.3 Spatial transformation

It can be found that introducing random combinations of
spatial transformations during the second stage of training
can improve the generalization of the model. We try to in-
clude ShiftScaleRotate, RandomResizedCrop, etc. in the
second stage. Since the best model trained in the first stage
is selected as pre-trained model in the second stage train-
ing, random combination according to probability by these
methods can increase the sample diversity and avoid over-
fitting on the dataset.

3.14 Cutout

Cutout [6] is randomly cutting out part of the sample and
filling it with O pixel values. Cutout enables the CNN to
use the global information of the whole image instead of
the local information composed of some small features. Af-
ter experiments, selecting too large regions to cut off will
lead to accuracy decrease, but randomly selecting smaller
regions to cut according to the image aspect ratio can effec-
tively improve the accuracy of the model.

3.2. Pseudo-labels Generation

In semi-supervised object detection tasks, pseudo-
labeling is a common approach. However, the quality of
pseudo-labels depend on the accuracy of the supervised
model and the selection of the score filter. Too low a score
will lead to a significant increase in false labels, but too high
a score will miss some of the originally detected correct la-
bels on the one hand, and reduce the number of available
labels on the other. In our task, we select a threshold value
of 0.99 for the score, which is found to be the better after
experiments. As shown in Tab. 2, mix the pseudo-labels ob-
tained when the Score-filter is taken to 0.99 with the original
data with labels can achieve the best results in the second
stage of training.

4. Experiments

4.1. Dataset

Unlike normal RGB images, the SSHODC dataset uses
images generated by a hyperspectral camera at a spatial res-
olution of 189-212x1600 pixels with 371 spectral bands,
and has been downsampled to 51 bands. Each image in



Method

| BrightnessTransform | Resize | Spatial transformation | Cutout | AP(val) | AP(Test)

Faster r-cnn
Faster r-cnn
Cascade r-cnn
Cascade r-cnn
Cascade r-cnn
Cascade r-cnn
Cascade r-cnn
Cascade r-cnn + Pseudo-labels
Cascade r-cnn + Pseudo-labels
Cascade r-cnn + Pseudo-labels
Cascade r-cnn + Pseudo-labels
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- - 32.21 -
- - 35.07 -
- - 34.12 -
- - 45.01 -
- - 37.9 -
v - 31.48 -
- - 46.12 20.97
- - 50.81 -
v - - 24.85
- v - 23.46
v v - 26.35

Table 1. We design experiments based on different combinations of data augmentation methods, where Cascade r-cnn + Pseudo-labels
represent the second stage of training after adding pseudo-labels. Note that some methods cannot be tested on both the validation set and
the test set because there is a limit on the number of test set submissions in the competition, and the submission of validation set results is

prohibited after the test set is published.

Method Score filter | AP(val)
Cascade r-cnn None 46.12
Cascade r-cnn 0.98 39.91
Cascade r-cnn 0.985 43.91
Cascade r-cnn 0.99 50.81
Cascade r-cnn 0.9925 453
Cascade r-cnn 0.995 48.52

Table 2. The effect of choosing different score filters on AP.

First score filter | The second score filter | AP(val)
0.99 - 50.81
0.99 0.99 443
0.99 0.9925 4391

Table 3. The first score filter refers to the score filter selected when
the model obtained from supervised training is first inferred to gen-
erate the pseudo-labels, while the second score filter is the score
filter threshold selected when the pseudo-labels are obtained again
after the first semi-supervised learning phase.

the dataset includes visible and near-infrared measurements
captured over a three-day period at a fixed viewpoint. The
dataset has a total of 989 images in the training set, 605 im-
ages in the validation set, and 1296 images in the test set.
The training set is derived from data taken in the morning,
and only 10% of the training set is labeled. The labeled data
set has three categories: vehicle, bus, and bike. For each im-
age, the dataset provides a processed image with 51 bands
and a mask with the region of interest.

In our experiments, we use 102 labeled images as our
training set for supervised training, followed by inference of
the obtained model on the remaining 887 unlabeled images
to generate pseudo-labels, and finally 989 hyperspectral im-
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Figure 3. It shows the statistics of the number of categories con-
tained in the labeled data and the number of categories of the gen-
erated pseudo-labels.

ages containing pseudo-labels and true labels as our training
set for the second stage of training. As shown in Fig. 3, the
number of each category in the real and generated labels is
shown. It can be seen that the number of vehicles as a cate-
gory is much higher than the number of buses and bicycles.

4.2. Implementation Details

Unlike the Faster r-cnn [20] provided by the competi-
tion organizers, we use Cascade r-cnn [3] equipped with
FPN [12](Feature Pyramid Network) as our default detec-



Method Soft-NMS | iou threshold | min score | AP(val) | AP(test)
Faster r-cnn - - - 35.07 -
Faster r-cnn v 0.5 0.05 35.26 -
Cascade r-cnn - - - 46.07 -
Cascade r-cnn v 0.5 0.05 46.12 20.97
Cascade r-cnn v 0.45 0.05 46.92 21.57
Cascade r-cnn v 0.4 0.05 46.54 -
Cascade r-cnn v 0.35 0.05 4591 -
Cascade r-cnn v 0.3 0.05 45.23 -
Cascade r-cnn + Pseudo-labels v 0.45 0.05 - 25.98
Cascade r-cnn + Pseudo-labels v 0.45 0.01 - 26.35

Table 4. The effect of different parameter variations of Soft-NMS.

tion framework. As Tab. | shows, the accuracy of Cas-
cade r-cnn is much higher than that of Faster r-cnn. Con-
sidering all submissions in the competition must be made
by neural network backbone or traditional computer vision
frameworks with a computation complexity equivalent or
lesser than MobileNetv2 [22] (in terms of parameters and
GFlops), we choose MobileNetv2 as our backbone. Our
implementation and hyper-parameters are based on MMDe-
tection [5]. Experiments are also conducted using Mind-
Spore. Anchors with 5 scales and 3 aspect ratios are used.
For the fully supervised phase of training and the semi-
supervised phase of training, we select different training
methods.

Fully supervised phase of training: In this phase, our
model is trained on a V100, the batch size is set to 4. With
SGD training, the learning rate is initialized to 0.01, the
weight decay and the momentum are set to 0.0001 and 0.9.
At the same time, we introduce warm up, where warm up
iters is set to 1000 and warm up ratio is set to 0.1, and
the learning rate is stepped up at the 10th, 20th, and 25th
epochs, respectively.

Semi-supervised phase of training: In this phase, our
model is trained on a V100, the batch size is set to 8. With
SGD training, the learning rate is initialized to 0.02, the
weight decay and the momentum are set to 0.0001 and 0.9.
Other optimizer settings are the same as in the fully super-
vised training phase. Unlike the previous stage, in this one,
we add many data augmentation strategies. According to
our settings, there will be a 0.5 probability of ShiftScaleRo-
tate operation on the image, with shift limit set to 0.0625;
there will be a 0.2 probability of RandomBrightnessCon-
trast, with both brightness limit and contrast limit at [0.1,
0.3]; at the same time, there is a 0.2 probability of Ran-
domResizedCrop; 0.1 probability of Blur, MedianBlur and
GaussianBlur are added to the image.

We also try to generate pseudo-labels repeatedly, i.e.,

using the model trained in the second stage to generate
pseudo-labels again, but as shown in Tab. 3, this do not work
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well, not even as well as without pseudo-labels.

In the inference stage, Soft-NMS [2] is used, which has
two parameters: iou threshold and min score. When the
inferred score is less than min score, it will be filtered out
directly. We experiment with the selection of min score and
finally find that the selection of 0.01 work best. In addition,
we use TTA to randomly adjust the image width and height
to a set of [(1600,188), (1600,189)] to further improve the
final accuracy.

4.3. Ablation Studies

In this section, the validity of our approach are verified
and we also do a lot of experiments to verify that the hyper-
parameters have chosen are well worked for this task.

Effects of Soft-NMS. We confirm the validity of Soft-
NMS and find the most effective set of parameters, and the
results are shown in Tab. 4. It can be seen that a smaller min
score can retain some results with lower score but correct in-
ference. The reason for this result is that, on the one hand,
choosing a smaller min score can preserve some inference
results with lower sorce but accurate, and on the other hand,
due to the limitation of the model itself, some accurate in-
ference results cannot be obtained with a high socre. so by
adjusting to the appropriate parameters, the model’s capa-
bility can be fully utilized to improve the final accuracy.

OHEM vs. RandomSampler. In two-stage object de-
tection methods, the region proposals generated by region
generation algorithms or networks are usually screened for
positive and negative samples and scaled before being fed
into the subsequent detection network for training. for train-
ing. We compare this method with RandomSampler, but
find that the results are not as good as RandomSampler,
probably because there are too few labeled data, which af-
fects the results of Online Hard Example Mining [23]. The
results are shown in Tab. 5.

Effects of different optimizer settings. For SGD op-
timizer, a proper learning rate and batch size are crucial.
When the learning rate is set too small, the convergence pro-



Method Sampler AP(test)
Cascade r-cnn OHEM 18.94
Cascade r-cnn | RandomSampler | 20.97

Table 5. Results using OHEM with RandomSampler on the test
set.

cess will become very slow. When the learning rate is set
too large, the gradient may oscillate back and forth around
the minimum value and may not even converge. In the semi-
supervised training process, we tried different combinations
of learning rate and batch size based on the use of warm up,
and the results are shown in Tab. 6. In the second stage of
training, a learning rate of 0.02 and a batch size of 8 can
achieve the best results.

Effects of Cutout. We confirm the validity of Soft-NMS
and find the most effective set of parameters, and the results
are shown in Tab. 4. It can be seen that a smaller min score
can retain some results with lower score but correct infer-
ence. The reason for this result is that, on the one hand,
choosing a smaller min score can preserve some inference
results with lower sorce but accurate, and on the other hand,
due to the limitation of the model itself, some accurate in-
ference results cannot be obtained with a high socre. so by
adjusting to the appropriate parameters, the model’s capa-
bility can be fully utilized to improve the final accuracy.

Effects of different backbone. Considering all submis-
sions in the competition must be made by neural network
backbone or traditional computer vision frameworks with
a computation complexity equivalent or lesser than Mo-
bileNetv2 [22] (in terms of parameters and GFlops), we
choose MobileNetv2 as our backbone. But in fact, using a
more complex backbone can improve the accuracy. We try
some backbones early in the competition and experiment
without adding any other strategy. The results are shown in
Tab. 7. If the backbone is not restricted, the final accuracy
should be further improved.

Learning rate | Batch size | AP(val)
0.001 4 46.54
0.002 8 45.23

0.01 4 47.1
0.02 8 50.81
0.04 16 443

Table 6. The effect of using different combinations of learning rate
and batch size. The framework used in the table are Cascade r-cnn,
and the results are semi-supervised stage training.

5. Conclusion

Hyperspectral images are vastly different from RGB im-
ages. In our work, we consider the characteristics of hy-
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Method Backbone AP(val)

Faster r-cnn MobileNetv2 32.21
Cascade r-cnn MobileNetv2 34.12

Faster r-cnn ResNet50 26.47
Cascade r-cnn ResNet50 30.3

Faster r-cnn | ResNeSt50 [29] 36.82
Cascade r-cnn ResNeSt50 41.91
Cascade r-cnn ResNeSt101 47.56

Table 7. The effect of using different backbone on the experimen-
tal results.

perspectral images and select a series of effective data aug-
mentation methods to improve the accuracy of the model.
To make full use of the unlabeled training set, we infer
and obtain pseudo-labels from the unlabeled training set
using the model trained with the labeled training set, and
mix the pseudo-labels with the ground truth labels for train-
ing. To improve the generalization and accuracy of the final
model, we replace different combinations of data augmen-
tation methods in the second stage of training. With these
methods, we achieve an AP of 26.35 on the SSHODC test
set, which is the SOTA for this dataset, proving that our
method is very effective for semi-supervised hyperspectral
object detection. Besides, our method win the champi-
onship at the CVPR 2022 PBVS SSHODC.
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