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Abstract

Unsupervised domain adaptation approaches have re-
cently succeeded in various medical image segmentation
tasks. The reported works often tackle the domain shift
problem by aligning the domain-invariant features and min-
imizing the domain-specific discrepancies. That strategy
works well when the difference between a specific domain
and between different domains is slight. However, the
generalization ability of these models on diverse imaging
modalities remains a significant challenge. This paper in-
troduces UDA-VAE++, an unsupervised domain adaptation
framework for cardiac segmentation with a compact loss
function lower bound. To estimate this new lower bound, we
develop a novel Structure Mutual Information Estimation
(SMIE) block with a global estimator, a local estimator, and
a prior information matching estimator to maximize the mu-
tual information between the reconstruction and segmenta-
tion tasks. Specifically, we design a novel sequential repa-
rameterization scheme that enables information flow and
variance correction from the low-resolution latent space
to the high-resolution latent space. Comprehensive experi-
ments on benchmark cardiac segmentation datasets demon-
strate that our model outperforms previous state-of-the-art
qualitatively and quantitatively.

1. Introduction

Deep learning-based methods have recently achieved
promising results on various medical image processing
tasks, such as detection [23, 35] and segmentation [7, 29].
Indeed, deep learning approaches can generalize effectively
when the training and testing images are from the same
modality (i.e., same distribution), approaching or surpass-
ing human-level performance.

However, some researchers [15, 32] have shown that
well-trained models do not perform well when the testing
images come from a different statistical distribution from

Figure 1. Four types of Cardiac Imaging. From left to right:
Computerized Tomography (CT), Magnetic Resonance Imaging
(MRI), Positron Emission Tomography (PET), and Ultrasound
(US). [27] Each type has significant difference with others in terms
of color, contrast, structure, artifacts, and the edge information.

the training images. This domain shift problem is com-
mon in real-world medical diagnosis since medical images
at various steps of the clinical procedure are often obtained
with different physical properties [6]. For instance, Mag-
netic Resonance Imaging (MRI) and Computed Tomogra-
phy (CT) play complementary roles in cardiac disease diag-
nosis while also exhibiting different appearances (See Fig.
1). That difference post challenges for analyzing the MRI
and CT images in clinical diagnosis.

One plausible solution is to obtain manual annotations
for both the MRI and the CT images from medical ex-
perts. However, such a procedure is prohibitively time-
consuming. (e.g., manual cardiac operations from MRI/CT
consumes 2-4 hours [39]). Unsupervised Domain adapta-
tion (UDA), which automatically transfers knowledge from
the source domain to the target domain (e.g., MRI to CT)
without paired images, is an interesting idea.

For UDA with medical image segmentation, the source
medical image with the ground truth segmentation is de-
noted as the source domain, whereas the target medical im-
age without the ground truth segmentation is referred to
as the target domain. Generally, the reported works such
as [5, 6] align the source domain and the target domain by
learning the domain-invariant features and minimizing the
domain-specific discrepancies.

One popular research direction is to combine UDA with
a GAN-based strategy, as GAN [9] and its derivatives [14,
38] have exhibited remarkable unsupervised domain adap-
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tion ability. In the GAN-based UDA approach, the domain-
invariant latent space features can be implicitly learned via
adversarial learning during the min-max game between the
generator and the discriminator. GAN-based approaches
[2, 22, 37] have recently gained widespread acceptance in
medical image analysis, outperforming prior Convolutional
Neural Network (CNN) methods such as [5, 6] on cardiac
segmentation tasks [37, 41]. However, when we have a
dataset (e.g., [40]) with extremely diverse imaging modal-
ities and scanning methods, GAN-based approaches often
fail to converge to the Nash Equilibrium [12, 16, 17, 34].

Recently, researchers [10,25,33,34] in UDA with medi-
cal imaging have turned to Variational Autoencoder (VAE)
[19] as the backbone due to their training stability at do-
main adaptation tasks at diverse imaging modalities [28,34]
and their ability to handle scarce data in the target domain
[10, 25]. These VAE-based methods usually perform poste-
rior inference for the latent space variables using the normal
distribution. That property allows it to consistently bridge
two domains (i.e., source and target domain) towards stan-
dard and parameterized latent space variables [34].

Despite VAE-based methods’ excellent domain adapta-
tion ability at challenging benchmark cardiac segmenta-
tion datasets (e.g., [40]), two crucial factors restrain their
learning capability. Firstly, VAE-based methods like UDA-
VAE [34] introduce a separate image reconstruction stage,
aiming to regularize the latent space towards normal dis-
tribution. Although this strategy could explicitly minimize
the domain discrepancy, the information from the recon-
structed output cannot be directly delivered to the segmen-
tation. Secondly, VAE-based approaches like CFDNet [33]
utilize parallel reparameterization for latent space with dif-
ferent resolutions. The separation of low-resolution latent
space and high-resolution latent space in U-Net-like archi-
tecture will potentially exaggerate the domain shift prob-
lem [36] and, therefore, degrade the model performance.

In this work, we propose a new framework, dubbed
UDA-VAE++, that can well address unsupervised domain
adaptation in cardiac image segmentation with diverse
imaging modalities. Firstly, we leverage a U-Net back-
bone to extract the multi-scale features from unpaired im-
ages from the source and the target domain. The out-
put at each encoder stair enters variational reasoning, fol-
lowed by our sequential reparametrization design. That se-
quential design enables the network to transfer knowledge
from low-resolution latent space to high-resolution latent
space and constrains the encoded output according to stan-
dard normal distribution. A segmentation block follows the
reparametrization operation at each level, and the segmen-
tation output will be passed into a reconstruction block. Fi-
nally, we conduct mutual information (global, local, prior)
estimation and maximization for the segmentation output
and the reconstruction to evaluate the compact loss function

lower bound.
The main contributions of this paper are highlighted as

follows:

• We deduce a compact loss function lower bound in
which each term is orthogonal, discovering a new mu-
tual information term.

• We design a novel, plug-and-play style, Structure Mu-
tual Information Estimation (SMIE) block. This de-
sign enables an efficient mutual information estimate
for the reconstruction output and the segmentation out-
put, making the reconstruction and segmentation tasks
mutually beneficial.

• We convert parallel reparameterization to sequen-
tial reparameterization, allowing information flow and
variance correction from the low-resolution latent
space to the high-resolution latent space after varia-
tional reasoning.

• We conduct extensive experiments to demonstrate that
the proposed method surpasses previous state-of-the-
arts on benchmark cardiac segmentation datasets qual-
itatively and quantitatively.

2. Related Work
2.1. Unsupervised Domain Adaptation

Unsupervised Domain Adaptation (UDA) has been
widely used for biomedical image segmentation tasks. The
early works [6] and [5] leverage unsupervised domain adap-
tation with adversarial training for multi-modal biomedi-
cal image segmentation. Specifically, both papers utilize
a plug-and-play domain adaptation module to align the fea-
tures in the source and the target domain.

Due to the promising generalization ability of Generative
Adversarial Network (GAN) [9], recent research has begun
to incorporate GAN in UDA for biomedical image segmen-
tation. For example, [37] utilizes CycleGAN [38] with a
shape-consistency loss to realize cross-domain translation
between CT and MRI images. SIFA [2] presents a syn-
ergistic domain alignment at both image-level and feature-
level using the adversarial learning of CycleGAN to exploit
domain-invariant characteristics. DUDA [22] further incor-
porates a cross-domain consistency loss to improve the seg-
mentation performances.

Another faithful research direction is to use Variational
Autoencoder (VAE) [19]. That strategy is advantageous
when there are few images in the target domain. For in-
stance, [25] follows the few-shot learning strategy, integrat-
ing a VAE-based feature prior to matching with adversarial
learning to exploit the domain-invariant features. FUDA
[10] further incorporates Random Adaptive Instance Nor-
malization to explore diverse target styles where there is
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only one unlabeled image in the target domain. The recent
work CFDNet [33] proposes an effective metric, dubbed
CF Distance, which enables explicit domain adaptation with
image reconstruction and prior distribution matching. An-
other work UDA-VAE [34] goes even further: it drives the
latent space of the source and target domains towards a
common, parameterized variational form following Gaus-
sian Distribution.

Compared with previous UDA approaches, our method
is the first that sequentially integrates multi-scale latent
space features. That design enables our network to effec-
tively minimize the domain-specific discrepancy according
to the information flow from the low-resolution latent space
to the high-resolution latent space.

2.2. Mutual Information Neural Estimation

Mutual Information Neural Estimation (MINE) is first
introduced in [1], where the author utilizes gradient descent
algorithms over neural networks to approximate the mutual
information between continuous random variables. Based
upon MINE, Deep InfoMax (DIM) [13] explores unsuper-
vised visual representation learning by maximizing the mu-
tual information for the network input and the encoded out-
put under statistical constrain. A recent work [3] utilizes
MINE to address the domain shift problem in unsupervised
domain adaptation. Specifically, that paper integrates net-
work predictions and local features into global features by
simultaneously maximizing the mutual information.

Recently, MINE has been applied in biomedical image
processing tasks. For example, based on MINE, [31] max-
imizes the mutual information between source and fused
images from Multiview 3-D Echocardiography. [30] tackle
the challenging unsupervised multimodal brain image seg-
mentation task by estimating the mutual information using
a lightweight convolutional neural network.

Different from previous MINE approaches, our frame-
work is the first that conducts mutual information estima-
tion and maximization with both image reconstruction and
image segmentation. Our unique design enables image re-
construction and image segmentation to be mutually bene-
ficial during model learning.

3. Methodology

In this section, we will discuss our UDA-VAE++ work-
flow, explain the proposed structure mutual information es-
timation block, and display the loss functions.

3.1. UDA-VAE++ Model Workflow

As shown in Fig. 2, we use U-Net [29] as our back-
bone due to its remarkable success in medical image seg-
mentation. Firstly, The network performs four downsam-
plings. Each of the downsampling operations uses two

Symbols Description
S Source domain
T Target domain
z Latent variable
x Input image data point
pθ() PDF of variables with parameter θ
qϕ() Neural network with parameter ϕ
D(ϕS , ϕT ) Domain distance between source and target
ŷ Predicted segmentation
y Ground truth segmentation
RS Reconstructed image in the source domain
RT Reconstructed image in the target domain
DKL KL Divergence
ϵ Reconstruction error
H Entropy

Table 1. Preliminary for Important Symbols

convolutional layers. Secondly, the network uses upsam-
pling symmetrically with skip connection. We then obtain
a multi-scale encoding output with channels of 256, 128,
64, and image sizes of 40×40, 80×80, 160×160, respec-
tively. Each encoding output will be followed by variational
reasoning [19, 21]. Using the reparameterization trick [19]
with the latent mean variable, the latent log variance vari-
able, and the standard normal distribution, we obtain three
latent variables z1, z2, z3. After that, We use a single con-
volutional layer to obtain the predicted segmentation ŷ.

Finally, we leverage a fully convolutional network with
7 layers for image reconstruction. The input for the source
domain includes the ground truth segmentation y and the
latent variable z, whereas the input for the target domain is
the predicted segmentation ŷ.

3.2. Structure Mutual Information Estimation

In this subsection, we aim to estimate the mutual infor-
mation between the segmentation outcome ŷ and the recon-
struction output R in the source and target domains. The
mutual information can be formulated as:

Î (ŷ;R) = DKL (PŷR∥Pŷ ⊗ PR) (1)

The KL divergence between joint distribution PŷR and
marginal distribution Pŷ ⊗ PR can be written as its dual
representation [4] as below:

DKL(PŷR∥Pŷ⊗PR) = sup
T :Ω→R

(EPŷR
[T ]−log

(
EPŷ⊗PR

[
eT

])
)

(2)
where T is the set of all possible neural network.

Inspired by [13], we are interested in automatically max-
imizing the mutual information rather than manually ob-
taining the exact value for mutual information. The mutual
information maximization process can be formulated as:
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Figure 2. The Model Architecture of UDA-VAE++. The backbone of UDA-VAE++ is U-Net (blue boxes) with three scales of variational
blocks. The green line refers to the concatenation of the segmentation output, whereas the orange line indicates the concatenation of the
reconstruction output. The reconstruction blocks (red boxes) contain seven convolution layers. The grey box refers to the MI estimation
block detailed in Fig. 4
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Figure 3. The workflow for Unsupervised Domain Adaptation.
The image from the source and target domain will first be en-
coded in the shared parameters downsampling part of the U-Net
backbone. Next, each scale output will go through the same seg-
mentation network. In the source domain, the ground truth seg-
mentation masks combining the variables in latent space will be
reconstructed by the upsampling part of U-Net. The MI block will
maximize the mutual information of the segmentation output and
the reconstruction output.

Î (ŷ;R) = EPŷR
[− sp (−T (ŷ, R))]−EPŷ⊗PR

[sp (T (ŷ, R′))]
(3)

where R′ is an input sampled from R, and sp(z) =
log (1 + ez) is the softplus function.

The next step is to estimate the joint and marginal dis-
tribution of ŷ and R using contrastive learning. First, we
design three estimators in the MI block [13]. The orig-
inal paired R and ŷ serve as the anchor and the positive
point, respectively. We then shuffle R randomly to obtain
the negative point. To fuse the data together, we upsam-

ple the 40×40 feature map and downsample the 160×160
feature map. Before entering the estimator block, the an-
chor and negative point will go through two convolutional
layers, whereas the positive point will go through three con-
volutional layers.

For the Global MI Estimation block, we concatenate the
positive points with anchor and negative points, pushing the
anchor away from the negative points and pulling the anchor
towards the positive point. For the Local MI Estimation
block, we extract the high-level semantics using fully con-
nected layers. Next, we concatenate the semantic informa-
tion with the positive point to acquire the locality informa-
tion, followed by two convolutional layers for contrastive
learning.

Finally, motivated by [3, 13], we adopt the prior match-
ing [24] strategy to constrain the visual representations ac-
cording to standard normal distribution. Specifically, in the
prior information estimation block, the positive point will
go through fully connected layers and output the prior in-
formation.

3.3. Loss function

For the segmentation part, we aim to maximize the joint
log-likelihood log pθS (x, y) of the dataset.

Theorem 1

log pθS (x, y)

≥
(
ϵ+ ÎqϕS

(x, y, z)−HqϕS
(z) + log

pθS (x, y)

qϕS
(x, y)

)
−DKL (qϕS

(z | x)∥pθS (z))
+ EqϕS

(z|x)[log pθS (x | y, z)]
+ EqϕS

(z|x)[log pθS (y | z)]

(4)
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Estimation Block follows contrastive learning schemes to maximize mutual information, whereas the prior information matching block
align the positive point with the standard normal distribution. Finally, the sum of the outputs score from these three blocks serves as the
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Figure 5. The loss function of the proposed method. The blue
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segmentation loss between the predicted segmentation and ground
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ancy loss in the latent space. The green line refers to the structure
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where ϵ,HqϕS(z), log
pθS

(x,y)

qϕS
(x,y) are all constant.

Proof 3.1 Detailed proof will be in the supplementary ma-
terial.

For the domain discrepancy loss, we minimize it explicitly
as the latent space obeys normal distribution.
Therefore, our loss function (Fig. 5) contains structure
mutual information estimation loss LMI (Eq.4 line 1) re-
construction loss Lrecon(Eq.4 line 2,3), segmentation loss

Lseg(Eq.4 line 4), and domain discrepancy loss LD.

3.3.1 Reconstruction Loss

The reconstruction loss is same as the design in VAE. We
use neural network qϕ(z|x) with parameter ϕ to approxi-
mate the posterior distribution pθ(z|x) for latent variable z.
In other words, we attempt to minimize the KL divergence
of qϕ(z|x) and pθ(z|x):

DKL (qϕ(z|x)∥pθ(z|x))
= DKL (qϕ(z|x)∥pθ(z))− Ez∼qϕ [log pθ(x|z)]

(5)

The first term aims to minimize the KL divergence be-
tween the neural network qϕ(z|x) and the prior distribution
pθ(z) ∼ N(0, I), where I is the identity matrix. The neural
network qϕ(z|x) performs variational reasoning upon u and
σ2 to approximate 0 and I , respectively. With the reparam-
eterization trick [20](red arrows in Fig. 2), we can get:

DKL (qϕ(z|x)∥pθ(z)) =
1

2

(
σ2 + u2 − log σ2 − 1

)
(6)

The second term in equ[5] is to maximize the likelihood of
x. This can be calculated by cross entropy loss between the
input x and the reconstruction output R:

Lce = −(x log(R) + (1− x) log(1−R)) (7)

Finally, we get the reconstruction loss:

Lrecon = DKL + Lce (8)
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3.3.2 Segmentation Loss

The segmentation loss helps us minimize the loss between
the predicted segmentation ŷ and the ground truth segmen-
tation y. We apply cross-entropy loss, which is formulated
as below:

Lseg = −(y log(ŷ) + (1− y) log(1− ŷ)) (9)

3.3.3 Domain Discrepancy Loss

The Domain Discrepancy Loss helps reduce the domain dis-
crepancy between the source and the target domain in the
latent space. In the UDA-VAE framework, [34] has proved
that optimizing the distance explicitly would have better ac-
curacy than adversarial training. As the latent space is regu-
larized into a standard normal distribution, we can calculate
the distance analytically. The Domain Discrepancy Loss is
formulated as below:

LD = D(qϕS
(z), qϕT

(z))

=

∫
[qϕS

(z)− qϕT
(z)]2dz

=
1

M2

M∑
i=1

M∑
j=1

[
k
(
xSi

, xSj

)
+ k

(
xTi

, xTj

)
− 2k

(
xSi

, xTj

)]
(10)

where M is the batch size. i, j are ith, jth element in one
batch. As the variables in latent space obey standard normal
distribution. The kernel function k is:

k
(
xSi

, xTj

)
= (2π)−

1
2 e

− 1
2 [

(uSi
−uTj

)2

σ2
Si

+σ2
Tj

+log(σ2
Si

+σ2
Tj

)]

(11)

3.3.4 Structure Mutual Information Loss

As discussed in equ[3], we design a contrastive learning
framework to estimate the joint and marginal distribution
of ŷ and R. To maximize Î(ŷ;R), we design a global MI
estimation block, a local MI estimation block, and a prior
information matching block.

LMI = −(αÎ(ŷ;R)Global + βÎ(ŷ;R)Local + γÎPrior)
(12)

where α, β, γ are set as 0.5, 1.0, 0.1. ÎPrior = log(N ) +
log(1− ŷ), where N is the standard normal distribution.

3.3.5 Total Loss

The total loss is defined as:

Ltotal = (c1Lrecon + c2Lseg + c3LMI)source

+ (c1Lrecon + c2Lseg + c3LMI)target

+ c4LD

(13)

Model Components Dice (%)
Base SR Att Global Local Prior MYO LV RV
✓ 68.42 84.41 72.59
✓ ✓ 68.56 84.07 74.06
✓ ✓ ✓ 68.30 84.91 74.72
✓ ✓ ✓ ✓ 69.25 84.70 75.63
✓ ✓ ✓ ✓ ✓ 68.49 87.50 77.37
✓ ✓ ✓ ✓ ✓ 70.75 88.64 75.82
✓ ✓ ✓ ✓ ✓ ✓ 69.81 87.54 77.13

Table 2. The Ablations of model components for MS-CMRSeg
Dataset from CT to MRI. Base: UDA-VAE [34]. SR: Sequen-
tial Reparameterization. Att: Attention. Global: Global MI Es-
timation Block. Local: Local MI Estimation Block. Prior: Prior
Matching. The best score for UDA from CT to MRI is in bold
while the second-best score is in blue.

Dice (%) ASSD (mm)
MYO LV RV MYO LV RV

NoAdapt 14.50 34.51 31.10 21.6 11.3 14.5
CFDNet [33] 64.21 81.39 72.30 2.81 3.41 4.91
SIFA [2] 67.69 83.31 79.04 2.56 3.44 2.13
UDA-VAE [34] 68.42 84.41 72.59 2.39 2.59 3.97
UDA-VAE++ 70.75 88.64 75.82 2.02 2.27 3.62

Table 3. Unsupervised Domain Adaptation for MS-CMRSeg
Dataset from CT to MRI. The best score for Dice↑ and ASSD↓
are in bold.

Dice (%) ASSD (mm)
MYO LV RV MYO LV RV

NoAdapt 12.32 30.24 37.25 24.9 10.4 16.7
CFDNet [33] 57.41 78.44 77.63 3.61 3.87 2.49
SIFA [2] 60.89 79.32 82.39 3.44 3.65 1.80
UDA-VAE [34] 58.58 79.43 80.43 3.53 3.27 2.04
UDA-VAE++ 68.74 85.08 81.42 2.34 2.61 1.71

Table 4. Unsupervised Domain Adaptation for MS-CMRSeg
Dataset from MRI to CT. The best score for Dice ↑ and ASSD↓
are in bold.

where c1, c2, c3, c4 are empirically set as 1e-2, 1, 1e-1,
1e-5, respectively.

4. Experiments
Segmentation image visual details

4.1. Implementation Details

We use Adam optimizer [18] and Pytorch framework
[26] to train our model for 30 epochs. The learning rate is
initialized at 1e-4 and is reduced by 10 % after every epoch.
The batch size is 12, which takes about 1 hour to converge
on a single NVIDIA Tesla V100 GPU. The network weight
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Methods Dice (%) ASSD (mm)
MYO LA LV RA RV MYO LA LV RA RV

NoAdapt 0.08 3.08 0.00 0.74 23.9 – – – – –
PnP-AdaNet [5] 32.7 49.7 48.4 62.4 44.2 6.89 22.6 9.56 20.7 20.0
SIFA [2] 37.1 65.7 61.2 51.9 18.5 11.8 5.47 16.0 14.7 21.6
UDA-VAE [34] 47.0 63.1 73.8 71.1 73.4 4.73 5.33 4.30 6.97 4.56
UDA-VAE++ 51.4 65.9 76.5 73.0 75.5 3.88 5.23 3.78 6.25 4.06

Table 5. Unsupervised Domain Adaptation for MM-WHS Dataset from CT to MRI. The best score for Dice↑ and ASSD↓ are in bold.

Figure 6. Segmentation output from MS-CMRSeg Dataset (CT to MRI). From left to right: MRI, Ground truth, CFDNet [33], UDA-
VAE [34], UDA-VAE++. For the segmentation, we use yellow, green, and dark green to represent RV, MYO, and LV, respectively.

follows Xavier initialization [8]. Neither gradient scaling
nor gradient clipping is applied during training.

4.2. Datasets

We consider two benchmark datasets for model perfor-
mance comparison, including Multi-Modality Whole Heart
Segmentation (MM-WHS) Challenge dataset [41] and
Multi-Sequence Cardiac MR Segmentation (MS-CMRSeg)
Challenge dataset [40]

MM-WHS Dataset contains 20 labeled CT images and
20 labeled LGE-MRI images, which are unpaired. Each
image is cropped to a size of 240×220.

MS-CMRSeg Dataset contains 35 labeled CT images
and 45 labeled LGE-MRI images, which are also not paired.
Each image is cropped to a size of 192×192.

Similar to [33, 34], we include the following three struc-
tures in the given images for segmentation: the myocardial
(MYO), the left ventriculus (LV), and the right ventriculus
(RV). For both datasets, We remove the MRI ground truth
during CT to MRI experiments and remove the CT ground
truth during MRI to CT experiments. The train-test split
strategy is consistent with [2, 5, 33, 34]

4.3. Evaluation Metrics

We use three commonly used evaluation metrics for
segmentation, including Dice coefficient (%) and Average

Symmetric Surface Distance (ASSD) (mm). The Dice coef-
ficient calculates the agreement between the predicted seg-
mentation and ground truth segmentation by dividing the
intersection area by the total pixels in both images. ASSD
measures the segmentation accuracy at boundary-level us-
ing the Euclidean distance of the closest surface voxels be-
tween two segmentations [11]. All metrics are in the format
of the mean. A higher Dice and a lower ASSD score indi-
cate better segmentation performances.

4.4. Ablation Study

In this subsection, we investigate the contribution of our
model components via an ablation study, using the Dice co-
efficient as the evaluation metric. Specifically, we gradually
add individual components and see how the presence of that
component will affect the model performances.

Table 2 shows the quantitative results of the ablation
study. It is shown that most proposed modules will improve
the Dice scores. For example, sequential reparameteriza-
tion, adding Attention, Global, and Local MI estimation in-
creases the Dice score for MYO, LV, and RV. Besides, prior
info matching will slightly decrease RV but significantly
increase MYO and LV, indicating overall performance im-
provement.
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Figure 7. Reconstruction Images from MS-CMRSeg Dataset (CT to MRI). From top to bottom row: MRI images, corresponding segmen-
tation ground truth, UDA-VAE, UDA-VAE++.

4.5. Qualitative Comparison

Fig. 6 shows the visual comparison for segmentation
among different models, including CFDNet, UDA-VAE,
and the proposed UDA-VAE++. It is shown that the pro-
posed UDA-VAE++ leads to the best structure representa-
tion, the best edge preservation, and is the closest to the
ground truth. In contrast, CFDNet and UDA-VAE have a
significant segmentation error between MYO, RV, and the
background.

Fig. 7 displays the visual comparison for reconstruction
between different models. Here we only compare UDA-
VAE++ with UDA-VAE since UDA-VAE is the only related
work that considers image reconstruction. It is shown that
the proposed UDA-VAE++ displays significantly better re-
construction than UDA-VAE. UDA-VAE++ has excellent
edge preservation, shape representation, and class segmen-
tation. In comparison, UDA-VAE has a significant amount
of blurs and artifacts.

4.6. Quantitative Comparison

The quantitative comparison utilize several state-of-the-
art models, including PnP-AdaNet [5], SIFA [2], UDA-VAE
[34], and the proposed UDA-VAE++.

Table 3 shows the quantitative comparison for UDA with
MS-CMRSeg Dataset (CT to MRI). We can find that the
proposed UDA-VAE++ has the best Dice and ASSD score
in terms of MYO and LV segmentation. While SIFA has
a slight advantage for RV segmentation, it underperforms
our model for all other metrics in the table. Therefore, we

can conclude that the proposed UDA-VAE++ has the best
performance in this experiment.

Table 4 shows the quantitative comparison for UDA with
MM-WHS Dataset (CT to MRI). We can observe that the
proposed UDA-VAE++ has the best Dice and ASSD score
in terms of MYO and LV segmentation. Despite SIFA’s suc-
cess in Dice score at RV segmentation, it significantly un-
derperforms our method for all other metrics. Overall, the
proposed UDA-VAE++ has the best result in this compari-
son.

Table 5 shows the quantitative comparison for UDA with
MS-CMRSeg Dataset (MRI to CT). We can see that the pro-
posed UDA-VAE++ has the best Dice and ASSD score in
terms of all segmentations (MYO, LA, LV, RA, RV).

5. Conclusion

This paper introduces UDA-VAE++, an unsupervised
domain adaptation framework for cardiac segmentation.
Through mutual information estimation and maximization,
we make the reconstruction and segmentation task mutu-
ally beneficial. Moreover, we introduce the sequential repa-
rameterization design, allowing information flow between
multi-scale latent space features. Extensive experiments
demonstrate that our model achieved state-of-the-art per-
formances on benchmark datasets. Our future work will
integrate the proposed mutual information estimation block
with self-supervised domain adaptation methods. We also
aim to extend our framework to other medical image seg-
mentation tasks (e.g., brain image segmentation).
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