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Abstract

Vessels move 90% of international cargo by volume, with

the marine economy contributing to 5.1% of global GDP.

As one of the oldest industries, the marine industry has yet

to embrace innovations in modern technology to safeguard

the blue economy. Situational awareness from intelligent

vessel systems can enable enhanced safety and decision-

making for mariners. As the foundation for these intelligent

systems, advanced perception technology requires sufficient

real-world operational data to leverage recent AI technolo-

gies. In this work, we introduce the Sea Situational Aware-

ness (SeaSAw) dataset - a novel dataset that is comprised of

1.9 million images with 14.6 million objects associated with

20.4 million attributes from 12 object classes, making it the

largest maritime dataset for object detection, fine-grained

classification and tracking. Furthermore, this dataset con-

sists of 9 sources in combination with various RGB cam-

eras, mounted on different moving vessels, operating in dif-

ferent geographic locations globally, having variations in

scenario, weather and illumination conditions. This data

collection took place across 4 years with rigorous efforts

on data selection, annotation, management and analysis to

enhance the marine perception technology.

1. Introduction

Marine navigation for surface vessels requires opera-

tional awareness combining true 360◦ horizontal informa-

tion with various levels of undersea depth information.

Commonly used sensors on surface vessels include AIS,

radar and nautical charts. Each of these sensors has its

own limited capability and reliability for different weather

conditions, sea states and navigational requirements. Even

with a complete suite of sensors, the biggest challenge is

the limited visual information that humans can easily un-

derstand and interoperate to navigate vessels in accordance

with COLREGS [14], the leading set of international regu-

lations for maritime navigation and collision avoidance.

To overcome human limitations in vessel navigation un-

der COLREGS, the maritime industry can benefit from ad-

vanced perception technology to enable enhanced vessel sit-

uational awareness and autonomous operation, following

the example in other domains (e.g. autonomous vehicles

and drones).

Recent work has proposed using multiple sensors such as

infrared cameras, RGB cameras, radar, and LiDAR for ves-

sel detection [3,4,7]. Other work has also explored remote

sensing approaches such as optical satellite imagery [10]

and synthetic-aperture radar (SAR) [9, 12]. For general-

purpose detection of objects using on-board sensors, AIS

provides limited accuracy due to the loose requirements on

installation and usage procedures. Marine RADAR usually

focus on long range (i.e., up to 20,000 meters) for vary-

ing environmental conditions and marine long range LiDAR

has health concerns when required to past a 2000 meters

range. Overall, all of these sensors lack the visible wave-

length information. However, RGB camera data uniquely

presents rich features that can enhance the performance of

perception tasks while maintaining easy understanding and

interpretation. Additionally, RGB camera data is the most

cost-efficient with respect to sensor and compute hardware,

and data processing. Thus, RGB cameras are a key source

for advanced perception.

In practice, vessel identification from RGB camera im-

ages is still a challenging task, primarily due to a lack of

available data that captures the heterogeneity of the mar-

itime environment resulting from different weather condi-

tions, sea states, and vessel movements. Additionally, com-

plex variation in the size, category and appearance of ves-

sels is much greater in magnitude as compared to cars, hu-

man faces, and other favored objects in computer vision

tasks.

2579



(a) Location variability. [Left] Harbor. [Center] Far sea shore. [Right] Open sea.

(b) Weather variability. Rough weather such as rain and fog impacts the visibility of the objects as seen from the camera.

(c) Illumination variability. Sharp glare, dull light or bright lights at night add complexity.

(d) Viewpoint variability. Same object from front and side view: [Left]] Workboat. [Right] Towing vessel.

(e) Camera variability. [left] FoV is 90◦ with 3840×2160. [Middle] FoV is 180◦ with 3648×2052. [Right] FoV is 180◦ with 7840×1408.

(f) Scale variability. The scale of objects decreases as the distance increases. Vessel size in pixels[Left to right]: 140×40, 75×20, 38×12, 12×11. Smaller

objects that are only a few pixels in size can be hard to detect, classify and track.

Figure 1. Sea Situational Awareness (SeaSAw) Dataset: a diverse dataset collected in several geographical locations across United States

and Europe on 6 different vessels and using 5 different cameras of varying FoV and resolution. It is comprised of 1.9 million images with

14.6 million objects from 12 classes in a variety of locations, weather and illumination conditions.
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Dataset Images Objects Classes Resolution Scope

Singapore Maritime Dataset [15] 20,367 157,668 10 1920 × 1080 Detection

SeaShips [17] 31,455 40,077 6 1920 × 1080 Detection

Harbor Surveillance [20] 48,966 70,513 1 2048 × 1536 Detection, Tracking

McShips [19] 14,709 26,529 13 random Detection, Classification

Marvel [6] 2,000,000 2,000,000 109 random Classification

VIAS [18] 1,623 not available 15 5056 × 5056 Classification

GLSD [16] 100,729 140,616 13 random Detection, Classification

ABOShips [8] 9,880 41,967 9 1920 × 720 Detection, Classification

SeaSAw (Ours) 1.9M 14.6M 12 7680 × 1408 Detection, Classification, Tracking

3840 × 2056

3648 × 2052

1920 × 1080

Table 1. Maritime Dataset for object detection and classification using RGB images. In comparison, SeaSAw dataset (ours) is the largest

and most diverse dataset collected from several cameras mounted on vessels in dynamic environment.

To address these challenges, we present the Sea Situ-

ational Awareness (SeaSAw) Dataset: a diverse RGB im-

agery dataset comprising of 1.9 million high-resolution im-

ages with 14.6 million objects from varying cameras, ves-

sels and geographic locations that can leverage advanced

perception technologies for marine vessel detection, classi-

fication and tracking.

The rest of the paper is organized as follows: Section 2

discusses prior datasets for maritime object detection and

classification. Section 3 discusses the data collection and

data processing systems to build the SeaSAw dataset, fol-

lowed by a statistical analysis and discussion of the dataset.

Section 4 concludes this work.

2. Related Work

Water surface vessels have existed as one of the cate-

gories in well-known computer vision datasets such as PAS-

CAL VOC2007 [2], CIFAR-10 [11], Caltech-256 [5] and

Coco [13], but in limited quantity and quality.

Several datasets have been introduced recently for en-

hancing performance of computer vision tasks such as de-

tection, classification and tracking in maritime environ-

ments (Table 1).

The Singapore Maritime Dataset(SMD) [15] has RGB

and near-infrared images, of which the RGB image dataset

contains of 20,367 images with 157,668 objects, sampled

from 51 videos among which 40 videos are taken from a

stationary viewpoint on the shore and 11 videos are taken

from on-board a vessel.

The SeaShips dataset [17] is comprised of 31,455 im-

ages with 6 ship classes. The images are collected from

fixed surveillance cameras mounted on the coastline and

thus lack variation in location and camera movement. The

Harbor Surveillance dataset [20] contains 70,513 ships in

48,966 images collected with 10 camera viewpoints. For

both of these datasets, the use case is limited to surveillance

in the harbor area and is difficult to extend to dynamic en-

vironments to aid in navigation and collision avoidance.

The McShips dataset [19] has images and videos with

at least 500 × 500 resolution, collected using web crawl-

ing. The dataset is comprised of 13 classes (7 civilian ves-

sels and 6 warships) in varying illumination, viewpoints and

locations. However, the detection models developed using

this dataset are not tested in real environments. The ABO-

Ships dataset [8] is comprised of 9,880 images with 41,967

objects from 9 types of vessels and miscellaneous floaters

and seamarks. Their dataset is collected for 13 days on a

single route in Full HD. In comparison, our dataset is col-

lected for a much longer duration and from multiple loca-

tions, at much higher resolution (ranging from 1920 × 1080

to 7680 × 1408). The VIAS dataset [18] comprises paired

visible and infrared ship images consisting of 1623 visible

images from 15 categories and thus is limited in quantity.

The Marvel dataset [6] comprises 2 million images from

109 vessel classes collected from the Shipspotting web-

site. The primary purpose of the dataset is limited to im-

age classification because the images are typically of ves-

sels in an ideal situation (close view, simple background

and clear weather). The images are not representative of

real scenerios with varying scale of objects and challeng-

ing weather and illumination conditions. The GLSD dataset

[16] includes 140,616 annotated objects from 100,729 im-

ages. Some of the images are collected by deploying a video

monitoring system while the rest are collected using web

crawling. Although the web images are diverse, they are

not similar to the views and challenges observable when

collecting on a moving vessel. In contrast, all of the images

in our dataset are collected from cameras mounted on mov-

ing vessels and contain objects of varying size (less than

10 pixels to greater than 1500 pixels) as well as complex

backgrounds and illuminations.
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(a) East Coast, USA (b) Boston Harbor, USA (c) Europe

Figure 2. Data collection geographical locations.

Source Images Total objects Unique objects Total attributes Image resolution Field of view

Source 1 735,896 5,832,068 147,884 8.04M 1920 × 1080 60◦

Source 2 675,210 6,256,429 118,411 8.26M 3840 × 2160 90◦

Source 3 245,605 689,487 20,221 1.43M 7680 × 1408 180◦

Source 4 105,864 492,166 9,256 0.81M 1920 × 1080 60◦

Source 5 78,111 715,428 15,849 0.95M 3840 × 2160 90◦

Source 6 61,929 299,667 9,105 0.49M 1920 × 1080 60◦

Source 7 14,371 262,483 6,661 0.30M 3840 × 2160 90◦

Source 8 9,706 97,942 2,925 0.13M 3648 × 2052 180◦

Source 9 3,481 7,341 162 0.02M 1920 × 1080 180◦

All 1.9M 14.6M 0.33M 20.42M variable variable

Table 2. SeaSAw Dataset using RGB images. The dataset is collected from 9 different sources from 5 different camera types from 6

vessels.

In summary, as compared to the above datasets, the Sea-

SAw dataset presented in this paper:

• is much larger: 1.9M images, 14.6M maritime objects

(0.33M unique objects) with 12 classes.

• has been collected with cameras mounted on different

vessels in various geographical locations on the East

Coast, USA and Europe.

• covers 3 different locations: harbor, far sea shore and

open sea.

• has 3 varying illuminations: day, dusk/dawn and night.

• includes 5 different weather conditions: sunny, cloudy,

rain, fog and snow.

• has high-resolution images that capture small objects

at larger distances resulting in much larger scale varia-

tions (less than 10 pixels to greater than 1500 pixels).

3. Sea Situational Awareness (SeaSAw) Dataset

3.1. Data Collection

A data collection system is built and equipped onboard

vessels to collect all sensor data. The data collection hard-

ware is designed to connect all sensors to the computing

Figure 3. Sea Machines Robotics Fleet used for data collection.

unit (i.e. the server) and data storage unit (i.e. storage

hardware). It is also equipped with a 4G connection device

to support remote debugging and system status monitoring.

The data collection software streams and synchronizes data

from the sensors and stores the synchronized result in the

storage unit. Finally, the real-time monitoring unit logs the

status of sensors, data streaming, and storage, and overall

system health with daily notifications sent over the 4G net-

work.
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(a) Location distribution

(b) Weather distribution

Figure 4. SeaSAw Dataset: global attributes distribution

Our data collection fleet consists of 5 different camera

types mounted across 6 different vessels. Figure 3 shows

4 of the 6 vessels used for data collection. Table 2 shows

the different resolutions and fields of view of these cam-

eras. The vessel fleet is distributed globally across diverse

geographic locations (Figure 2). Data collection trips (unin-

terruped sequences of data collection between data offloads

from vessels) varied in duration from days to months. Given

constraints posed by limited on-board data storage during

longer collection trips, data was collected as both individ-

ual frames at a low frame rate and video in a real-time frame

rate.

In total, 179 TB of raw image data were collected from

our data collection fleet over a period from 2018 to 2022.

Subsets from these raw data were coarsely selected for hu-

man annotation, and then were further curated for the Sea-

SAw Dataset. To select the subsets, we performed auto-

mated filtering of images in the raw data that were cor-

rupted with aberrations such as banding or illumination ar-

tifacts. Additionally, we removed redundant data to avoid

overrepresentation of certain locations and/or classes. For

instance, subsets are selected with consideration that they

are not dominated by images that contain few to no objects.

3.2. Data Management

To aid in the management and selection of data, an

internal data management platform is designed and built

(a) Class labels distribution

(b) Object size distribution

Figure 5. SeaSAw Dataset: object distribution

on Google Cloud Platform (GCP). It consists of cloud-

managed storage, automated data pipelines, and associated

tooling to support the data annotation process and assist in

analyzing, querying, and accessing the data.

During normal vessel operation, network bandwidth is

limited (e.g. 4G or satellite connection) and cannot sup-

port large volume data transfers. Thus, raw data stored by

the data collection system is physically offloaded from the

vessel to a data ingestion point (i.e. an internet-enabled ma-

chine) from which data is uploaded to the cloud platform.

Automated data pipelines serve to perform post-processing

steps after data is uploaded to cloud-managed storage.

The pipelines serve to select useful data for annotation

using image processing and machine learning-based meth-

ods. Given that data collection is performed over days and

months in real operational environments, large subsets of

the raw data can be redundant or uninformative. Some data

can also be corrupt or invalid. For instance, when vessels

are shipping in open seas, it is possible to have no other ves-

sels in the camera field of view for hours or days; when a

vessel is docked at the port for loading/offloading cargo, the

camera will be oriented toward the same scene for several

days. These real operational scenarios add more complexity

in selecting the most salient data for annotation.
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(a) Ship (b) Recreational Vessel (c) Sailing Vessel

(d) Fishing Vessel (e) Towing Vessel (f) Work Boat

(g) Manual Craft (h) Dredge (i) Wind Turbine

(j) Marker (k) Mooring Buoy (l) Miscellaneous

Figure 6. Distribution of object size by class labels

3.3. Data Annotations

Image frames selected by the cloud data pipelines are

grouped as batches of 50 to 100 consecutive frames at 1

frame per second (FPS) to submit for annotation. We use a

third-party annotation service, ScaleAI [1], for human an-

notations. The minimum size of objects to be annotated is

5 pixels. The annotations consist of two categories of at-

tributes. First, global image attributes are determined for

the entire batch and assigned to each image in the batch.

Second, object attributes are assigned to individually anno-

tated objects. Each image is annotated with three global

attributes: location, weather and illumination. Location

consists of harbor, open sea and far sea shore (Figure 1a);

weather consists of fog, rain, snow and sunny; illumination

consists of day, night and dusk/dawn. In addition to global

attirbutes, each annotated object is assigned: a bounding

box, a unique id representing the same object across mul-

tiple frames in a batch and one of the 12 class labels (8

vessel classes: dredge, fishing vessel, manual craft, recre-

ational vessel, sailing vessel, ship, towing vessel and work

boat; 4 non-vessel classes: wind turbine, marker, mooring

buoy and miscellaneous).

In all, the dataset consists of 14.6M objects (0.33M

unique objects) from 1.9M images. There are a total of

20.42M attributes, including global attributes and class la-

bels across the entire dataset. The frames that do not have

any objects are removed while creating this dataset.

3.4. Discussion

Our annotated data is collected from 9 sources and con-

sists of combinations of geographical locations, vessels and

cameras. Table 2 lists the different sources and summary
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Similar examples Variable examples

Ship

Recreational

Vessel

Sailing

Vessel

Work

Boat

Fishing

Vessel

Towing

Vessel

Manual

Craft

Dredge

Wind

Turbine

Marker

Mooring

Buoy

Miscellaneous

Figure 7. SeaSAw Dataset: Examples of each class. Intra class variability (scale and variety) adds challenges for object detection,

classification and tracking.

statistics. Across data from these different sources, we an-

alyze the distributions of different attributes: weather, loca-

tion, camera field of view, vessel class and size. To account

for the large variability in several dimensions across the data

sources (Table 1), we use log10 scale for better understand-

ing and representation of various distributions.

Location variations: Our data is collected in multiple

geographical locations (Figure 2) covering harbor, far sea

shore and open sea. Figure 4a shows that the location distri-

bution for the entire dataset varies across different sources.

Among the 9 sources, Source 3 is dominantly in the open

sea location, where as Source 1 and Source 2 are dominated

by harbor and far sea shore locations. Figure 1a shows typ-

ical examples of various locations. The harbor location has

challenging background behind vessels and may contain a

high density of vessels in the frame. On the other extreme,

open sea frames tend to be sparse with small vessels on the

horizon with simple background.
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Figure 8. Example of annotated frame.

Weather variations: Data collection was peformed over

multiple years which allowed us to capture data during

extreme weather conditions. These real-world navigation

challenges are not present in other datasets nor easily found

in public media. For all sources, the weather distribution

is predominantly in sunny (60.5%) and cloudy (34%) con-

ditions but also includes 5.5% of the data (105k images) in

rain, fog and snow (Figure 4b). Figure 1b shows some ex-

amples where fog and rain can occlude objects in the scene.

Illumination variations: In addition to weather being a

factor in illumination, sunlight angle, camera direction, sea

states and vessel movement also result in varied illumina-

tion in images. Figure 1c demonstrates examples of illu-

mination variation in dataset images with sharp glare, dull

light and reflections at night.

Camera FoV variations: Our dataset consists of data

from different cameras with varying fields of view and res-

olutions. Figure 1e shows examples of images from 90◦ and

180◦ cameras that capture different scales and perspectives

of objects.

Class variations: Although our data collection is con-

ducted in several different areas on different vessels and

routes, some vessel classes are not easy to collect without

specific efforts to locate them. This discrepancy is reflected

in the long-tailed nature of the attribute distributions. For

example, there are many vessels that are classified and an-

notated as ship and recreational vessel (>1M) as compared

to dredge (<100k) as shown in Figure 5a. We also observe

intra-class variability where each object class has diverse

appearance that can be difficult to recognize by annotators.

Figure 7 shows some examples of each class label and the

variability captured by each of them. Futhermore, different

viewpoints of vessels are also included (Figure 1d). In ad-

dition to the vessels and markers, the dataset also includes a

variety of mooring buoys and miscellaneous objects on the

water that need to be avoided during navigation.

Size and angle variations: In real operational scenar-

ios, objects can be seen from different angles and distances

making it difficult to identify the object class at a distance

(see Figure 1f). Figure 5b shows the distribution of all ob-

jects by their bounding box size in pixels. Object sizes are

binned as the minimum of the object height and width (in

pixels). We observe that the distribution is long-tailed with

respect to the object size. For instance there are 6.5M ob-

jects that are <10 pixels in size and 6k objects that are

>1000 pixels. In all, 70% of the data is <20 pixels in size.

Small objects pose several challenges for computer vision

tasks such as object detection, classification and tracking

and this dataset is valuable for both development and eval-

uation of these methods. Furthermore, the object size dis-

tribution for each class from different sources is presented

in Figure 6. Each class label has a different distribution

depending on the data source, emphasizing the importance

of collecting data in different locations. Some unique class

labels such as wind turbines are limited to certain sources

because of their geographical presence.

In all, the dataset includes a variety of class labels from

several different sources in different scenarios (location,

weather and illumination) as well as several different view-

points of vessels at different scales, making it the largest

and most diverse maritime dataset for perception tasks.

4. Conclusion

In this paper we presented the Sea Situational Awareness

(SeaSAw) dataset, which is the largest maritime dataset for

the purpose of object detection, classification and tracking

in the marine domain. It is comprised of 1.9M images with

14.6M objects from 12 classes and a total of 20.4M at-

tributes. The dataset is collected using different cameras

mounted on moving vessels at resolutions, varying from

1920 × 1080 to 7680 × 1480, in several geographical lo-

cations in the USA and Europe. The different location,

weather and illumination conditions in addition to the long-

tailed distribution of the class labels and object sizes make it

a challenging dataset relative to existing maritime computer

vision datasets.
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