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Abstract

Trajectory prediction is an important task in autonomous
driving. State-of-the-art trajectory prediction models often
use attention mechanisms to model the interaction between
agents. In this paper, we show that the attention information
from such models can also be used to measure the impor-
tance of each agent with respect to the ego vehicle’s future
planned trajectory. Our experiment results on the nuPlans
dataset show that our method can effectively find and rank
surrounding agents by their impact on the ego’s plan.

1. Introduction

In order to navigate in the dynamic environment, the au-
tonomous vehicle needs to detect the current locations of the
other agents in the environment and predict their future tra-
jectories. Start-of-the-art trajectory prediction models use
deep neural networks with attention mechanisms [9, 10] to
model the interactions between agents [2–7]. Those predic-
tion models also often include the ego vehicle in the inter-
action graph in order to model the interactions between the
other agents and the ego vehicle.

In addition to the predicted future trajectories, a down-
stream motion planning module consuming these predic-
tions can also benefit from knowing how much another
agent is likely to affect the future maneuvering of the ego
vehicle [8]. For example, an agent that is currently be-
hind and traveling away from the ego is not likely to have
much impact on the ego’s plan while a vehicle making a
lane change in front of the ego is very significant. With
this knowledge, the motion planner module can focus its
computational resources on handling the more important
agents and potentially use coarser-grained methods to han-
dle agents with low importance.

The focus of this work is to predict the importance score
of the other agents. The most straightforward approach is
to model the importance prediction task as a classification
problem and train a prediction head using supervised train-

ing. However, this approach requires the ground-truth la-
bels for the agent importance scores, and such labels can be
hard to obtain.

In this paper, we propose a simple method to predict the
importance score of the other agents without requiring any
extra training labels that takes advantage of the fact that
most of the state-of-the-art trajectory prediction models al-
ready use a built-in attention mechanism to model the in-
teractions between agents in a graph. Through a series of
experiments, we show that the attention weights between
the ego vehicle and other agents can naturally represent the
degree to which the existence of each other agent affects the
predicted maneuvering of the ego vehicle.

2. Related work

Agent importance prediction is often used in au-
tonomous driving stacks [8], typically calculated with the
use of human labeled ground-truth importance scores. Not
only are these expensive to label, but label quality is hard
to control due to the subjective nature of this task. To ad-
dress this limitation, [8] proposes to generate the ground-
truth labels by running an existing planner in simulation on
the dataset and labeling the agent importance based on the
planner cost. Our method, on the other hand, does not re-
quire any ground-truth labels to train.

The trajectory prediction task predicts the future trajec-
tories of a set of agents, given their history tracks and map
information. Since the behavior of an agent also depends
on the state of the other agents, it is important for the trajec-
tory prediction model to be able to model the interactions
between agents when making predictions. The graph at-
tention mechanism [9, 10] is the most popular approach for
modeling such agent interactions.

LaneGCN [5] proposes an Agent-to-Agent attention
module to model the agent interactions, and it is also later
used by GOHOME [3] and THOMAS [4]. Given the agent
input features {xi}Ni=1, the Agent-to-Agent attention mod-
ule computes the agent output features {yi}Ni=1 as:
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yi = xiW0 +
∑
j

φ(concat(xi,∆i,j , xj)W1)W2 (1)

VectorNet [2], SceneTransformer [7], and mmTrans-
former [6] uses the Transformer attention module proposed
in [9]. Given the agent input features {xi}Ni=1, Transformer
attention computes the agent output features query {yi}Ni=1

using Q, key K, and value V matrices:

y = softmax(
Q(x)K(x)T√

d
)V (x) (2)

In order to model the interactions between the other
agents and the ego vehicle, those prediction models also
often include the ego vehicle in the interaction graph and
predict the future trajectory of the ego vehicle in the same
way as the other agents.

3. Agent importance prediction

3.1. Problem setup

We propose computing the importance score of the
agents by using their attention weights with respect to the
ego vehicle from the agent to agent interaction module of
the trajectory prediction model. The main inputs of this
module are the feature vectors of all N actors in the scene,
denoted as {xi}Ni=1. The outputs of this module are the out-
put feature vectors with the actor interactions modeled, de-
noted as {yi}Ni=1.

yi = Interaction({xj}Nj=1) (3)
The goal of our work is to predict the importance scores

γ from an agent (with feature xa) to the ego vehicle (with
feature xe) using a pretrained Interaction module.

3.2. Attention in a single attention

When there is a single attention layer in the
Interaction module, it usually has the property that the
contributions from each agent j to agent i are computed
with a function g and then summed together.

yi = f(xi) +

∑
j g(xi, xj)

Normalizer
(4)

With this formulation, we propose to define g(xi, xj) as
the attention vector from agent j to agent i, and use its L2
norm as the importance score from agent j to agent i, which
represents the magnitude of agent j’s influence on the future
trajectory predictions of agent i.

γ(xi, xj) = ‖g(xi, xj)‖2 (5)
This formulation generalizes the attention modules

used by most of the state-of-the-art trajectory prediction
works, including the LaneGCN attention module used in
LaneGCN [5], GOHOME [3], and THOMAS [4], and the

Transformer attention module used in VectorNet and Scene-
Transformer.

For LaneGCN attention (Eq 1), the attention vector is
simply

g(xi, xj) = φ(concat(xi,∆i,j , xj)W1)W2 (6)
The Transformer attention (Eq 2) has the softmax opera-

tion, but we can expand its formula as

yi =
∑
j

eQ(xi)K(xj)
T

√
d
∑

k e
Q(xi)K(xk)T

V (xj)

=

∑
j e

Q(xi)K(xj)
T )V (xj)√

d
∑

j e
Q(xi)K(xj)T

(7)

Which gives us

g(xi, xj) = eQ(xi)K(xj)
T )V (xj) (8)

3.3. Attention in multiple layers

When there are multiple attention layers in the
Interaction module, we can compute the agent impor-
tance scores on each of the attention layers and aggregate
them. Our evaluation result in Section 4.4 shows that we
get similar performance by taking the average importance
score, maximum importance score, or just the importance
score from the last attention layer.

4. Evaluation
4.1. Experiment setup

We built our agent importance prediction module on
top of the LaneGCN [5] model, which shares the same
Agent-to-Agent attention module as GOHOME [3] and
THOMAS [4]. We trained the model on the nuPlan [1]
training dataset and ran the trained model on 2000 randomly
selected validation samples. The prediction horizon is 8
seconds. The LaneGCN model contains two attention lay-
ers for Agent-to-Agent attention, and by default, we com-
puted the agent importance scores from the last attention
layer. Since we use agent attention value to compute the
agent importance score, we will use “attention value” and
“importance score” interchangeably in this section.

4.2. Correlation between agent attention and ego
behavior change

In this set of experiments, we show that the agents with
high predicted importance scores are indeed the ones that
have high impacts on the ego behavior. To demonstrate this,
we sort the agents in each scene by their importance score,
remove each of them, and measure how the predicted ego
trajectory will change. 1

1 Here we use the ego trajectory predicted from the prediction model
as a proxy to the ego plan from the motion planner.
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We show the results in Table 1. We calculate the corre-
lation between the normalized attention value (i.e., impor-
tance score) assigned to the removed agent and the point-
wise L2 distance of the predicted ego trajectory before and
after removing the agent, as well as the correlation to the
amount of change in the prediction L2 error (w.r.t. ground-
truth ego trajectory) before and after removal. We report
both Pearson correlation and R-squared values for each
quantity. The R-squared values correspond to the amount
of variance explained by the dependent variable in a linear
model.

Pred traj delta corr. Pred error delta corr.
k-th Agent Pearson R2 Pearson R2

1 .477 .128 .228 .016
2 .341 .073 .116 .005
3 .211 .028 .044 .0008

All .200 .117 .040 .014

Table 1. We remove the k-th highest attended agent, and show
the correlation between the predicted ego trajectory delta and at-
tention value, as well as the correlation between the predicted ego
trajectory error (w.r.t. ground-truth ego trajectory) delta and at-
tention value. We report both Pearson correlation and R-squared
values for each quantity. The last row contains the results for an
experiment in which we remove all other agents in the scene, and
we compute the correlation using the sum of the attention values
of all agents.

The correlation between the attention value of the agent
removed and the change in predicted ego trajectory is highly
positive, indicating that our method indeed assigns high im-
portance scores to agents that have high impacts on the ego
plan. We also observe that the correlation decreases as k
gets bigger, meaning the ego trajectory is more correlated
with the higher attended agents.

The last row of Table 1, in which we remove all other
attended agents, shows a reduction in the Pearson correla-
tion with regards to each of the other rows despite the fact
that this experiment removes the most attention. The fact
that the Pearson correlation is so small indicates that over-
all the total removed attention was less effective than the
same amount of attention attributed to the other single re-
moval experiments. Given that the Pearson correlations de-
crease with regards to rank, we can conclude that our model
is rightfully assigning more attention to the most important
agents as desired.

Figure 1 shows the distribution of ego trajectory delta be-
tween pre- and post- removal of the highest attended agent.
It also confirms the conclusion that agents that are predicted
to have high importance scores (i.e., high attention values)
also have high importance on the ego behavior.

In Table 2, we show the quantile distribution of 1) atten-
tion value of the highest attended agent, 2) the number of

Quantity 0 30 50 80 90 100
Highest attns .003 .117 .165 .245 .307 .748

# relevent agents 0 1 2 3 3 7
Max attn shift .003 .306 .371 .485 .553 .812

Traj anglar delta [rad] 0 .001 .002 .01 .044 .283

Table 2. Quantile distributions.
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Figure 1. Distribution of ego trajectory L2 delta between pre- and
post- removal of the highest attended agent and the amount of at-
tention removed in each experiment. We note that the plot of L2
distances has its domain scaled between (0,3) meters to show the
bulk of the density, however there are a significant number of out-
liers going out to as far as 20 meters in total error, meaning that
our distributions have very long tails.

agents with at least 0.1 normalized attention value, 3) maxi-
mum (among all agents) attention changes between the two
attention layers, and 4) trajectory angular delta. The tra-
jectory angle is defined as the angle of the vector from the
ego’s current position to the last predicted waypoint, and we
compute the delta between the pre- and post- agent removal
predictions. We find the vast majority of ego vehicles expe-
rience very small and typically negligible maximum angle
change. However, in some rare cases, there are significant
angular deltas, such as when the highest likelihood modal-
ity changes at an upcoming fork in the road depending on
the agent in front of the ego, or more commonly when our
prediction switches to an adjacent lane change.

4.3. Spatial attention distribution

In Figure 2, we plot the average normalized attention
value (i.e. importance score) per 4 × 4 meter block in the
ego-centric coordinate frame. We can see that the majority
of the attention is placed on agents directly in front of our
ego agent since those are the agents whose future behavior
would most likely cause the ego agent to behave differently.
In comparison, very little attention is typically paid to ve-
hicles behind the ego since their presence usually wouldn’t
impact how the ego vehicle should behave unless the ego
needed to adjust its path to avoid a future collision with the
agent behind it.
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Figure 2. Normalized attention per 4 × 4 meter block in the
ego-centric coordinate frame. The ego position and orientation is
marked with the blue triangle (in the middle and pointing north).

4.4. Attention in multiple layers

Pred traj delta corr.
Aggre Function Pearson R2

Max .524 .275
Mean .498 .248
Last .512 .262

Table 3. Correlation between ego trajectory delta and attention
values with different attention aggregation functions.

In this experiment, we perform an ablation study to com-
pare different aggregation functions to aggregate the atten-
tion values (i.e., importance scores) from multiple attention
layers. In Table 3, we compared using three aggregation
functions: 1) maximum attention among all layers, 2) av-
erage attention among all layers, and 3) only use the atten-
tion of the last layer. We compared the correlation between
ego trajectory delta and the importance score, and the result
shows that all three functions yield similar results, which
means our method is robust to the selection of aggregation
function.

5. Conclusion and future works

In this work, we have studied the allocation of attention
to agents surrounding our ego vehicle and shown that the
normalized magnitude of the attention vector produced by
the model for each agent is a good indicator of the under-
lying importance of each agent. By using those attention

values as the agent importance scores, we are able to prop-
erly prioritize agents that will have high impacts on the ego
trajectory.

In our evaluation we used the ego trajectory predicted
from the prediction model as a proxy for the ego plan from
a motion planner: in future work we will integrate this im-
portance prediction module into a real motion planner.
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