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Abstract

Human trajectory forecasting is a key component of
autonomous vehicles, social-aware robots and advanced
video-surveillance applications. This challenging task typ-
ically requires knowledge about past motion, the environ-
ment and likely destination areas. In this context, multi-
modality is a fundamental aspect and its effective modeling
can be beneficial to any architecture. Inferring accurate
trajectories is nevertheless challenging, due to the inher-
ently uncertain nature of the future. To overcome these dif-
ficulties, recent models use different inputs and propose to
model human intentions using complex fusion mechanisms.
In this respect, we propose a lightweight attention-based
recurrent backbone that acts solely on past observed posi-
tions. Although this backbone already provides promising
results, we demonstrate that its prediction accuracy can be
improved considerably when combined with a scene-aware
goal-estimation module. To this end, we employ a com-
mon goal module, based on a U-Net architecture, which
additionally extracts semantic information to predict scene-
compliant destinations. We conduct extensive experiments
on publicly-available datasets (i.e. SDD, inD, ETH/UCY)
and show that our approach performs on par with state-of-
the-art techniques while reducing model complexity.

1. Introduction

Human trajectory forecasting has aroused great inter-
est in several scientific communities (e.g. computer vision,
robotics and intelligent transportation) in recent years [1, 3,
19,27,32] since it involves human perception, motion anal-
ysis and reasoning. Predicting human dynamics is essential
for systems that need to proactively react to the surround-
ing environment. For example, autonomous vehicles need
to foresee future positions to avoid collisions, while robots
require to behave in a socially-compliant way to move nat-
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Figure 1. Multiple paths can occur in the future in specific circum-
stances (e.g. people approaching roundabouts or intersections).
These situations may lead a prediction model to learn an “aver-
age” behavior envisioning not feasible trajectories. To overcome
this issue, we employ a semantic-aware goal module to infer mul-
tiple likely destinations that are then fed to a temporal backbone
to predict scene-complaint and multi-modal outputs.

urally alongside humans. Several video surveillance tasks
may also gain an advantage from motion prediction to de-
tect anomalous behaviors and support human operators in
order to intervene promptly.

Pedestrian motion prediction mainly relies on previ-
ously observed locations to infer future positions and, at
its core, it boils down to the prediction of a time series.
When urban areas are considered, this task can become ex-
tremely complex, due to the large number of involved fac-
tors. For instance, people may prefer a right-of-way rule
in scarcely crowded areas but may not follow it when the
number of agents increases. Past methods [15, 36] have
conventionally tackled these challenges by adopting sim-
ple motion models and hand-crafted functions, which may
be effective only under ideal conditions. However, the re-
cent availability of large-scale annotated datasets [6, 30]
has shifted this modeling paradigm towards data-driven ap-
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proaches [1, 9, 14, 23, 38], contributing to notable perfor-
mance improvement.

While collected positions can be analyzed as temporal
sequences, taking advantage of additional information can
improve prediction accuracy. This auxiliary information
can be extracted from several sources: scene description
(i.e. RGB images), presence of social interactions, and pos-
sibly also other modes (e.g. semantic information, depth es-
timation or videos). Employing these supplementary cues,
social-aware [1, 43] and environment-aware [7, 22, 33, 34]
prediction methods have been developed. More recently, at-
tention mechanisms have proved their effectiveness in fore-
casting human locations, following recent advances in nat-
ural language processing (NLP) domains [37, 41].

Multi-modal approaches have also been investigated to
capture the inherently multi-modal nature of the task [14,
35]. Recent methods explicitly model this aspect in terms of
goal prediction [9, 10, 25, 26, 46]. Indeed, goal-conditioned
models represent a class of approaches investigated in sev-
eral fields, e.g. reinforcement learning [11, 12] and motion
planning [17, 47]. Trajectory forecasting methods should
therefore: (i) include a sequential processing of observed lo-
cations, and (ii) deal with the intrinsic uncertain and multi-
modal nature of the future.

To tackle the above challenges, we propose an attention-
based approach conditioned on estimated destinations to in-
fer multi-modal scene-compliant predictions. Our approach
empowers a recurrent trajectory forecasting backbone with
an additional goal-estimation module, which takes as inputs
motion history and pixel-level semantic classes. This infor-
mation is fed to a U-Net [31] architecture that outputs prob-
ability distribution maps from which likely future goals are
then sampled. We provide these cues to the temporal back-
bone that, conditioned on estimated final positions, predicts
subsequent time steps in a recurrent fashion. An overview
of our approach is provided in Fig. 1. Compared to prior
work [10], in which estimated goals represent hard con-
straints, we propose a soft-constrained model that automat-
ically learns to use future goals to infer human paths.

To summarize, our contribution is threefold. First, we
propose a simple yet effective recurrent backbone based on
a multi-head attention mechanism, that is able to outper-
form several recent methods by solely leveraging past ob-
served positions. Second, we demonstrate that these re-
sults can be considerably enhanced with the addition of a
scene-aware goal-estimation module. This highlights that
multi-modality is a fundamental component of the predic-
tion task. Third, we present experimental results on a
variety of benchmarks (i.e. Stanford Drone [30], Intersec-
tion Drone [6] and ETH/UCY datasets), and provide addi-
tional insights on the accuracy of the goal-estimation mod-
ule with comprehensive ablations studies. Code available at
https://github.com/luigifilippochiara/Goal-SAR.

2. Related Work

Human trajectory forecasting in crowded contexts has
been extensively studied by several works. For example,
Alahi et al. [1] use a long short-term memory (LSTM)
network with a social pooling layer that extracts interac-
tions among nearby pedestrians, and Gupta et al. [14] use
Generative Adversarial Networks (GANs) to predict so-
cial acceptable trajectories. Other approaches [24, 28, 44]
propose other strategies such as state refinements, spatio-
temporal graph neural networks [18, 39], and social con-
trastive losses. Some scenarios may benefit from modeling,
additionally, human-space interactions [3,8,19,33]. For in-
stance, Xue et al. [40] analyze three different scales of in-
teraction (person, neighborhood, and scene), and Choi et
al. [7] encodes visual spatio-temporal features where dy-
namics are influenced by objects and people in the scene.
Lisotto et al. [23] jointly model human interactions and
space perception through similar pooling mechanisms pro-
posed in Alahi et al. [1] based on past observations and se-
mantic scene segmentation. Furthermore, Liang et al. [22]
propose a multi-scale approach to firstly predict coarse and
then fine-grained locations using semantic scene segmenta-
tion. Finally, Salzmann et al. [35] enforce dynamical sys-
tems constraints into a graph-structured recurrent model de-
signed for robotic planning and control frameworks.

Attention-based Models. Several attention mechanisms
demonstrated to be more effective than traditional recurrent
architectures to model temporal dependencies. Vemula et
al. [38] and Huang et al. [16] propose similar approaches
based on spatial-temporal graph attention networks (GAT)
where LSTM networks encode both spatial and tempo-
ral correlations in the crowd. Sadeghian et al. [34] pro-
pose a deep visual attention-based model which focuses on
most representative areas processed by CNNs. Sadeghian
et al. [33] leverage social attention and physical attention
mechanisms by fusing past motion history and scene con-
text information. Furthermore, Giuliari et al. [13] propose a
transformer-based model predicting motion from past ob-
served positions, while Yu et al. [42] propose a spatio-
temporal graph transformer framework that models social
interactions with an encoder-decoder attention-based con-
volution mechanism. Yuan et al. [43] propose an attentive
architecture that models temporal and social dimensions
preserving time and agent information.

Destination-based Models. More recently, several works
leverage goal prediction to improve prediction accuracy [2,
45]. Mangalam et al. [26] employ a variational autoencoder
(VAE) conditioned on estimated endpoints, where a non-
local attention mechanism recursively updates hidden state
representations. Similarly, Dendorfer et al. [10] investigate
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Figure 2. Model Architecture. Our forecasting method consists of two main components: 1 Temporal-Attention Backbone and 2
Goal Module. The recurrent backbone implements a self-attention mechanism that solely relies on previous observed positions. The Goal
module processes motion history and semantic scene segmentation through a U-Net architecture to predict future goals as probability
distributions. Final positions are then sampled and fed to the temporal backbone. The output, together with some random noise, is then
decoded by a FC layer to extract the next predicted position at time step tn+1.

multi-modality conditioning routes to estimated final posi-
tions. The limitation of providing continuous non-zero dis-
tributions is then addressed by Dendorfer et al. [9], which
propose to train multiple generators, each one predicting a
different distribution associated with a specific mode. Sim-
ilar to ours, Mangalam et al. [25] propose a convolutional-
based approach where positions are treated as heat-maps
and final positions are sampled from 2D probability dis-
tribution maps. Finally, Zhao and Wildes [46] propose
an LSTM encoder-decoder architecture where predictions
are conditioned upon destinations retrieved from an expert
repository.

3. Proposed Approach
Pedestrian trajectory forecasting in urban scenarios is a

challenging task requiring to model multiple factors that in-
fluence human motion. We argue that multi-modality mod-
eling (here instantiated in terms of goal prediction) is a key
component of this problem and can enhance almost any
model. Indeed, predicting likely destinations (i.e. goals)
may steer paths towards more realistic locations and allow
an elegant and effective factorization of the intrinsic multi-
modality of the future. To this end, we conceive a simple
yet powerful architecture that consists of two main compo-
nents: a temporal recurrent backbone (Fig. 2 - 1 ), which
processes locations using a self-attentive mechanism, and a
goal-estimation module (Fig. 2 - 2 ), which predicts likely
final locations of each agent given its previously observed

positions. Our model is thus able to predict plausible trajec-
tories in complex scenarios processing both temporal de-
pendencies and future intentions.

3.1. Recurrent Backbone

Trajectory embedding. Our backbone is a recurrent ar-
chitecture that only relies on temporal information. It pro-
cesses sequences of 2D locations pti = (xti, y

t
i) for the

ith agent at time t. Sequences span from t = 0 to t =
Tobs + Tpred = Tseq , where Tobs (resp. Tpred) is the obser-
vation (resp. prediction) time window, and Tseq is the total
sequence length. Every agent is considered independently
from others. Input coordinates P0:tn

i = (p0i , ..., p
tn
i ) from

t = 0 to tn are encoded into a feature space as follows:

eti = ϕ(pti;We), (1)

where ϕ(·) is a linear embedding function with ReLU
non-linearity and We embedding weights. As in Zhang et
al. [44], we subtract the last observed position from each
processed sequence for data normalization.

Temporal Attention. To process temporal dependencies,
transformers [37] have recently aroused great success due
to their speed and performance. Their encoder-decoder
paradigm models relationships between every pair of in-
put/output sequences stacking multiple identical layers,
using a multi-head self-attention mechanism and fully-
connected feed-forward networks. Inspired by Yu et
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al. [42], we only leverage the encoding part, with the aim
to predict future positions given variable-length input se-
quences P0:tn

i = (p0i , ..., p
tn
i ), in a recurrent fashion. More

explicitly, temporal dependencies across subsequent time
steps are taken into account by linearly projecting embed-
ded positions (e0i , ..., e

tn
i ) into three different vectors: qti

(query), kti (key) and vti (value). A dot product between
queries and values is performed to compute attention coef-
ficients used to weight the values vti and provide the corre-
sponding output as follows:

ATT (Qi,Ki, Vi) = softmax
(
QiK

T
i√

dk

)
Vi, (2)

where dk represents a normalization factor. This opera-
tion is performed Nhead times using different linear projec-
tions of Qi, Ki and Vi, yielding a vector of new embedded
positions (h0i , ..., h

tn
i ), which incorporate temporal depen-

dencies.

Trajectory decoder. The last encoded feature vector htni
is then fed to a decoder defined by a linear layer ψ(·) with
ReLU non-linearity and weights Wd, to extract decoded
positions at time tn+1. To increase the variance of gener-
ated sequences, we concatenate a Gaussian random vector
zi ∼ N (0, Iz) to this hidden state as in Huang et al. [16]:

p̂
tn+1

i = ψ
(
concat(htni , zi);Wd

)
. (3)

In the following, we refer to our Self-Attentive Recur-
rent backbone as SAR. It predicts the next position at t+ 1
using all previous time steps. Instead of using a hidden state
to keep track of previous inputs, typically employed in re-
current architectures [1, 44], we recursively concatenate es-
timated locations to the previous input sequence. Our tem-
poral module is depicted in Fig. 2 as 1 .

3.2. Goal Module

The purpose of the goal module is to model the multi-
modality of human motion, and this is achieved by predict-
ing a probability distribution of plausible final positions (i.e.
goals) for each input trajectory. We use the same goal mod-
ule proposed in Mangalam et al. [25], slightly modifying its
pre-processing steps and output format. This module con-
catenates both observed positions and visual scene informa-
tion, which are then fed to a U-Net [31] model that directly
outputs a probability map of future final locations.

Scene semantic. Scene context is an important factor to
consider for estimating more realistic paths. For exam-
ple, obstacles may influence human dynamics or sidewalks
may be the natural choice for pedestrians rather than roads.

To this end, semantic information is extracted from bird’s-
eye view RGB images using an off-the-shelf pre-trained
semantic segmentation network taken from Mangalam et
al. [25]. More specifically, the following set of semantic
classes C = {pavement, terrain, structure,
tree, road, not defined} are considered, result-
ing in a semantic tensor S ∈ RW×H×C where W and H
represent input image sizes. Each slice of S represents a
specific semantic class containing 0’s or 1’s labeling each
pixel with the corresponding class.

Goal Encoder-Decoder. The semantic tensor S is con-
catenated to Nobs distribution maps depicting past motion
history. More precisely, for each observed position we con-
sider a heat-map of spatial sizes W and H , and create a
2D Gaussian probability distribution map with mean pti and
variance σ2

SI2. We denote with M the projection from
2D (x, y) coordinates to W ×H heat-map representations.
After concatenation, we obtain a W × H × (C + Nobs)
trajectory-on-scene input tensor HS .

This tensor is then fed to a U-Net architecture consist-
ing of L blocks that reduce input spatial dimension H ×W
using double convolutional layers with ReLU non-linearity
and max-pooling operations. Each intermediate output Hl

(1 ≤ l ≤ L) is then passed via skip-connections to the de-
coder. In the expanding arm, L decoder blocks process HL,
doubling its resolution using bilinear up-sampling, double
convolutions and ReLU non-linearity. Skip connections
fuse Hl tensors from the contracting arm, and a final out-
put convolutional layer followed by a pixel-wise sigmoid
return the spatial probability distribution of the final posi-
tion M(pTseq ). The goal-estimation module is depicted in
Fig. 2 as 2 .

Distribution Sampling. The goal module outputs a 2D
heat-map which represents the probability of the monitored
agent to be in a specific final location at Tobs + Tpred given
the information from t = 0 to Tobs. Estimated goals are
sampled from these probability maps. When more than
one sample is required, we find it beneficial to use the
Test-Time-Sampling-Trick TTST proposed in Mangalam et
al. [25], where 10, 000 goals are initially sampled and then
clustered with K-means to obtain the 20 output modalities.
To inject the estimated destination into our temporal back-
bone, we concatenate to P0:tn

i the goal and the following
three additional inputs, denoted as Ii: last position, cur-
rent distance to the estimated goal and time step value t, as
in Dendorfer et al. [10]. We also find it beneficial to use
a skip connection to feed our backbone with this additional
information, which is concatenated both before and after the
self-attention layer, as shown in Fig. 2. This choice will be
better motivated in one of the ablation studies of Section 4.
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3.3. Loss Function

We consider two losses to train our architecture:

Lgoal =
1

Np

Np∑
i=1

BCE
(
M(p

Tseq

i ),M̂(p
Tseq

i )
)
, (4)

Ltraj =
1

Np · Tpred

Np∑
i=1

Tseq∑
t=Tobs+1

∥∥pti − p̂ti
∥∥2
2
. (5)

We firstly train the goal module to minimize a Bi-
nary Cross-Entropy loss between predicted and ground-
truth probability maps obtained as 2D Gaussian distribu-
tions N

(
p
Tseq

i , σ2
SI2

)
centered at ground-truth final destina-

tions. Secondly, we train our recurrent backbone minimiz-
ing the Mean Squared Error between predicted and ground-
truth positions from Tobs + 1 to Tseq . Both terms are then
normalized with respect to the number of processed agents
Np. Our total loss function is defined as:

L = Lgoal + λLtraj , (6)

where λ is a hyper-parameter balancing each network’s con-
tribution.

4. Results
4.1. Datasets and Experiments

Experimental Settings. We follow the well-established
experimental protocol used in human trajectory predic-
tion [1, 14], that is to observe 3.2 s and to predict the next
4.8 s. This leads to consider Tobs = 8 and Tpred = 12 time
steps, respectively. In the following, we compare two main
models: SAR and Goal-SAR. SAR only uses the temporal
attention module, while Goal-SAR also includes the goal
module and its estimated final positions.

Datasets. We evaluate our model on three standard pedes-
trian datasets: Stanford Drone Dataset (SDD) [30], In-
tersection Drone Dataset (inD) [6], and ETH/UCY [21,
29]. Stanford Drone Dataset represents the first large-scale
dataset proposed for human trajectory prediction, and cap-
tures several large areas of a university campus from a
bird’s-eye-view perspective. It is split into 60 recordings
where complex human dynamics show strong interactions
with the surrounding environment. We use the same split
proposed in Kothari et al. [20] and used by most recent
works [26, 33], where 30 scenes are used as train and 17
as test data, and only pedestrian are retained. Data is down-
sampled at 2.5 FPS. inD contains 32 recordings of trajecto-
ries collected at 4 German intersections, where pedestrians
interact with cars to reach their destinations. We filter out
all non-pedestrian trajectories and consider the evaluation
protocol proposed in Bertugli et al. [4], where all scenes are

Method S I G ADE FDE

Social-LSTM [1] ✓ 57.00 31.20
Social-GAN [14] ✓ 27.23 41.44
Goal-GAN [10] ✓ ✓ 12.20 22.10

PECNet [26] ✓ ✓ 9.96 15.88
MG-GAN [9] ✓ ✓ 13.60 25.80

Y-net [25] ✓ ✓ 7.85 11.85

SAR (Ours) 10.73 18.66
Goal-SAR (Ours) ✓ 7.75 11.83

Table 1. Stanford Drone dataset (SDD) results. Results are re-
ported as the minimum ADE and FDE of 20 predicted samples, in
pixels (lower is better). Bold and underlined numbers indicate best
and second-best. S, I, and G indicate additional input informa-
tion (other than temporal) used by the models and represent Social
component, Image and Goal-estimation module, respectively.

Method S I G ADE FDE

Social-GAN [14] ✓ 0.48 0.99
ST-GAT [16] ✓ 0.48 1.00

AC-VRNN [4] ✓ 0.42 0.80
Y-net [25]* ✓ ✓ 0.34 0.56

SAR (Ours) 0.39 0.80
Goal-SAR (Ours) ✓ 0.31 0.54

Table 2. Intersection Drone dataset (inD) results. We report
results considering the minimum ADE and FDE of 20 predicted
samples, in meters. Lower is better. Bold and underlined num-
bers indicate best and second-best. Note: * means the model was
trained by us, since the authors did not perform this experiment.

split into train, validation, and test sets with a 70-10-20 rule.
Finally, ETH/UCY are the classic benchmarks for pedes-
trian trajectory prediction. They are sampled at 2.5 FPS and
contain five different scenes (ETH, HOTEL, UNIV, ZARA1
and ZARA2) monitoring entrances of buildings and side-
walks from RGB cameras typically used in video surveil-
lance applications. 1536 pedestrians are captured, mainly
showing human-human interactions. We follow the com-
mon leave-one-scene-out protocol [14], using 4 scenes for
training and the remaining one for testing.

Metrics. To quantitatively evaluate our model, we con-
sider two standard error metrics, namely the Average Dis-
placement Error (ADE) and the Final Displacement Error
(FDE). The former measures the average l2 distance be-
tween predicted and ground truth trajectories, while the lat-
ter only considers the final positions. Specifically, since
we frame our analysis in a stochastic setting, we report
Min20ADE and Min20FDE metrics, which are obtained by
generating 20 predicted samples for each input trajectory
and retaining the one that provides the smallest errors.
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Evaluation Metrics (ADE ↓ / FDE ↓) on Min20
Method S I G ETH HOTEL UNIV ZARA1 ZARA2 AVG

Social-LSTM [1] ✓ 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54
Social-GAN [14] ✓ 0.81/1.52 0.72/1.61 0.60/1.26 0.34/0.69 0.42/0.84 0.58/1.18

ST-GAT [16] ✓ 0.65/1.12 0.35/0.66 0.52/1.10 0.34/0.69 0.29/0.60 0.43/0.83
Transformer-TF [13] 0.61/1.12 0.18/0.30 0.35/0.65 0.22/0.38 0.17/0.32 0.31/0.55

STAR [42] ✓ 0.36/0.65 0.17/0.36 0.31/0.62 0.26/0.55 0.22/0.46 0.26/0.53
Trajectron++ [35] ✓ 0.39/0.83 0.12/0.21 0.20/0.44 0.15/0.33 0.11/0.25 0.19/0.41
AgentFormer [43] ✓ 0.26/0.39 0.11/0.14 0.26/0.46 0.15/0.23 0.14/0.24 0.18/0.29
Goal-GAN [10] ✓ ✓ 0.59/1.18 0.19/0.35 0.60/1.19 0.43/0.87 0.32/0.65 0.43/0.85

PECNet [26] ✓ ✓ 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48
MG-GAN [9] ✓ ✓ 0.47/0.91 0.14/0.24 0.54/1.07 0.36/0.73 0.29/0.60 0.36/0.71

Y-net [25] ✓ ✓ 0.28/0.33 0.10/0.14 0.24/0.41 0.17/0.27 0.13/0.22 0.18/0.27

SAR (Ours) 0.34/0.64 0.14/0.29 0.33/0.66 0.25/0.51 0.21/0.43 0.25/0.51
Goal-SAR (Ours) ✓ 0.28/0.39 0.12/0.17 0.25/0.43 0.17/0.26 0.15/0.22 0.19/0.29

Table 3. ETH/UCY results. We report results considering the minimum ADE/FDE of 20 predicted samples, denoted as Min20, in meters.
Lower is better. Bold and underlined numbers indicate best and second-best. S, I, and G indicate additional input information (other than
temporal) used by the models and represent Social component, Image and Goal-estimation module, respectively.

Implementation details. We consider the same pre-
processing as in Mangalam et al. [25] for all datasets. For
our recurrent backbone, due to the relatively small com-
plexity of the problem, we use an embedding dimension
of size 32 for spatial coordinates, one transformer encoder
layer with 8 multi-head attention heads, and a concatenated
noise zi of size 16. Furthermore, for the goal module we
use L = 5 down- and up-sampling blocks with number of
channels (32, 32, 64, 64, 64) and (64, 64, 64, 32, 32) for the
encoder and decoder, respectively, as in the standard imple-
mentation [25]. To lighten the computation burden of the
goal module, we down-sample the input HS tensor and out-
put probability map by a factor of 4 for ETH/UCY/inD and
8 for SDD. We set σS = min(H,W ), and we compute the
Binary Cross-Entropy loss with the log-sum-exp trick [5].
Moreover, we consider a batch size of 32, set λ to 10−6,
and jointly train all modules end-to-end for 500 epochs us-
ing Adam optimizer with a learning rate of 10−4.

To train the semantic segmentation network, we only use
the corresponding images from the trajectory train scenes
defined in 4.1 and its evaluation is performed on the un-
seen test set images. All the experiments are run on a single
16GB GPU with PyTorch implementation. A strong data
augmentation pipeline composed of random rotations, x
and y flips, small translations, shears, and perspective mod-
ifications is used to increase the number of samples for both
our temporal and goal modules. This allows our model to
avoid over-fitting and provide the best possible generaliza-
tion capabilities. To speed up training, the recurrent part of
the backbone is trained with teacher forcing. Furthermore,
to force our backbone to follow the goal module predictions,
we feed ground-truth goals at training time, thus effectively
decoupling the two architectures.

4.2. Quantitative Results

SDD dataset. Table 1 shows our results on Stanford
Drone dataset. Our temporal backbone (SAR) performs on
par with several recent approaches. In particular, we note
that it reaches similar results to PECNet and outperforms
both Goal-GAN and MG-GAN, all of which rely on a goal
estimation module and use more complex spatio-temporal
architectures. With the addition of the goal module, Goal-
SAR is able to slightly improve Y-net results, even though
it uses a relatively simpler architecture. We attribute these
improvements to the effectiveness of our backbone, which
is able to generate smoother and more flexible predictions
with respect to a convolutional one. Note that in the tables
we do not report Expert [46] results, as it relies on goals
selected to be as close as possible to ground-truth destina-
tions, so that it is not comparable. Besides, we also report
additional inputs used by the models, which we divide into
Social, Image (both RGB and semantic) and Goal compo-
nent. Our SAR model does not use any of these elements, as
it relies only on the temporal component. We report a tick
on the Image column only if a model uses image knowl-
edge when predicting future time steps (i.e. in the recurrent
loop). This implies that Y-net has a tick while MG-GAN
and Goal-SAR do not, as they only use the image in the
goal module, leveraging strictly less information.

inD dataset. Table 2 shows our results on the Intersection
Drone dataset. We consider the evaluation protocol pro-
posed in Bertugli et al. [4]. For a fair comparison, we train
Y-net using the standard short-term evaluation protocol, as
its authors only investigated this dataset in a long-term set-
ting. The results are in line with the previous table, confirm-
ing the effectiveness of our architecture.
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(a) Backbone choice (b) Fusion mechanism (Goal-SAR)

RNN LSTM SAR Goal-RNN Goal-LSTM Goal-SAR Late fusion Early fusion Skip-connection

ADE 11.59 11.08 10.73 8.68 8.43 7.75 9.94 8.27 7.75
FDE 20.31 19.96 18.66 13.93 13.42 11.83 17.42 12.33 11.83

Table 4. Ablation study. We report Min20ADE and Min20FDE metrics obtained with (a) different recurrent backbones and (b) different
fusion mechanisms for the goal and additional information. Results (in pixels) are computed on SDD.

ETH/UCY dataset. Table 3 reports quantitative results
for our methods on the traditional ETH/UCY benchmark.
A similar trend with respect to the previous tables is out-
lined, with SAR performing on par with PECNet and out-
performing both Goal-GAN and MG-GAN. It also outper-
forms by a fair margin Transformer-TF, which uses the stan-
dard encoder-decoder transformer architecture. This proves
the effectiveness of our simpler network in modeling tem-
poral sequences and confirms our intuition of using a recur-
rent self-attentive procedure. The addition of the goal mod-
ule improves overall performance on average by 0.06 and
0.22 meters for ADE and FDE metrics, respectively. Goal-
SAR performs on par with Trajectron++, AgentFormer and
Y-net, reaching the second-best average ADE and FDE. We
stress the fact that Goal-SAR uses image information only
in the goal module, while Goal-GAN and Y-net also include
it in the trajectory prediction step. These results prove the
beneficial effects of encompassing goal information with a
self-attentive mechanism, and that several approaches do
not properly exploit the additional input image and social
information when dealing with complex scenarios.

4.3. Ablation Study

Table 4 reports an ablation study performed on SDD. We
first investigate the effectiveness of our SAR model com-
pared to other temporal backbones, obtained by replacing
the temporal attention block with an LTSM and RNN cell,
respectively. We then examine different possible concatena-
tion mechanisms to combine the goal module and the tem-
poral backbone. Skip-connection (i.e. goal information con-
catenated both before and after the temporal attention mod-
ule) outperforms both early and late fusion mechanisms. In
all three cases, along with the estimated goal, we also con-
catenate additional information Ii (i.e. last position, dis-
tance to the goal and current time step t). Our Goal-SAR
architecture with skip-connection achieves the best overall
performance.

To investigate the predictive power of the goal module
and test the robustness of the overall architecture, we feed
SAR with ground truth destinations instead of predicted
ones, and then we gradually add random noise to ground
truth goals. We conduct these experiments on SDD. The
results are reported in Fig. 3, where σN represents the stan-
dard deviation of a Gaussian distribution centered at the

Figure 3. Noisy ground truth goals. ADE and FDE figures are
obtained by feeding noisy ground truth destinations, with σN rep-
resenting noise amplitude. Results (in pixels) are obtained on SDD
(error bars at ±1 standard deviation w.r.t all test trajectories) .

Figure 4. Goal distribution. We report the sampled distribution of
the goal module outputs, and compare it to a Gaussian distribution
with σN = 50 centered at the ground truth destinations. FDE
metric (in pixels) is computed on SDD.

ground-truth goal. When σN = 0, i.e. actual ground truth
destinations are used, ADE metric is close to 4.42 pixels
while FDE metric is close to 0. By increasing the noise
amplitude, performance deteriorates. At σN ≈ 25, ADE
is overtaken by FDE, and at σN ≈ 50, we obtain similar
results to our goal module. It can be seen that our SAR
backbone is comparable to a noisy ground-truth goal mod-
ule with σN ≈ 73. Beyond this value, goal information is
no longer useful and its usage degrades prediction metrics.

We finally plot the goal module output distribution in
FDE terms in Fig. 4, and compare it to an equivalent Gaus-
sian distribution centered at the ground truth destinations
(σN = 50), for each trajectory in the test set. It can be noted
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Figure 5. Qualitative results. Predicted trajectories (in red) and ground-truth locations (in green). Observed positions are depicted in
yellow. The first row shows examples where a limited variability is predicted, while the second row highlights the multi-modal behavior
induced by the goal module. The highlighted example (in red) shows a failure case.

that, although the two distributions have the same mean (i.e.
FDE = 11.83), the goal module predictions are more scat-
tered. Indeed, while the majority of the goal distribution is
shifted towards zero error, there exist some outliers, and a
few of them are up to 200+ pixels away from the real goals.
This observation suggests that the goal module has a margin
of improvement with respect to some edge cases.

4.4. Qualitative Results

Fig. 5 shows some qualitative results obtained with Goal-
SAR. Fig. 5 (a)-(c) shows a few examples of easily pre-
dictable trajectories on different datasets. In (d) and (e)
multi-modality is well captured by the goal module, as these
paths appear likely to occur in the future. Finally, in Fig. 5
(f), we report a failure case in which, due to a sudden direc-
tion change, our model fails to predict the future positions.

4.5. Limitations

Quantitative and qualitative results demonstrate that our
method is able to efficiently use goal information in a re-
current architecture. This information helps our recur-
rent backbone to produce scene-compliant predictions, that
would otherwise be completely unaware of the surround-
ing context. We deliberately decided not to consider so-
cial interactions in our analysis to keep our architecture as

straightforward as possible. Nevertheless, we hypothesize
that it is possible to improve our results even further if both
human-human relations and scene semantics are included.

5. Conclusion
To predict future human positions, we propose a sim-

ple yet effective attention-based recurrent architecture that
processes temporal dependencies. When combined with
a scene-aware goal-estimation module, our model is able
to estimate likely scene-complaint trajectories with an in-
creased multi-modality capability. We demonstrate its effi-
cacy in reducing standard error metrics in a stochastic set-
ting, when two or more paths are plausible. Finally, we
emphasize the fact that our architecture is fairly uncom-
plicated, does not leverage social information, and scene
knowledge is only processed in the goal module. Despite
using less information, the proposed approach performs
on par with many state-of-the-art models, and even shows
slight improvements in some scenarios.
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