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Abstract
In this work, we present a single-stage framework,

named S2F2, for forecasting multiple human trajectories
from raw video images by predicting future optical flows.
S2F2 differs from the previous two-stage approaches in that
it performs detection, Re-ID, and forecasting of multiple
pedestrians at the same time. Unlike the prior approaches,
the computational burden of S2F2 remains consistent even
as the number of pedestrians grows. The experimental
results demonstrate that S2F2 is able to outperform two
conventional forecasting algorithms and a recent learning-
based two-stage model [1], while maintaining its tracking
performance on par with the contemporary MOT models.

1. Introduction

In the past few years, human trajectory forecasting from
image sequences has been implemented as a two-stage pro-
cess: (1) the detection and tracking stage, where targets in
a single video frame are first located (i.e., detection), and
then associated to existing trajectories (i.e., tracking) with
or without the help of re-identification (Re-ID); and (2) the
forecasting stage, where the previous trajectory of each per-
son is fed into a forecasting model to predict its potential
future locations over a short period of time. This branch of
methods is referred to as the two-stage approaches in this
work, and is illustrated in Fig 1 (a). Among them, previ-
ous works concentrated only on the second stage, and uti-
lized the pre-processed bounding boxes and tracking his-
tories [1–6]. Albeit effective, two-stage approaches inher-
ently suffer from several limitations. First, their forecasting
performances are constrained by the quality and correctness
of the first stage. Second, despite that the first stage only
processes the input in one pass, the second stage usually
requires multiple passes of forecasting if the input image
sequence contains multiple pedestrians [1, 4, 6].

In light of these shortcomings, a promising direction to
explore is the use of a single-stage architecture. Single-
stage architectures often possess favorable properties such
as multitasking, fast inference speed, etc., and have recently
been actively investigated in a wide range of other appli-
cation domains [7–12]. Despite their successes, the previ-
ous single-stage approaches are mostly designed for tasks
involving only a single image frame. The human trajec-
tory forecasting task, however, requires temporal informa-

tion encoded from multiple past frames, making previous
single-stage architectures not readily applicable. As this
problem setup has not been properly investigated, the chal-
lenges to be addressed are twofold. First, it requires various
types of information (e.g., detection results, past trajecto-
ries, context features, etc.) to be concurrently encrypted to
the latent features. Second, it necessitates temporal infor-
mation to facilitate plausible predictions. Therefore, this
human trajectory forecasting problem can be considered as
a unique and complicated multitask learning task.

To this end, we present the first single-stage frame-
work, called S2F2, for predicting multiple human trajecto-
ries from raw video images. S2F2 is inspired by the concept
of optical flow forecasting, and is constructed atop the de-
sign philosophy of an anchor-free one-stage multiple object
tracking (MOT) framework [7]. Fig. 1 highlights the dif-
ferences between S2F2 and the prior two-stage approaches.
S2F2 differs from them in that it performs detection, Re-ID,
as well as forecasting of multiple pedestrians at the same
time. Unlike two-stage approaches, the computational bur-
den of S2F2 remains consistent even if the number of pedes-
trians grows. We show that with the same amount of train-
ing data, S2F2 is able to outperform two conventional tra-
jectory forecasting algorithms and a recent learning-based
two-stage model [1], while maintaining its tracking perfor-
mance on par with the contemporary MOT models.

2. Methodology
2.1. Problem Formulation

Consider a sequence of raw images from a static scene
{I0, I1, I2, ...}, the objective of this work is to estimate
and track the current and future locations of all pedestrians
within the image sequence. Given the current timestep t and
the information encoded from the previous trajectory, the
objective of multiple human trajectory forecasting is to de-
rive a set of bounding boxesBt

i = {bti, b
t+1
i , bt+2

i , ..., bt+n
i }

for the future n frames, where bti stands for the bounding
box of each identifiable pedestrian i at timestep t.

2.2. An Overview of the Proposed S2F2 Framework

Fig. 2 illustrates the S2F2 framework. To accomplish
human trajectory forecasting for multiple pedestrians in a
single stage, S2F2 employs two modules: (a) a context fea-
ture extractor for processing and encrypting the input image
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Figure 1. A comparison between the previous two-stage ap-
proaches, and our proposed one stage S2F2 framework.

frame of the current timestep t, and (b) a forecasting module
for recurrently encoding the latent features and predicting
the future optical flows, which are later used for deriving
the future trajectories. Given a raw input image It, it is first
processed by the backbone K of the context feature extrac-
tor to generate a feature embedding Xt, which is used for
three purposes: detection, Re-ID, and forecasting. To de-
rive the future flow map, the forecasting module takes Xt

as its input, and leverages a series of gated recurrent units
(GRUs) to generate the optical flow map ft+n correspond-
ing to timestep t+n. This flow map represents the estimated
offsets of each pixel from It to It+n, and thus can be used
to perform forward warping of the detection results from
timestep t to t+n to derive the future bounding boxes bt+n

in a scene, as shown in Fig. 2 (i.e. the blue bounding boxes).
Subsequently, all the bounding boxes are processed by a
tracking algorithm, and are associated into distinct tracks,
forming the final forecast bt+n

i for each pedestrian i.

2.3. Context Feature Extractor

The context feature extractor of S2F2 inherits the design
of [7], in which an enhanced version of Deep Layer Ag-
gregation (DLA) [9] is used as the backbone to generate
Xt. The detection and Re-ID tasks are accomplished by
four heads, including a heatmap, an offset, a size, and a Re-
ID heads. Except predicting the bounding boxes and Re-ID
features of It, these heads ensure that Xt can serve as an ad-
equate representation of locations and object appearances,
and offer sufficient information for the forecasting module.

2.4. Forecasting Module

2.4.1 GRU Encoder Block

The GRU Encoder encodes the context features Xt ex-
tracted by the backbone K from the context feature ex-
tractor. It is a single convolutional gated recurrent unit
(ConvGRU) [13]. At timestep t, feature map Xt is passed
as input into the ConvGRU along with the corresponding
previous state St−1 to compute the updated state St =
GRU(St−1,Xt). St can thus be considered as a summary
of the past context features up to timestep t.At timestep
t = 1, X1 is employed for both the input and initial state.

Figure 2. The proposed S2F2 architecture.

2.4.2 Future Flow Decoder Block

The future flow decoder’s goal is to predict n residual fu-
ture flow estimations {∆ft+1,∆ft+2, ...,∆ft+n},∆f ∈
R2×w×h, where each estimation is an update direction used
to update a fixed flow field initialized with zeros. The
main function of this decoder block is to create future flows
F = {ft+1, ft+2, ..., ft+n}, where ft+1 = ∆ft+1 + ft.
Similar to the encoder block, the decoder also consists of a
ConvGRU. It takes the encoded representation St and splits
it into a hidden state H1 and an input R. They are fed sep-
arately into the ConvGRU to generate the next hidden state
H2 = GRU(H1, R), which is then utilized by a ∆ flow
head to produce ∆ft+1. This, in turn, is used to gener-
ate the next input to the ConvGRU by concatenating ∆ft+1

with R. The process repeats n times, with each iteration
stands for a timestep into the future. To train the future flow
decoder block, a loss function consisting of two parts is em-
ployed. The first part is a supervised loss formulated as:

Fcenter =
∑
ft∈F

N∑
i=1

‖ct+1
i − ĉt+1

i ‖1

=
∑
ft∈F

N∑
i=1

‖ct+1
i − (cti +W (cti, ft+1)‖1.

(1)

where ft+1 is the estimated future flow, W (·, ·) is the warp-
ing operator, cti and ĉti represent the centers of the anno-
tated bounding box bti and the predicted bounding box b̂ti
of person i at timestep t, respectively. For each center ct,
the forecasted center ĉt+1 can be inferred with the forward
warping operation ĉt+1 = ct + W (ct, ft+1). The second
part further refines and stabilizes the optical flow with the
structural similarity index (SSIM) loss, formulated as:

Fwarp =
∑
ft∈F

∑
x∈I

SSIM
(
It
(
x
)
, It+1

(
x+ ft(x)

))
. (2)

2.5. Online Tracking Refinement

We enhance the tracking performance by taking the es-
timated future bounding boxes b̂t+1 into consideration. We
modify the original tracking algorithm of [7] by reducing
the threshold δi of a bounding box if the distance between
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Figure 3. A comparison between the forecasting results made by
S2F2 and CV-CS. From the left to the right, a pedestrian (1) walks
away from the viewpoint, (2) makes a sharp turn due to the lock-
ers in its way, and (3) makes a right turn to follow the crowd.
Bounding boxes are highlighted in different colors to represent the
ground truth (red), past locations (white), and the predictions made
by CV-CS (aqua) and those made by S2F2 (dark blue). The pre-
dictions are one second into the future.

any of ĉt+1 and cti is within a predefined range r, given by:

∀i ∈ N, δi =

{
δi/2, if ∃ĉt+1, ‖ĉt+1 − cti‖1 < r

δi, otherwise.
(3)

This allows the bounding boxes with lower confidence to be
re-considered and associated if their estimated future loca-
tions are nearby, so as to further improve the performance.

2.6. Training Objective

We train our network model in an end-to-end manner
by minimizing the objective function Lall = 1

ew1
Ldet +

1
ew2

Lid + 1
ew3

Lfut +w1 +w2 +w3, where Lfut is the sum-
mation of Fcenter and Fwarp, w1, w2 and w3 are learnable
parameters, and Ldet and Lid are the losses for detection
and Re-ID. We use the uncertainty loss in [14] to automati-
cally balance the detection, Re-ID, and forecasting tasks.

3. Experimental Results
3.1. Data Curation for Forecasting w.o. Ego Motion

We examine S2F2 on the subset of the MOT17 and
MOT20 Challenge Datasets [15,16]. Since S2F2 focuses on
the model’s capability of encoding trajectories and forecast-
ing, the movements from the camera are beyond the scope
of this paper. As a result, we select a subset of videos in-
volving no camera’s ego motion from MOT17 and MOT20
to form our dataset, named StaticMOT1. We then train and
evaluate S2F2 on it, with each video sequence split into
halves to form the training and validation sets, respectively.

3.2. Trajectory Forecasting Results

To fairly compare different methods, the pre-processed
bounding boxes and the necessary past trajectories of the
pedestrians are generated by S2F2 from the validation set of
StaticMOT. Tracks that are not continuously detected for six
frames are discarded, resulting in around 470, 000 tracks for
evaluation. We predict three future frames, corresponding
to around one second of forecasting into the future.

1StaticMOT contains: MOT17-02, 04, 09, and MOT20-01, 02, 03, 05.

Table 1. The forecasting results on the StaticMOT validation set.
The latency reported is evaluated on an NVIDIA Tesla V100 GPU.

Model ADE(↓) FDE(↓) AIOU(↑) FIOU(↑) Latency (ms)
CV-CS 14.481 20.196 0.673 0.594 -

LKF [17] 20.635 24.323 0.581 0.512 -
STED [1] 16.928 23.761 0.654 0.570 623.480

Ours 12.275 16.228 0.704 0.643 13.788

Table 2. The detection results of S2F2 and FairMOT [7]. Those
with * are taken from the original paper. The MOT17 test results
are from the evaluation server under the private detection protocol.

Method Dataset MOTA [18] (↑) MOTP [18] (↑) IDs [18] (↓) IDF1 [19] (↑)
FairMOT∗ MOT17 test 69.8 - 3996 69.9
Ours MOT17 test 70.0 80.15 4590 69.9
FairMOT∗ MOT17 val 67.5 - 408 69.9
Ours MOT17 val 67.7 80.3 513 71.0
FairMOT StaticMOT 73.1 80.5 2283 76.4
Ours StaticMOT 73.6 80.5 2307 76.6

(1) Quantitative Results: Table 1 shows the quantitative
results in terms of the ADE/FDE and AIOU/FIOU met-
rics [1] of all methods on StaticMOT. CV-CS and LKF rep-
resent conventional trajectory forecasting algorithms Con-
stant Velocity & Constant Scale linear motion model, and
Linear Kalman Filter [17], respectively. STED [1] is a re-
cent two-stage learning-based model with a similar GRU
encoder-decoder architecture. The latency for forecasting
is also included. Notice that latency is calculated for the
forecasting stage only. It can be observed that, the proposed
S2F2 outperforms all the baselines, while performing sev-
eral times faster than STED. The degradation in STED’s
predictions might be partially due to the imperfect detection
results generated by S2F2, as described in Section 3.2. Un-
like the ground truth trajectories, the tracks from StaticMOT
might have id-switches, occlusions, or miss-detections.

(2) Qualitative Results: Fig. 3 shows three examples of
challenging scenarios selected and evaluated from our Stat-
icMOT validation set. From left to right, the scenarios are:
(1) a person behind two people walks away from the view-
point, (2) a person moves to the right and takes a sharp turn
due to the lockers in its way, and (3) a person makes a right
turn to follow the crowd. In the first scenario, the person’s
bounding boxes from different timesteps becomes closer to
each other due to the increase in their distances from the
viewpoint. This can be forecasted by S2F2, but is unable
to be correctly predicted by the CV-CS model. In the sec-
ond scenario, CV-CS also fails to estimate the trajectory of
the person. However, S2F2 incorporates features from the
whole images, enabling it to anticipate this. In the third
scenario, since S2F2 makes predictions for all objects con-
currently based on a dense flow field, it is thus capable of
capturing the spatial correlations between different objects,
allowing it to forecast the future trajectory of the person by
taking into account the behavior of the crowd. These three
examples thus qualitatively validates S2F2’s performance.
More visualizations of S2F2’s results are shown in Fig 4.
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Figure 4. The tracking results and the predicted optical flow of our
method on the validation set of StaticMOT.

3.3. Multiple Object Tracking Results

In addition to forecasting, Table 2 further compares the
tracking results of S2F2 and FairMOT [7], the framework
that S2F2 is based on. From top to bottom, the three cate-
gories correspond to the models trained on the whole of-
ficial MOT17 training dataset [15], the training split of
MOT17 from [7], and our StaticMOT, respectively. For
each category, S2F2 and FairMOT are trained with the same
set of data samples, and do not use any additional fine-
tuning. It is observed from the results that our performance
is on par or even slightly better than that of FairMOT for
certain metrics, implying that the addition of our forecast-
ing module does not affect its tracking capability. Note that
S2F2 performs slightly worse than FairMOT in terms of the
ID switch (IDS) metric. This might be due to the fact that
FairMOT is trained on independent images, while S2F2 is
trained on image sequences, thus causing slight overfitting.

4. Conclusion
In this paper, we presented the first single-stage frame-

work, named S2F2 for predicting multiple human trajec-
tories from raw video images. S2F2 performs detection,
Re-ID, and forecasting of multiple pedestrians at the same
time, with consistent computational burden even if the num-
ber of pedestrians grows. S2F2 is able to outperform two
conventional trajectory forecasting algorithms, and a recent
two-stage learning-based model [1], while maintaining its
tracking performance on par with the contemporary MOT
models. We hope this sheds light on single-stage pedestrian
forecasting, and facilitates future works in this direction.
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