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Depthwise Convolution For Compact Object
Detector In Night-time Images

(Supplementary Material)

I. ABLATION STUDY

In the supplementary material, we show the effectiveness of
different modules employed in the proposed object detection
module. It includes the role of Adaptive Histogram Equal-
ization (AHE), activation functions (i.e., ReLU, Leaky ReLU
(LReLU), Parametric ReLU (PReLU) and Exponential Linear
Unit (ELU)), importance of proposed loss function, optimizer
and depthwise convolution in the architectural design. We
therefore conducted many experiments in ablation study and
justify the proposed design by comparing their performance
quantitatively with recall rate, f1 score and mean Average
Precision (mAP) which are depicted in Table I.

TABLE I: Results obtained on ablation study on different
functions used in the proposed object detection model on FLIR
validation dataset. Here, the metrics measurement are carried
out by averaging values of three classes (i.e., person, car and
bicycle). The bold font texts indicate better values compared
to other approaches.

Metrics Recall f1 score mAP

Adaptive Histogram Equalization (AHE)

Without AHE 29.86 33.08 39.23
With AHE (Proposed) 35.54 41.80 48.36

Activation Functions

ReLU 34.89 39.55 46.98
LReLU 35.45 40.87 47.05
PReLU 33.12 40.60 44.43
ELU (Proposed) 35.54 41.80 48.36

Loss Functions

BCE 35.08 39.28 47.43
BCE Dice 34.98 40.64 48.22
Focal 34.46 39.99 46.63
IoU 34.18 39.05 48.26
Tversky 35.14 41.04 48.18
BCE Dice IoU 34.65 40.19 47.27
Focal IoU 33.57 39.32 47.65
Tversky IoU (Proposed) 35.54 41.80 48.36

Depthwise Convolution (DC)

Without DC 34.64 39.36 46.36
With DC (Proposed) 35.54 41.80 48.36

Optimizer

SGD 30.86 33.82 40.68
Adam (Proposed) 35.54 41.80 48.36

We show the effectiveness of different modules employed
in the proposed object detection module in this section. It
includes the role of activation functions (i.e., ReLU, Leaky
ReLU (LReLU), Parametric ReLU (PReLU) and Exponential

Linear Unit (ELU)), importance of proposed loss function,
optimizer and depthwise convolution in the architectural de-
sign. We therefore conducted many experiments in ablation
study and justify the proposed design by comparing their
performance quantitatively with recall rate, f1 score and mean
Average Precision (mAP) which are depicted in Table I.

Effectiveness of AHE

To enhance the details present in the thermal image, initially
we pass it through Adaptive Histogram Equalization (AHE).
It enhances the tiny details with relatively better contrast.
Hence, it is helpful to improve the visibility of night-time
images [8], [5], [7]. The proposed method has been experi-
mented with/without employing AHE module that displays in
Table I and obtained noticeable results with help of AHE.

Effectiveness of ELU activation function

In deep learning, a network without activation function
works as a linear regression model which cannot perform the
given task in an effective manner. Hence, it requires a non-
linear activation function in order to learn the complicated and
complex form of data. During early developing stage of deep
learning models, sigmoid function was used as an activation
function; however, due to the limitation of vanishing gradient
problem, a Rectified Linear Unit (ReLU) was chosen instead
[6]. It is defined mathematically as, f(x) = max(0, x), where
x represents the value of that particular node. Thus, it activates
above zero value; hence, its partial derivative is one. Therefore,
the problem of vanishing gradient does not exist.

In the proposed method, we replace all activation functions
with ReLU and train the network. The mAP score on ReLU
can be observed from the Table I and note a lower mAP due
to the disadvantage of ReLU activation function which has
zero gradient whenever unit is inactive. As a consequence the
algorithm would never adjust the weights for initially inactive
nodes. In order to overcome such shortcoming, the Leaky
ReLU (LReLU) activation function allows small non-zero
gradient when nodes are inactive and sacrifices the sparsity
for the gradient during optimization. Thus, it eliminates the
saturation problem of ReLU [4]. The proposed method has
been trained using Leaky ReLU activation function and the
result obtained using this experiment is displayed in same
the table. One can note an improvement in mAP than that of
obtained using ReLU. Further, we train the proposed model
with Parametric ReLU (PReLU) [1] which makes the use of
coefficient of leakage into a parameter that is learned along
with the other neural network parameters. Hence, it improves
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the model with low computational cost and reduces the risk
of over-fitting. However, it reduces the mAP on the proposed
model. Additionally, the proposed method is trained on ELU
function that tends to converge to zero in minimum time and
also produces more accurate results. In comparison to other
other activation functions, ELU has an extra α constant which
must be positive number [10] and assists to reach optimum
convergence. The effectiveness of ELU activation function in
the proposed object detection method is observed and hence,
we use it in the proposed method.

Effectiveness of the proposed loss function

Loss functions define how neural network models calculate
the overall error from their residuals for each epoch. The
importance of different loss functions such as Binary Cross
Entropy (BCE) loss [15], BCE Dice loss [12], focal loss [3],
tversky loss [9] and IoU loss [13] can be observed from
Table I. The BCE is defined as a measure of the difference
between two probability distributions for a given random
variable or set of events [15]. It is widely used for classification
and pixel-level segmentation. The BCE dice loss is a weighted
sum of dice loss [11] and BCE. It attempts to leverage the
flexibility of dice loss of class imbalance and at the same
time it uses cross-entropy for curve smoothing. Focal loss
down-weights the contribution of easy examples and enables
the model to focus more on learning hard examples [3]. It
works well for highly imbalanced class scenarios. Further, as
mentioned earlier Tversky loss [9] adds a weight to False
Positives (FPs) and False Negatives (FNs) with the help of
constant coefficient and calculates the similarity between two
objects. The IoU loss [13] calculates the ratio between the
overlapping regions of the positive instances between two sets
of objects, and their mutual combined values. Additionally,
we train the network with combination of many losses such
as BCE Dice, BCE Dice IoU and BCE Tversky IoU. The
effectiveness of the loss functions utilized in the proposed
method (i.e., combination of Tversky and IoU loss) can be
verified from Table I.

Effectiveness of Depthwise convolution & Optimizer

Depthwise convolution is a spatial convolution where each
channel of input feature maps are convolved with kernel
independently instead of processing it on entire volume (i.e.,
on all channels) [14] requiring lesser number of parameters
to adjust. The role of Depthwise Convolution (DC) in the
proposed method can also be verified by looking at the results
obtained on the proposed method with/without using it as
depicted in Table I. In addition, a proper optimizer improves
the detection results with better efficiency. Therefore, Adam
optimizer is used to optimize the model for training. It takes
advantage of adaptive gradients and Root Mean Square (RMS)
propagation [2]. The ablation study on Adam optimiser is also
carried out by training the proposed method on the Stochastic
Gradient Descent (SGD) and depicted the detection scores in
the Table I.
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