
HSI-Guided Intrinsic Image Decomposition for Outdoor Scenes

Fan Zhang1 Shaodi You2,4 Yu Li3 Ying Fu1*

1Beijing Institute of Technology 2University of Amsterdam
3International Digital Economy Academy 4Jiangsu University of Science and Technology

Abstract

Intrinisic image decomposition (IID) aims to recover the
reflectance and shading components from images and is the
prerequisite to many downstream computer vision applica-
tions, such as image editing and image relighting. Due to
the inherent difficulty in acquiring ground truth reflectance
and shading, existing datasets are either synthetic indoor
scenes or objects using graphics rendering (e.g., CGIntrin-
sics and ShapeNet etc.) or real photos with very sparse
manual annotation (e.g., IIW and SAW etc.). Accompa-
nied with the complex nature of outdoor scenes, most IID
methods focus on the decomposition of indoor environment.
There is still a long way to go before we can handle IID
of outdoor scenes. In this paper, we take the attempt to
perform intrinsic image decomposition for outdoor scenes
when RGB image is not the only thing we can get from
the enviroment. With the observation of prior work where
nir-infrared (NIR) images are transparent to a range of
colourants/dyes, we propose to extend it to more spectra by
collecting hyperspectral imaging (HSI) data which are well
aligned with RGB images and to perform IID with both of
them. We also apply existing mainstream IID methods for
comparison to examine current progress and challenges at
the road towards IID outdoors. We still make some improve-
ments and find problems when performing IID for outdoor
scenes, even though we do not handle it perfectly. The data
we collect will be made publicly available for further po-
tential investigation.

1. Introduction

Intrinsic image decomposition (IID) aims to decompose
an image into image formation components with different
properties [3], e.g., reflectance and shading. The former
describes the surface charateristics of objects like albedo,
color and texture, and the latter represents the shape of ob-
jects and effects caused by illuminations like shadow cast.
This task is under research for several decades and is one
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of the key problem in the computer vision community. It
is helpful to other downstream computer vision tasks like
image editing [11], image relighting [48] and so on.

Under the Lambertian assumption, an image is domi-
nated by the diffuse reflection, which is related to albedo
of materials, shape of objects and illumination conditions,
as formulated in Equations (1) and (2). Thus IID is a highly
ill-posed and under-constrained problem, because there are
multiple plausible combinations of reflectance and shad-
ing to form the same color image. Thus, researchers pro-
pose various priors [9, 26, 35, 49, 50] to constrain the prob-
lem to find feasible solutions. Retinex [26] assumes that
reflectance is piece-wise constant and illumination varies
gradually. Later on, traditional method proposed various
priors to exploit the essence of images, such as textures
cues [9, 44, 49, 50, 54], sparsity of reflectance [39, 45, 46],
chromaticity segmentation [20], depth [1, 14, 27], user in-
teraction [12, 43], infrared [17] and etc. With the advance-
ment of deep learning, more methods turn to deep mod-
els to learn direct decomposition of images from training
data [4, 6, 18, 36, 47]. However, the assumption aforemen-
tioned do not hold any more because of the complex nature
of outdoor scene like varying illumination, shadow casts
and specular reflections, which in turn makes these indoor
algorithms work abnormally.

Besides, the ground truth of reflectance and shading are
difficult to acquire. Existing IID datasets all have their own
limitations. According to Equations (1) and (2), collect-
ing ground truth directly requires direct control of the light-
ing. Therefore, these are either done in a dark room or
by graphics rendering. MIT Intrinsics dataset [21] is the
first dataset containing carefully constructed ground truth
for images of objects. However this dataset only contains
16 objects and only one object in each image. While Intrin-
sic Images in the Wild (IIW) [10] and Shading Annotations
in the Wild (SAW) [24] are two datasets containing sparse,
crowd-sourced reflectance and shading annotations on real
indoor images. They collect data with the help of users who
manually annotate the relative relations between two pixels.
These datasets only provide sparse annotations which are
not physically reliable and mainly focus on indoor scenes.
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Besides, there are also many synthetic datasets generated
using rendering, like CGIntrinsics [31], ShapeNet [47], and
MPI-Sintel [13]. These datasets are large in amount and
provide dense ground truth images of reflectance and shad-
ing. The limitation of these datasets is that they also mainly
focus on indoor scenes and synthetic data has domain gap
with real scenes, although they are proved to be effective
in training deep models with good performance. Recently,
Cheng et al. [17] propose the NIR-RGB dataset utilizing
NIR image as shading reference to guide the decomposition
based on several gradient priors. This dataset is also small
in amount and similar to that of MIT Intrinsics with addi-
tional NIR images. There is still no real outdoor dataset for
IID, to the best of our knowledge, which means that training
a deep model for outdoor scenes is not physically possible.

In this paper, we take the try to perform IID for outdoor
scenes when RGB data is not the only thing we can get.
With the observation of prior work [17] where NIR image is
transparent to a range of colourants/dyes, we propose to col-
lect HSI data together with RGB images of outdoor scenes
and to perform IID with both of them. On the basis of this
observation, HSI image can capture the shape information
of objects and illumination changes of the scene, which is
helpful for the IID of outdoor scenes. In addition, we also
apply mainstream existing IID methods to outdoor scenes
for comparison to examine where we exactly are at the road
towards IID outdoors. We investigate their performance on
outdoor scenes and find out their drawbacks, which gives
us insights on what we should handle when facing outdoor
scenes.

The main contributions of this paper can be summerized
as follows:

• We take our attempt to perform IID on outdoor scenes
with the help of HSI data, which is based on the obser-
vation of prior work and makes use of different chan-
nels in HSI image within NIR spectra, utilizing their
transparency to textures of different materials.

• We propose to collect HSI data together with RGB im-
ages for outdoor scenes and guide the decomposition
of color images with the help of HSI information.

• We also apply existing mainstream IID methods to out-
door scenes for comparison to investigate their perfor-
manceand find out drawbacks for insights on further
improvement.

2. Related Work

In this section, we briefly review existing mainstream
methods and datasets for IID task.

2.1. IID Methods

Due to the ill-posed nature, traditional methods propose
various priors. Retinex theory [26] is one of the earliest
methods. It assumes that reflectance is piece-wise constant
and illumination changes slowly. Funt et al. [19] extend
Retinex algorithm to color images using chromacity infor-
mation due to its invariance to shading component. Bell
and Freeman [9], Tappen et al. [49, 50], Zhao et al. [54]
and Shen et al. [44] propose to utilize texture cues to guide
the IID. While Weiss et al. [51] and Matsushita et al. [35]
estimate intrinsic images based on image sequences assum-
ing that reflectance is constant and the illumination changes.
Grosse et al. [21] also extend the Retinex theory to color
image. Bousseau et al. [12] and Shen et al. [43] propose
to utilize user interaction. [39, 45, 46] propose tp make use
of the sparsity of reflectance. There are also methods based
on depth cues [1, 14, 27]. Barron et al. [2] propose a series
of priors to estimate the shape, surface normals, reflectance,
shading and illumination from a single image. Xu et al. [52]
propose a struture and texture aware Retinex mode. Cheng
et al. [17] propose to uitlize NIR images for IID.

With the advancement of deep learning, many works
[23, 25, 37, 38, 55] turn to learning-based models. Nari-
hira et al. [36] are the first to learn end-to-end network in
a data-driven manner. Zoran et al. [56] learn a deep net-
work to classify the pairwise points from both local and
global contextual information. Kovacs et al. [24] propose
to train a CNN to predict per-pixel shading information in
an image. Shi et al. [47] propose to introduce inter-links
between decoders to utilize the correlation between intrin-
sic components. Janner et al. [22] explore the problem in
a self-supervised setting and Lettry et al. [28] make use of
adversarial residual networks. Fan et al. [18] apply a flex-
ible loss layer for training a universal model on both fully-
labeled and weakly-labeled datasets. Cheng et al. [16] use
a Laplacian pyramid inspired neural network architecture
to exploit scale space properties. Li et al. [31] combine
four datasets with specialized loss functions for training.
There are also learning-based methods based on image se-
quences [25,29,32]. Baslamisli et al. [5] propose to perform
IID and semantic segmentation jointly with one network.
They also propose RetiNet [6] based on Retinex theory. [7]
first get rough shading component with physics-based prior
and then get final decomposition with refinement network.
There are also unsupervised methods [33, 34] proposed for
this task with single image.

While most existing methods focus on indoor IID, in
this paper, we take the attempt to perform IID for out-
door images by utilizing HSI, based on the observation that
different spectra have varying degrees of transparency to
colourants/dyes.

314



2.2. IID Datasets

Grosse et al. [21] collect a dataset called MIT Intrinsics
to serve as a benchmark for IID. It is composed of images
of 16 real objects which are decomposed into Lambertian
shading, Lambertian reflectance, and specularities. Only
relative shading and reflectance are provided. Cheng et
al. [17] propose the NIR-RGB dataset in the way of [21],
which contains not noly RGB images with its correspond-
ing reflectance and shading components but also NIR im-
ages. Beigpour et al. [8] propose the Multi-Illuminant In-
trinsic Images (MIII) Dataset containing 75 images with
ground-truth intrinsics. Shi et al. [47] build a large-scale
synthetic dataset based on the ShapeNet dataset, and ren-
der millions of synthetic images with specular materials and
environment maps. Chen et al. [15] present Spectral Intrin-
sic Images Dataset (SIID) with 18 spectral images. These
datasets are all object-level.

Bell et al. [10] propose the Intrnsic Images in the Wild
(IIW) dataset utilizing crowdsourcing to acquire pair-wise
reflectance comparisons for photos. It contains 5,230 pho-
tos, includes 875,833 reflectance comparisons. Kovacs et
al. [24] also make use of crowdsourcing to collect shading
annotations and called their dataset Shading Annotations
in the Wild (SAW) dataset, which contains 6,677 images
including 15K shadow boundary points and 24K constant
shading regions. The two datasets both provide no ground
truth intrinsic images.

Butler et al. [13] propose the MPI-Sintel dataset con-
taining 23 rendered video sequences for assessing optical
flow methods. It also offers ground truth reflectance and
depth, which thus has been used for IID. Bonneel et al. [11]
provide a dataset with 53 high quality realistic scene-level
renderings under different illumination settings with corre-
sponding per-pixel ground-truth intrinsics. Li et al. [31]
propose the CGIntrinsics dataset of physically-based ren-
dered images of scenes with full ground truth decomposi-
tions. It consists of over 20,000 images of indoor scenes,
based on the SUNCG dataset. Baslamisli et al. [4, 5] ex-
tend a subset of the (synthetic) Natural Environment Dataset
(NED) to generate reflectance, direct shading, ambient light
and shadow cast ground-truth image, which contains around
25k images of 15 gardens for training and around 5k images
of 3 gardens for testing.

In this work, we propose to collect HSI data together
with RGB images for outdoor scenes, seeking to perform
IID on outdoor scenes with the help of HSI information.

3. Data Preparations

In this section, we first introduce the equipment, collec-
tion and details of collecting HSI data together with RGB
images for outdoor scenes.

3.1. Motivation

IID is a basic task in computer graphics and vision with a
long history and has been studied since 1970s [26]. It aims
to decompose color images into image formation compo-
nents including but not limited to reflectance and shading.
It is vital to understand formulation of natural images and
those components are benefitial to other tasks because they
are no longer intertwined with each other. For example, se-
mantic segmentation can utilize reflectance images for they
contain no illumination effects, while shape-from-shading
methods can utilize shading images for they describe the
shape geometry of objects.

Although it has been studied for decades, ground truth
for intrinsic images is very difficult to acquire. It is only
possible in strictly controlled laboratory environment to col-
lect object-level intrinsic images [21] and the procedure is
complicated, time and labor consuming. It is not applicable
to scene-level data collection. Thanks to CG rendering, the
problem of lack of data is greatly released by synthetic data.
However, existing synthetic datasets mainly contain indoor
scenes while outdoor scenes are relatively few. Meanwhile,
there also exists domain gap between rendered and real im-
ages.

Despite these difficulties, we turn our focus from the de-
composition of object-level images or indoor scenes to out-
door scenes. Recently, Cheng et al. [17] propose to guide
the IID of RGB image with help of NIR image based on
the observation that NIR image is transparent to a range of
colourants/dyes. Although they only apply their method to
object-level images, there is potential for the decomposition
of outdoor scenes. It is possible to extend this observation
of NIR image to HSI data because different spectra within
NIR range of HSI image are diffrently transparent to tex-
tures of materials. Thus we make our attemp to perform
IID on outdoor images with the help of HSI information.

3.2. Data Collection

To perform IID with both RGB and HSI information, we
need to capture the RGB image and corresponding HSI data
of the same scene and keep them well aligned with each
other. We are equipped with the LightGene Hyperspectral
Camera for data collection. This camera is able to capture
RGB image and corresponding sparse HSI information at
the same time and reconstruct the final dense HSI data based
on them. It can also record videos of RGB information to-
gether with HSI information, which fits our need.

In particular, the camera can record the spectral informa-
tion within the range of 449-955nm at the interval of 4nm,
resulting in 128 channels in total. The final resolution of
RGB image and corresponding HSI data after alignment is
1889×1422 pixels and we crop them by 1600×1200 pixels
for final data. On the basis of the observation of NIR image
aforementioned, we only take use of the last 60 channels of
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Figure 1. The overview of our collected data for intrinsic image
decomposition containing various scenes and illuminations.

the HSI data for following procedures.
We mount our optical system on a car and collect the out-

door data while driving on the road. We collected our data
in Shanghai during June. The speed of the vehicle while
collecting the data keeps within the range of 20-50km/h.
The framerate of RGB camera and HSI camera is 1fps.

3.3. Data Selection

Different from capturing images for static scenes, col-
lecting image data while driving faces the motion blur prob-
lem. To obtain as much valid data as we can, we record
large amounts of RGB images and corresponding HSI data
while driving. After the whole collection work, we get
roughly more than 26000 RGB images and corresponding
hyperspectral data. These images contain so many motion-
blurred or defocused images due to the moving of the car.
So we manually filtered out these images with obvious
motion-blur and defocusing problem as well as images with
bad illumination conditions. The manual filtering results
in around 4600 normal images as shown in Figure 1. Be-
cause the hyperspectral camera together with RGB camera
is working continuously, we collect sequences of images
and corresponding HSI data for the same scene. So there
are about 260 pairs of RGB image and HSI data covering
different scenes.

4. Method

In this section, we first describe the image formation
model, then detail how we decompose color images of out-
door scenes into intrinsic images with the help of HSI infor-
mation.

4.1. Image Formulation Model

IID aims to decompose a color image into its reflectance
and shading component. According to the dichromatic re-
flection model proposed by Shafer [41], an image Iλ can be
described as the sum of a diffuse reflection Iλd and a specu-
lar reflection Iλs as follows:

Iλ = Iλd + Iλs , (1)

where the diffuse reflection component Iλd is commonly
assumed to be dominant over the other component under
the Lambertian assumption and thus Iλs is negligible, i.e.
Iλ ≈ Iλd . Furthermore, an image Iλ over the specific spec-
trum ω is the integration of overall light signal arrived at the
camera sensor and can be modelled by as follows:

Iλ = m(n, l)
∫
ω

e(λ)ρ(λ)f(λ)dλ, (2)

where n and l reprensent the vectors of surface normal and
incoming light direction, respectively. m(n, l) forms the ge-
ometric dependencies and is correlated to the shape of ob-
jects. λ stands for the wavelength of light signal and ρ(λ)
is the reflectance or namely albedo of a surface. It controls
the component of reflected light from objects and is only
related to the material itself, for which we want to estimate
from RGB images. While e(λ) denotes the spectral power
distribution of light source and is namely the illumination. It
together with m(n, l) controls the final light signal reflected
from the surface of objects and forms the shading we need
to estimate. Finally, f(λ) is the camera spectral response
function and it describes how the light signal is integrated
into electric signal after arriving at the sensor. Therefore,
following a common assumption of linear response camera
model, the above equation can be simplified as:

Iλ = m(n, l)e(λ)ρ(λ), (3)

where Iλ is the captured image of the light signal within the
wavelength λ. Thus an image can finally be expressed as:

Iλ ≈ Iλd = Sλ ∗Rλ, (4)

where Sλ = m(n, l)e(λ) and Rλ = ρ(λ), respectively. Ac-
cording to Equation (4), we can know that IID is actually a
general task appliable to spectral images [15], i.e. all chan-
nels within a spectral cube. For the IID task on RGB im-
ages, the image is composed of three channels {R,G,B}
selected from the visible spectrum and the shading com-
ponent S is single-channel under the white light assump-
tion. If the light source is colored, then the color informa-
tion should be recorded in S and it becomes a three-channel
image instead.
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4.2. Energy-based Optimization

In this paper, we target on the IID on color images with
the help of HSI information. On the basis of the observa-
tion that NIR image is transparent to a variety of textures
of materials, Cheng et al. [17] propose to minimize the en-
ergy function based on smoothness priors of reflectance and
shading with the assist of NIR image as guidance. We fol-
low them to solve the same problem making use of HSI in-
formation instead of NIR image alone. The overall energy
term for the decomposition is formulated as follows:

E(S,R) = ES(S) + ER(R) + EI(S,R), (5)

where the three elements represent the energy constraints
imposed on shading, reflectance and color image, respec-
tively.

For the first energy term ES(S), Cheng et al. [17] make
use of the observation that textures are absent in NIR images
and impose smoothness constraint on the shading compo-
nent. Aside from the commonly used constraints on chro-
macity and intensity of color images according to Colour
Retinex [21]:

ErtxS (S) =
∑
x,y∈N

(
log(Sx)− log(Sy)− εxy

)2
, (6)

where εxy is the threshold variable controlling whether the
decomposition is based on information from either color
image or NIR guidance. In addition, they propose to pe-
nalize the local area whose shading variation is greater than
that of NIR image:

EHSIS (S) =
∑
x,y∈N

(
max(0, | log(Sx)− log(Sy)|

− | log(Inirx )− log(Iniry )|)
)
,

(7)

where N stands for the set of pixels in a local area, x and y
denote the pixels in that area.

However, only NIR image is not enough to guide the
decomposition on outdoor scenes which are more compli-
cated than objects and indoor scenes for there are various
materials and plants which may have fluorescence effect.
The smoothness assumption of NIR image may no longer
hold any more in outdoor environments. Thus we propose
to make use of more information from hyperspectral data
to handle such complicated scenes. We choose channels
within NIR band from the HSI cube data and last 60 out of
128 channels are used to guide decomposition procedure.
Here we adopt the naive way to combine the multi-channel
spectral information where we calculate the per-pixel aver-
age values of all 60 channels to get the final guidance image.
Among different channels, the spectral curves of HSI cam-
era differ from each other and the resulting spectral images
looks different, too. However not all areas in the image have

obvious difference and we can reduce it by simply averag-
ing among channels, which is more robust and gets affected
by textures more difficultly than single NIR image. In a
result, we modify the above ENIRS (S) term into our HSI
version:

EHSIS (S) =
∑
x,y∈N

(
max(0, | log(Sx)− log(Sy)|

−| log(Īλx )− log(Īλy )|)
)
,

(8)

where Īλ reprensents the average image of the last 60 chan-
nels from the HSI cube data.

With this energy term, we impose a constraint on the
shading component that only an area that contains less tex-
tures than all 60 channels within the NIR band is recognized
to belong to the shading. In this way, we make full use of the
diverse information provided by the HSI image and avoid
the shading ambiguity caused by textures from reflectance
due to the limitation of single NIR image.

In a result, the final energy of shading is the sum of two
components in Equations (6) and (8):

ES(S) = EHSIS (S) + ErtxS (S). (9)

As for the energy term of reflectance and color image, we
follow the implementation of Cheng et al. [17] to make use
of the local and non-local constraints on homogeneity of re-
flectance and loose constraint on non-Lambertian surfaces.
The formulations ofER(R) andEI(S,R) are expressed as:

ER(R) = (1− α)ElocR (R) + αEnon−locR (R), (10)

and

EI(S,R) = β
(
(I − elog(S)+log(R)

)2
+ 0.05

(
log(I)− log(S)− log(R))2

)
.

(11)

With energy components all set, we follow Cheng et al. [17]
to adopt an L-BFGS algorithm to minimize this energy.

5. Experiments
In this section, we first introduce IID methods we apply

to the outdoor scenes for comparison. Then we provide both
quantitative and qualitative results.

5.1. Compared Methods

Following Section 2, we select 12 methods in total
for comparison, including traditional optimization-based
methods, supervised and unsupervised methods. For
optimization-based methods, we select IIW [10], IID-
Optim [42] and STAR [52]. For learning-based methods,
we choose several supervised and unsupervised methods
trained on synthetic data or real sparse data, including Di-
rectIntrinsic [36], ShapeNet [47], CGIntrinsics [31], Intrin-
Seg [5], Revisiting [18], InverseRenderNet (IRN for short)
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Table 1. Earth Mover’s Distance (EMD) between gradient his-
tograms of results from compared methods and ground truth sam-
pled from CGIntrinsics. The lower value the better.

Method EMD

Reflectance Shading Avg.

IID-Optim [42] 4.7260 2.4498 3.5879
IIW [10] 4.3713 3.6654 4.0184
STAR [52] 6.5376 5.5730 6.0553

IIDWW [32] 4.5869 4.4717 4.5293
UidSequence [29] 5.2263 3.8328 4.5296
USI3D [33] 5.3154 4.5390 4.9272

DirectIntrinsic [36] 4.8424 4.5275 4.6850
ShapeNet [47] 6.0710 3.0560 4.5635
CGIntrinsics [31] 4.9432 5.5385 5.2409
IntrinSeg [5] 4.6229 4.2126 4.4178
Revisiting [18] 4.3952 3.6198 4.0075
IRN [53] 3.4133 3.7276 3.5705

Ours 3.1754 3.6579 3.4167

[53], UidSequence [29], IIDWW [32] and USI3D [33]. The
first six methods belong to the supervised methods and last
three methods are unsupervised ones. Results of all meth-
ods are produced by the publicly availble code and pre-
trained models and parameters are kept the same as default.

5.2. Quantitative Results

Due to the lack of ground truth for outdoor scene, we do
not adopt commonly used MSE, LMSE and DSSIM metrics
for quantitative evalutation. According to [30], reflectance
layer holds more sparse distribution for larger gradients
compared to shading layer resulting from its piece-wise ho-
mogeneity property. Thus, we seek to measure the similar-
ity between gradient histograms of results of all compared
methods and ground truth from existing synthetic dataset.
Specifically, we utilize the Earth Mover’s Distance (EMD)
[40] which indicates how close two distributions are to each
other. We randomly sample the same amount of ground
truth from CGIntrinsics dataset and get gradient maps of
both reflectance and shading using Sobel descriptor. With
histograms of gradient maps of all results, we can acquire
EMD metrics for quantitative comparison as listed in Table
1, with lower values for better performance. We can find
that our method gets lowest EMD in terms of reflectance
and relatively nice result for shading, as well as lowest value
for average performace.

5.3. Qualitative Results

We aim to find out the weaknesses of exsiting methods
about their performance on outdoor scenes. Here we pro-
vide the results of reflectance and shading component pro-
duced by all methods along with input RGB images as well
as our HSI-assisted decompositions, as illustrated in Figure
2 and 3.

At first glance, results of all compared methods look
diverse and different from each other. But we can still

find valuable points among these comparisons. In outdoor
scenes, white illumination assumption does not hold any-
more and colored illumination changes when images are
captured at different time. Methods that assume shading as
single-channel layer image suffer from color casts in their
reflectances, including our HSI-assisted method. However,
several methods that produce colored shading also suffer
from color cast problem even in both reflectances and shad-
ings due to domain gap, like IntrinSeg [5] and UniSequence
[29].

For optimization-based methods, IID-Optim [42] gets
relatvely good reflectances but also suffers from blurring
inhomogeneity problems. IIW [10] and STAR [52] also
get tidy reflectances, but the former suffers from low con-
trast and whitening problem while reflectances of latter
show light chromacity. For unsupervised methods, the re-
flectances of IIDWW [32] are overcast, while shadings suf-
fer from checkerboard artifacts due to the usage of decon-
volution layers. For UidSequence [29], the reflectances are
reddish and the shadings are bluish. Most areas in the
reflectances are blurry while shadings are better than re-
flectances. For USI3D [33], the color of reflectances are
different from each other in terms of tone. The shadings
look good but also suffer from blurring problem. Among
supervised methods, DirectIntrinsic [36] and ShapeNet [47]
get relatively worse results compared to other four meth-
ods. Reflectances of DirectIntrinsic [36] are not good and
only green and red areas like trees, grass are kept. Other
areas are not correctly estimated and both shadings and re-
flectances are blurry. While ShapeNet [47] contains many
black areas in the reflectances. As for the last four meth-
ods, CGIntrinsics [31] suffers from checkerboard artifacts
and over-saturation problem. The reflectance are somewhat
over-saturated in terms of the red, orange and blue areas.
The roads are less homogeneous. The shading components
are over-smoothed that it is hard to identify different areas.
Because this model are trained on a mixture of four datasets,
it is somewhat robust to real outdoor scenes. For Intrin-
Seg [5], reflectances look purplish compared to RGB image
and shadings are instead yellow. while Revisting [18] looks
unnatural and faces inhomogeneity problem. IRN [53] also
suffers from artifacts and looks like oil painting.

While our HSI-assisted method produce somewhat rea-
sonable decompositions on outdoor scenes. The re-
flectances look tidy and keep similar to the scenes captured
in the RGB images and the shadings record illumination
changes. Focusing on the road surface, reflectance of our
method are piece-wise homogenous on areas of roads and
changes are kept in shading components. What matters is
actually the white roadlines, nearly all methods fail to clear
these area in shading component while our method seems
to somehow enhance these areas in shadings. The reason is
our HSI data capture these roadlines in every single channel
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Figure 2. Qualitative results of all compared methods. Gamma correction is applied for better visualization. Compared methods include
IIW [10], IID-Optim [42], STAR [52], UidSequence [29], IIDWW [32] and USI3D [33].

of different wavelength and the method cannot discriminate
these areas from shading. Our reflectances can also split
those shadow casts on the road while strong shadows be-
neath cars still remain.

6. Conclusion

In this paper, we attempted to perform IID on outdoor
scenes with the help of HSI. We first collect large amounts
of paired RGB images and corresponding well-aligned HSI
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Figure 3. Qualitative results of all compared methods. Compared methods include DirectIntrinsic [36], ShapeNet [47], CGIntrinsics [31],
IntrinSeg [5], Revisiting [18], InverseRenderNet (IRN for short) [53].

data and filter out good-quality pairs which suffers no mo-
tion blur and defocusing problem. Then we utilized a
novel method to perform intrinsic image decomposition on
color images with the help of HSI information, inspired by
the observation that NIR image is trasparent to a range of
colourants/dyes. We also evaluated existing IID methods
on our collected data to investigate into their overall perfor-
mance on outdoor scenes and have found out drawbacks for
insights of future improvement. Our collected RGB images
together with well-aligned HSI data will be made publicly
available for further potential usage. In the future, we will
investigate into better strategy of utilizing HSI information
to get more reliable intrinsic images regarding the problem
of specular reflections, shadow casts and etc.

7. Limitation Discussion and Broder Impact

Our method is based on the observation that NIR im-
age is transparent to texture of many materials and it cannot

hold perfectly for real outdoor scenes. Although we utilize
the last 60 channels of HSI data, textures cannot be totally
removed in the resulting guidance image. Better adaptive
strategy will be investigated for better utilization of HSI in-
formation.
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