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Abstract

3D human motion prediction requires making sense of
the complex spatio-temporal dynamics which underpin hu-
man motion to make highly accurate predictions. Part of
this complexity is due to the trade-off between long-term
(>400ms) and short-term predictions (<400ms) which re-
quire different levels of granularity to observe patterns.
Several works have explored methods of improving long-
term prediction performance by utilizing longer motion his-
tories but this typically comes at the cost of very short-
term (<200ms) performance. Inspired by high-resolution
network architectures, we propose a novel high-resolution
spatio-temporal attention network (HR-STAN) which lever-
ages parallel feature branches and dilated convolutions to
observe human motion at different scales. Furthermore, we
augment this architecture with split spatial and temporal
attention mechanisms to efficiently capture spatio-temporal
dependencies within a given motion. We evaluate the abil-
ity of our HR-STAN architecture at incorporating long-
term motion histories while producing short-term predic-
tions and show that it improves over several state-of-the-art
methods on both the AMASS and Human3.6M benchmarks.

1. Introduction

As humans one of our strongest talents is our ability to
predict the future. While driving, we may see a pedestrian
approaching the street or a vehicle inching forward and in-
stinctively predict their future motion. Similarly when mak-
ing a pass towards a teammate we estimate their future mo-
tion given their body language and trajectory to ensure the
pass connects. Thus, 3D human motion prediction is the
task of taking an individual’s pose history and using it to de-
rive meaningful predictions of their future motion. This can
be represented as a multivariate sequential modeling task
where the relationships between elements within the kine-
matic tree must be successfully understood. Furthermore,
a predictive model must be able to observe and understand

Figure 1. AMASS Qualitative Results: Overall performance of
our HR-STAN approach compared to ground truth predictions.
The featured pose histories and predictions are downsampled by
3x to better highlight the motion variety. Blue wireframes repre-
sent a pose history that is used as input into our approach while the
green and red wireframes refer to ground truth future motion and
predicted future motion respectively.

the underlying motion dynamics of a given pose history and
use them to generate plausible future poses.

Following trends in sequential modeling, early works on
3D human motion prediction focused on utilizing recur-
rent neural networks (RNNs) to differing degrees of suc-
cess [1, 5, 10, 12, 17, 24, 30]. As shown in [24], a zero-
velocity baseline in which the last observed pose was used
for all predictions proved to be more accurate than some of
these early methods [10, 17]. These methods are typically
described as auto-regressive [1] as they make predictions
on a frame-by-frame basis, incorporating their own predic-
tions with the observed pose history as they predict further
out. Due to their auto-regressive design, these methods suf-
fer from accumulated error when transitioning from making
predictions entirely from observed pose history to a mix-
ture of observed and predicted poses and often make pre-
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Figure 2. Human3.6M Qualitative Results: Overall performance
of our HR-STAN approach compared to ground truth predictions.
Green and red wireframes refer to ground truth future poses and
predicted future poses respectively.

dictions which converge to a mean pose when conditioning
on longer pose histories due to their short attention spans.
Based on innovations in natural language processing, sev-
eral works aimed to incorporate attention-based architec-
tures [1, 5] to improve the predictions of auto-regressive
methods. These attention-based architectures marginally
improved performance in the short-term but substantially
improved the ability for auto-regressive models to predict
into the long-term without converging to a mean pose.

Alternatives to these recurrent models have also been ex-
plored [18, 22, 23, 36], which rather than producing predic-
tions on a frame-by-frame basis produce fixed-length pre-
dictions using a fixed-length history. This style of approach
has the advantage of producing the entire prediction from an
observed set of poses, thus removing the potential for accu-
mulated error. These approaches excel where pose histories
are short and models can primarily focus on small move-
ments but have trouble utilizing long-term motion histories
[23, 36]. This is partially due to the fundamental limitation
of convolution-based neural networks, where the perfor-
mance is highly dependent on the overall size of their recep-
tive field. Furthermore, many convolution-based networks
compress their inputs into a latent space which destroys
useful fine-grain details from the input. High-Resolution
Networks (HR-Nets) [37, 38] have been proposed which
maintain a high-resolution feature branch along with low-
resolution branches, thus preserving fine-grain details while
allowing the network to observe large-scale features si-
multaneously. In our approach, we utilize this style of
convolution-based architecture to observe the dynamics of
long-term motion as well as the fine-grain movements to
make accurate short-term human motion predictions.

1.1. Proposed Approach

In this work, we propose a method for 3d human mo-
tion prediction, which leverages a high-resolution spatio-
temporal attention network (HR-STAN) architecture to pro-
duce highly accurate short-term predictions. Our method
encodes a given fixed-length pose history as a sequence of
1D pose vectors and maps directly to a fixed-length pose
prediction sequence, thus removing the need for a pose en-
coding and decoding step [23, 36]. We demonstrate the
state-of-the-art performance of this method using standard
3D human motion prediction benchmarks such as AMASS
[21] and Human3.6M [16], comparing against several auto-
regressive and fixed-length methods.

Our proposed HR-STAN builds upon the original high-
resolution network [37] in several key ways. First, by
decomposing convolutions into spatial and temporal com-
ponents, our approach is able to more efficiently model
spatio-temporal relationships throughout a given pose his-
tory. Second, rather than using strided convolutions in sub-
sequent branches of the network, we utilize dilated con-
volutions to increase receptive field without feature com-
pression. Finally, we introduce split spatial and temporal
attention which more efficiently encourages the network
to focus on the spatio-temporal relationships of a particu-
lar motion. The above contributions led to a novel high-
resolution spatio-temporal attention network (HR-STAN)
which achieves state-of-the-art performance on the 3D hu-
man motion prediction task on multiple benchmarks. We
demonstrate the qualitative performance of this approach on
the AMASS [21] and Human3.6M [16] datasets in Figure 1
and Figure 2 respectively, showing that our method gener-
ates accurate predictions of future human motion.

2. Related Work
2.1. Sequential Modeling

Traditionally, recurrent neural networks (RNNs) have
dominated sequential modeling tasks and have achieved
state of the art results on several tasks such as machine
translation [4,6,7], language modeling [8,25,26], and even
human motion prediction [10,17,24]. This is largely due to
their ability to encode the history of a sequence and condi-
tion future predictions over the length of that history. How-
ever, in recent years their popularly has waned due to sev-
eral drawbacks, most notable the exploding/vanishing gra-
dient problem and their short attention spans [19]. Sev-
eral works propose solutions for these problems such as
incorporating same-layer neuron independence to allow for
longer and deeper networks [19] or additional regularization
strategies which aid in stability during training [25]. How-
ever, these works do not resolve some of the fundamental
constraints of recurrent neural networks.

To address these constraints, several alternative architec-
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tures have been proposed that have greater training stabil-
ity and attention spans, such as the temporal convolutional
network (TCN) and attention-based networks. Gehring et
al. [11] introduced a novel architecture which used a TCN
for language modeling. Bai et al. [3] explored the perfor-
mance gap between recurrent and convolution-based mod-
els, demonstrating that TCNs were competitive with RNNs
on many sequential modeling tasks due to their ability to
capture long-term context. Attention-based models have
also been proposed which have shown promising results
on language modeling [2] and machine translation [35].
Specifically, [35] demonstrated that self-attention modules
are able to capture complex temporal dependencies which
allow them to achieve state-of-the-art performance. Finally,
further works [13, 40] have bridged TCNs and attention-
based networks together to leverage the receptive field of a
convolution-based network with the flexibility of attention.

2.2. Human Motion Prediction

As seen in the more general field of sequential modeling,
early deep learning approaches to human motion prediction
heavily utilized recurrent neural networks [10, 17, 24, 30].
These methods are described as auto-regressive as they
make predictions on a frame-by-frame basis rather than
making predictions all at once. ERD [10] investigated si-
multaneous human pose estimation and prediction using a
learned embedding of 3D human poses but found their ap-
proach was sensitive to hyperparameter tuning and had dif-
ficulty extrapolating long-term motions. Using a similar ap-
proach, Structural-RNN [17] proposed representing graph-
based structural relationships using RNNs with nodes and
edges being represented using LSTMs. However, Martinez
et al. [24] demonstrated several issues inherent to these
early recurrent methods. First, they found that a simple
zero-velocity base line in which the last known pose is used
as a prediction performed better on benchmarks than ERD
or Structural-RNN. Futhermore, these RNN-based methods
also suffer from first-frame discontinuities where they tran-
sition from conditioning predictions on ground truth data
to conditioning on their own initial predictions [24]. To
overcome these drawbacks, [24] proposed conditioning on
frame-by-frame motion rather than positions directly and
incorporating a sampling-based loss which trained the net-
work using its own predictions as well as ground truth.
These additions improved performance overall but the net-
work had trouble with stationary motions. Similarly, Pavllo
et al [30] investigated incorporating a forward kinematics-
based loss to penalize the network for errors accumulated
along the kinematic chain but did not make significant im-
provements to prediction accuracy.

In addition to recurrent architectures, several works
proposed other types of auto-regressive prediction models
which used attention to focus on spatio-temporal dependen-

cies over a given pose history. [5] leveraged a transformer
architecture akin to [35] along with a progressive decoding
strategy which first predicted the future locations of cen-
tral joints and then expanded outwards to peripheral joints.
While this strategy improved performance, it suffered when
errors in base joints were propagated up the kinematic chain
towards peripheral joints. Spatio-Temporal Transformer [1]
expanded on the original transformer architecture by de-
composing the attention mechanism into spatial and tempo-
ral components, reducing the size of the model and improv-
ing overall performance. This approach greatly improved
on the ability for auto-regressive models to make long-term
predictions but did not improve short-term prediction per-
formance by a significant margin.

Alternatives to recurrent or auto-regressive methods have
been explored, with several networks using feed-forward
models [18, 22, 23]. These models use fixed-length input
sequences and produce fixed-length predictions to allevi-
ate the effect of accumulated error seen in auto-regressive
methods. ConvSeq2Seq [18] utilized a long-term motion
encoder and a short-term motion encoder/decoder to cap-
ture long-term motion features while preserving short-term
fidelity, but was sensitive to convolution filter size. Mao and
Liu [23] first proposed LTD which first encoded the motion
using the discrete cosine transform (DCT) and then used
a graph-based convolutional network (GCN) with learned
connectivity to capture spatial dynamics. Further extending
on this work, Mao and Liu [22] utilized motion attention to
improve prediction accuracy on periodic actions. This ap-
proach proved beneficial towards long-term predictions, but
did not have large impact on short-term predictions.

3. Method
We begin the explanation of our approach with a for-

mal description of the problem of 3D human motion pre-
diction. Let P = {p1, p2, ..., pn} represent a full descrip-
tion of a given human pose which is described using N
joint positions pi ∈ R3. Similarly, we can describe the
segments which make up a given kinematic tree as S =
{s1,2, s2,3, ..., si,j} where a given segment is defined as
si,j = pj − pi. Given a pose history M = {P1, P2, ..., Pt}
of length T where t ∈ R represents the individual pose
in the sequence, the goal is to predict the future poses
M ′ = {Pt+1, Pt+2, ..., Pt+l} where l ∈ R represents the
predicted pose l frames into the future.

3.1. Network Architecture

In order to make predictions using a given pose history
M , we must first determine an encoding of M such that we
can extract useful features from it using our network. Previ-
ous works have used a number of different methods to first
encode individual poses such as the discrete cosine trans-
form (DCT) [5,22,23,36] or a learned embedding [1,18,24].
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Figure 3. HR-STAN Architecture Overview: The input pose history is first mapped to 2D and processed via the stem to obtain initial
motion features. The features are further processed by several novel spatial and temporal convolution modules arranged in a multi-stage
high-resolution spatio-temporal architecture based on [37]. Different branches of the network operate at different dilation levels and several
transformation layers combine features from different branches to encourage cross-talk between branches. Finally, the features of each
branch are fused and the raw predictions are smoothed using a multi-layer temporal convolutional network (TCN) which produces the final
motion predictions.

Due to the structure of our network, we are able to process
a pose history directly by representing it as a sequence of
pose vectors of size 3N such that the input to our network is
a 2D matrix of size (3N,T ). By extension our network also
produces predictions in the form of (3N,L) and as such is
directly able to map from pose history to future poses.

Following the basic high resolution network architecture
[37], our HR-STAN is structured in stages which progres-
sively expand the receptive field of the network, enabling it
to observe increasingly larger motion patterns. Figure 3 de-
scribes the architecture overview of the network. Each stage
consists of parallel branches which operate at different di-
lation levels and each branch consists of several identical
spatio-temporal convolution (STConv) modules which act
as the main engines of the network. Let Fi,j refer to a spe-
cific STConv module in the network such that it is the jth

module in a given branch and it operates at the dilation level
i ∈ {1, 2, 4, 8}. Furthermore, let hi,i′ refer to the convolu-
tion modules which serve as transforms between branches i
and i′. These modules fuse features from parallel branches
using stacked 3x3 and 1x1 convolutions. We can describe
the output of a specific branch at a given stage as:

f ′
i = h1,i(F1(f1)) + h2,i(F2(f2)) + ...+ Fi(fi) (1)

where fi and f ′
i refer the input and output features of a given

branch. Each stage can be stacked on itself an arbitrary
number of times to increase the depth of the network. After
several stages, the output of each branch is fused together
in a fusion layer that provides an initial raw prediction. The
fusion layer is of a similar structure to previous stages in
the network; however, the additional dilation branches are
no longer propagated. The output of the fusion layer can be
described with equation (2). The initial prediction is then

combined with the last observed pose in the pose history to
obtain the raw prediction (3).

f ′ = F1(f1) + h2,1(F2(f2)) + ...+ hi,1(Fi(fi)) (2)

M ′ = f ′ +MT (3)

The raw predictions are then concatenated with the pose
history and smoothed using a final motion smoothing stage.
This stage consists of a positional encoder [35], several
temporal convolution layers, and spatio-temporal attention
modules to produce the final prediction.

3.2. Spatio-Temporal Convolution Module

The core of the network is the spatio-temporal convo-
lution (STConv) module which consists of separate spatial
and temporal convolution branches. They are further pro-
cessed using split spatio-temporal attention modules before
being fused together. While the initial assumption would be
that processing both spatial and temporal dimensions simul-
taneously would allow a network to exploit spatio-temporal
relationships better, previous works have found that decom-
posing convolutions into their respective dimensions has
proved beneficial [33]. To this end, the spatial and tem-
poral branches of the STConv module are augmented with
separate spatial and temporal attention mechanisms which
modulate the output of each branch based on the importance
given to spatio-temporal features. Figure 4 gives an outline
of an STConv module, which is formally defined as below.

Given a feature vector f of shape (D,T ) where D refers
to the spatial dimension and T refers to the temporal di-
mension, the STConv module applies separate 1D dilated
convolutions [39] with kernel size k and dilation d along

2543



Figure 4. STConv Module: Each STConv module consists
of separate spatial and temporal components which are fused
with a residual connection to ensure stable gradient flow. Both
branches feature three consecutive blocks of 1D convolutions with
Hardswish activation [14] and Batch Normalization. Each branch
also uses a spatial or temporal attention mechanism to direct net-
work attention towards important spatio-temporal motion features.

the spatial and temporal axes to generate separate features
as described in equations (4) and (5).

fs[x, y] =

k−1∑
i=0

W [i] ∗ f [x+ d ∗ i, y] (4)

ft[x, y] =

k−1∑
i=0

W [i] ∗ f [x, y + d ∗ i] (5)

The output features of these convolution layers are normal-
ized while training using a standard batch normalization
process [15] and passed through the Hardswish activation
function [14] before being processed by the spatial and tem-
poral attention modules.

3.2.1 Efficient Spatio-Temporal Attention

Following [35] a lot of focus has been given to dot-product
attention and its ability to capture complex relationships be-
tween features. However, one large drawback of this type
of attention is its memory and computational complexity.
As shown in [32], given the standard dot-product attention
equation [35] with queries Q ∈ Rn∗dk , keys K ∈ Rn∗dk ,
and values V ∈ Rn∗dk , the memory complexity is O(n2)
and the computational complexity is O(dkn

2). While this
is not necessarily a problem for smaller networks with fewer
stacked attention modules, these complexities pose a signif-
icant problem for our proposed approach. However, [32]
proposes an alternative attention mechanism with linear
complexities, O(dn+d2) memory complexity and O(dn2)

runtime complexity ,that is a better option for our approach
due to the number of layers.

E(Q,K,V) =
Q√
n
(
KT

√
n
V) (6)

Given this formulation of attention, we define our spatial
and temporal attention using the following variables. For
the spatial branch, we define our queries, keys, and val-
ues as Qs ∈ RD∗T , K ∈ RD∗T , and V ∈ RD∗T . Con-
versely within the temporal attention branch we define them
as Qs ∈ RT∗D, K ∈ RT∗D, and V ∈ RT∗D. Note that in
either case, the alternate dimension serves as the dimension-
ality of the feature space such that the temporal component
of a specific joint serves as its feature space. Using the effi-
cient attention mechanism described in Equation 6, we con-
struct spatial and temporal attention blocks which compute
attention vectors and combine them with features fs and ft
using a residual mechanism. Finally, the separate spatial
and temporal branches are combined with a residual to pro-
duce the output of the STConv module using the equation:

f ′ = fs + ft + f (7)

3.3. Loss Functions

Our HR-STAN model is trained using a loss function
consisting of two major terms. The first is based on the stan-
dard Mean Per Joint Position Error (MPJPE) proposed in
[16] to measure the error between the predicted and ground
truth joint positions and is described as (8):

Lmpjpe =
1

LP

L∑
l

P∑
p

∥pt+l − p̂t+l∥2 (8)

where pt+l, p̂t+l ∈ P represent the 3D positions of both
ground truth and predicted joints for the pose P on the lth

frame in predicted sequence M ′. The second term acts as
a regularization term which penalizes the network for pre-
dicting unnatural segment angles by computing the cosine
similarity of each of the vectors which make up the human
pose. The similarity regularization term can be described as
(9):

Lcs =
1

S

S∑
s

s · ŝ
max(∥s∥2 ∗ ∥ŝ∥2, ϵ)

(9)

where s, ŝ ∈ S refer to each associated joint segment in
both the ground truth and predicted pose sequence respec-
tively. With these terms defined, the final loss function is
denoted as:

L = Lmpjpe + λLcs (10)

where λ represents a configurable hyperparameter which af-
fects the relative weighting of Lcs with Lmpjpe.
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4. Experimental Setup
To benchmark against previous architectures [1, 18, 22–

24, 30], we evaluate the short term performance of HR-
STAN on both the Human 3.6M dataset [16] and the
AMASS dataset [21] using standard protocols. While previ-
ous works have represented poses using both 3D joint posi-
tions and several angle-based representations, our approach
targets the 3D joint position representation and thus we
compare directly against previous works which report their
results in this format. Following [1, 5, 18, 22, 23] we evalu-
ate the performance of our approach using the MPJPE [16]
metric on several predefined key-frames.

4.1. Datasets

AMASS [21]: this dataset consists of different motion cap-
ture datasets such as CMU [9], BioMotion Lab [34], and
MPI-HDM05 [27, 28] which have been parameterized us-
ing the SMPL [20, 31] body mesh model. Using the SMPL
model, we convert the captured sequences from the dense
mesh SMPL representation to a sparse 3D joint position rep-
resentation consisting of 22 body joints. Following previous
work [22], we also remove the 4 static joints and obtain an
18-joint pose representation. AMASS [21] consists of cap-
tures at 60Hz and we process the data at this original rate
instead of downsampling to 25Hz as with Human3.6M [16].
However, we maintain the same overall time duration, i.e.,
making 24 frame predictions rather than 10. Finally, we use
the same training, validation, and test splits as [1,18,22,23]
to provide a fair performance comparison.
Human3.6M While Human3.6M has long been a standard
benchmark for many tasks including 3D human motion pre-
diction, it has been argued that it should be given less im-
portance given its small size and limited variability in sub-
jects [1]. However, because it has actions separated into cat-
egories it provides valuable insight into model performance
and thus we report results using this benchmark as well as
AMASS [21] It consists of seven actors performing 15 dif-
ferent action sequences such as smoking, sitting, and walk-
ing and each pose is represented using a set of 32 joints.
Following previous work [1,18,22,23] we split reserve sub-
ject 11 and 5 as our validation and test sets respectively. Ad-
ditionally, we downsample the original 50 Hz sequences to
25 Hz to better compare against previous methods. While
[18, 23] evaluate the performance of their approaches on
8 random sub-sequences per action from the test set, [22]
argues that this leads to high variance in reported perfor-
mance and thus evaluates using 256 sub-sequences instead.
To compare against these works we report our results on
256 random sub-sequences per action.

4.2. Implementation Details

Our models were implemented using the PyTorch [29]
library and trained as well as evaluated using an NVIDIA

RTX 2080. Due to the difference in frame-rate between
both datasets, we utilize a different network architec-
ture when evaluating performance on AMASS versus Hu-
man3.6M. The version trained and evaluated on AMASS
is depicted in Figure 3 while the version trained on Hu-
man3.6M forgoes the Stage 4 module entirely and only uses
3 stacked Stage 3 modules. The final temporal smooth-
ing module consists of a positional encoder based on [35],
several dilated temporal convolutions, and the split spatio-
temporal attention modules described in Section 3.2.1. For
all versions of the HR-STAN we used an initial learning
rate of 1e-3 along with an AdamW optimizer. For the ver-
sions trained specifically on Human3.6M, we used a step-
wise learning rate scheduler with a gamma of 0.5 which
was applied every 50 epochs for 400 epochs. For the ver-
sions trained on AMASS we applied the same gamma every
25 epochs and only trained for 300 epochs due to the size
of the dataset in comparison to Human3.6M. All versions
of the model utilized a λ of 0.1 for the cosine similarity loss
descried in Equation 10.

5. Results
Whenever possible, we relied on reported results for

other methods in our experiments; thus, we compare against
different methods when evaluating the performance of our
proposed approach on AMASS [21] and Human 3.6M [16].
More specifically, [22] adapted previously released code for
Res. Sup [24] and convSeq2Seq [18] to produce 3D po-
sition metrics. The authors also reported results for their
proposed method [22] and previous method [23] which are
used as a comparison to our method. For results on AMASS
[21], we relied on reported results of [1], which reports re-
sults for Res. Sup [24], QuaterNet [30], convSeq2Seq [18],
LTD [23], and LTD Attention [22].

We evaluate our network architecture with several per-
mutations to gain a better understanding of it’s benefits.
When reporting results, we use the nomenclature HR-
STAN-X to indicate the length of the pose history the model
uses. On the Human3.6M dataset we evaluated the perfor-
mance of our method using pose histories of length 10, 25,
and 50. Similarly, for the AMASS dataset we used pose
histories of length 30, 60, and 90, after accounting for the
difference in sampling rates of the two datasets.

5.1. AMASS

Table 1 presents the results of our method on the
AMASS dataset compared to several previous state-of-the-
art methods. Overall our method improves prediction ac-
curacy across the entire prediction length and does so with
a shorter pose history than ST-Transformer [1], which uses
120 frames. Through evaluating different versions of the
model trained with different pose history lengths (30, 60,
90 frames), we found that increasing the length of the pose
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Method MPJPE
100ms 200ms 300ms 400ms

Zero-Velocity [24] 23.6 39.6 53.1 64.2
convSeq2Seq [18] 23.6 37.4 48.6 57.9

QuaterNet [30] 16.7 28.7 39.6 49.0
LTD [23] 15.6 25.7 35.3 44.1

LTD Attention [22] 13.4 23.2 32.1 39.7
ST-Transformer [1] 12.8 21.8 30.9 39.5

HR-STAN-30 10.7 19.5 27.9 35.8
HR-STAN-60 10.6 19.5 27.7 35.3
HR-STAN-90 10.9 19.8 28.0 35.7

Table 1. Results on AMASS: Results are reported using the test
set (BMLrub) and error is represented in millimeters. Overall, our
approach is better across the entire prediction length.

history did not have a significant impact on network perfor-
mance. This indicates that short term predictions are largely
dominated by features which appear in the final second of
the pose history and that increasing pose history length does
little to improve short term predictions while increasing
computational costs. Using the shortest pose history our
HR-STAN approach improved upon state of the art perfor-
mance while our best version, HR-STAN-60, which utilized
a pose history of 60 frames or 1 second yielded an 11%
reduction in sum of the MPJPE over the entire prediction
length when compared to the leading alternative approach.
A sample of the qualitative results are presented in Figure
1 which demonstrate that our HR-STAN predicts realistic
poses while predicting 3D joint positions directly.

5.2. Human 3.6M

Table 2 highlights the average performance of our HR-
STAN compared to an auto-regressive method (Res. Sup.
[24] and several fixed-length methods (convSeq2Seq, LTD,
LTD Attention) [18, 22, 23]. Through our evaluation of dif-
ferent input pose history lengths, we found that HR-STAN-
10 produced the best results with HR-STAN-25 still per-
forming better than previous state of the art methods. Using
the average frame-wise MPJPE on the Human3.6M test set,
HR-STAN-10 performed 27.6% better on very short term
(< 200ms) and 11.3% better on (< 400ms) predictions than
the best alternative method.

Method MPJPE
100ms 200ms 300ms 400ms

Res. Sup. [24] 25.0 46.2 77.0 88.3
convSeq2Seq [18] 16.6 33.3 61.4 72.7

LTD [23] 11.2 23.4 47.9 58.9
LTD Attention [22] 10.4 22.6 47.1 58.3

HR-STAN-10 6.9 17.0 42.5 56.4
HR-STAN-25 7.5 17.9 43.8 57.7
HR-STAN-50 8.2 19.4 46.8 61.6

Table 2. Results on Human3.6M: Results are reported using the
test set and error is represented in millimeters. Overall our ap-
proach performs better across the entire prediction length.

As mentioned in Section 4.1, the Human3.6M [16]
dataset consists of several different action sequences with
some being highly periodic such as walking or eating and
others being aperiodic such as posing or greeting. To fur-
ther investigate the performance of our method on differ-
ent action types, we captured the frame-wise MPJPE of
our best performing model (HR-STAN-10) over each ac-
tion type and present them in Table 3. Notably there are
a few action types in which our performance lags behind
LTD Attention [22] at the upper end of the prediction length
such as Walking, Eating, Greeting, and Walking Together.
These actions feature a higher degree of periodicity and as
such the longer pose history that LTD Attention uses is very
beneficial to predicting future motions. Additionally, both
LTD [23] and LTD Attention [22] rely on first transform-
ing the pose history into the frequency domain using the
DCT and thus periodic features are naturally easier to cap-
ture than aperiodic features. For largely aperiodic actions
such as Posing or Purchases our HR-STAN greatly outper-
forms previous work, indicating that our method is better
able to handle abrupt changes in motion.

Finally, we also explore the qualitative performance on
different Human3.6M action types, depicted in Figure 2.
Despite the large variety in motion types, our method is able
to accurately predict future motion.

5.3. Ablation Study

To further investigate the utility of several contributions
of this work, we performed an ablation study using the
AMASS dataset. For the purposes of the study, we used
our HR-STAN-30 model as the base and measured the per-
formance of different configurations on the AMASS [21]
dataset as well as the size of each model in terms of number
of parameters. Specifically we evaluated the impact of the
split spatial and temporal convolutions vs a combined 3x3
convolution block baseline and the impact of our spatio-
temporal attention modules. We present the frame-wise
MPJPE and number of parameters of each configuration in
Table 4 While the overall performance of the combined ar-
chitecture is better than the split version by a small amount
without attention modules active, the spatio-temporal split
version is able to produce comparable performance with
57% of the parameters. Additionally, the attention mod-
ules also improve the overall mode performance with only a
modest increase in the number of parameters. Interestingly,
while the attention module has a large impact on accuracy
when incorporated into the base split model, it mildly re-
duced performance in both the baseline model and the ex-
panded split model. This may indicate that while the atten-
tion module enables a network to focus on important ele-
ments in the pose history, it’s impact is minor when used in
a network which already has the capacity to incorporate the
entire pose history.
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Walking Eating Smoking Discussion Sitting
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res. Sup. [24] 23.2 40.9 61.0 66.1 16.8 31.5 53.5 61.7 18.9 34.7 57.5 65.4 25.7 47.8 80.0 91.3 23.8 44.7 78.0 91.2
convSeq2Seq [18] 17.7 33.5 56.3 63.6 11.0 22.4 40.7 48.4 11.6 22.8 41.3 48.9 17.1 34.5 64.8 77.6 13.5 27.0 52.0 63.1

LTD [23] 11.1 21.4 37.3 42.9 7.0 14.8 29.8 37.3 7.5 15.5 30.7 37.5 10.8 24.0 52.7 65.8 9.8 20.5 44.2 55.9
LTD Attention [22] 10.0 19.5 34.2 39.8 6.4 14.0 28.7 36.2 7.0 14.9 29.9 36.4 10.2 23.4 52.1 65.4 9.3 20.1 44.3 56.0

HR-STAN-10 7.5 17.0 39.4 51.9 5.1 12.1 29.2 38.5 4.5 10.4 24.7 33.0 7.1 18.1 46.4 61.9 5.7 13.7 33.6 44.2
Directions Greeting Phoning Posing Purchases

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Res. Sup. [24] 21.6 41.3 72.1 84.1 31.2 58.4 96.3 108.8 21.1 38.9 66.0 76.4 29.3 56.1 98.3 114.3 28.7 52.4 86.9 100.7

convSeq2Seq [18] 13.5 29.0 57.6 69.7 22.0 45.0 82.0 96.0 13.5 26.6 49.9 59.9 16.9 36.7 75.7 92.9 20.3 41.8 76.5 89.9
LTD [23] 8.0 18.8 43.7 54.9 14.8 31.4 65.3 79.7 9.3 19.1 39.8 49.7 10.9 25.1 59.1 75.9 13.9 30.3 62.2 75.9

LTD Attention [22] 7.4 18.4 44.5 56.5 13.7 30.1 63.8 78.1 8.6 18.3 39.0 49.2 10.2 24.2 58.5 75.8 13.0 29.2 60.4 73.9
HR-STAN-10 5.4 13.9 36.7 49.1 10.3 26.2 65.0 83.9 6.1 14.5 35.0 46.2 7.1 18.6 49.9 67.2 8.4 21.3 53.4 69.4

Sitting Down Taking Photo Waiting Walking Dog Walking Together
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res. Sup. [24] 31.7 58.3 96.7 112.0 21.9 41.4 74.0 87.6 23.8 44.2 75.8 87.7 36.4 64.8 99.1 110.6 20.4 37.1 59.4 67.3
convSeq2Seq [18] 20.7 40.6 70.4 82.7 12.7 26.0 52.1 63.6 14.6 29.7 58.1 69.7 27.7 53.6 90.7 103.3 15.3 30.4 53.1 61.2

LTD [23] 15.6 31.4 59.1 71.7 8.9 18.9 41.0 51.7 9.2 19.5 43.3 54.4 20.9 40.7 73.6 86.6 9.6 19.4 36.5 44.0
LTD Attention [22] 14.9 30.7 59.1 72.0 8.3 18.4 40.7 51.5 8.7 19.2 43.4 54.9 20.1 40.3 73.3 86.3 8.9 18.4 35.1 41.9

HR-STAN-10 7.4 17.5 43.5 58.1 5.0 12.7 35.0 48.6 6.6 15.9 39.7 53.0 12.2 30.4 73.0 94.5 5.9 13.6 33.3 45.8

Table 3. Results on Human3.6M: Comparison between different methods across the different action types included in the Human3.6M
test set. We use our best performing network configuration HR-STAN-10 which utilizes pose histories of 10 frames to make predictions.
Our method greatly outperforms previous methods on aperiodic actions and on very short term <160ms predictions. Bold indicates the
best results for that specific action frame. Underline indicates second best results.

Model Parameters MPJPE
Split Attn 100ms 200ms 300ms 400ms

x x 7.38M 10.5 19.5 28.0 36.6
x ✓ 7.69M 11.0 20.1 28.6 36.7
✓ x 4.21M 10.9 20.3 29.1 38.1
✓ x 7.42M 10.5 19.4 27.7 36.1
✓ ✓ 4.52M 10.7 19.5 27.9 35.8
✓ ✓ 7.73M 11.0 20.2 28.6 36.4

Table 4. Ablation Study on AMASS: Results are reported for
several different network configurations trained and evaluated on
AMASS train/test sets. Split refers to network configurations with
split spatial and temporal convolutions in the STConv module
rather than combined spatio-temporal convolutions. Attn refers to
whether or not the STConv module is using the proposed split at-
tention mechanism. Parameter numbers are in units of millions.

6. Limitations and Future Work

While the method presented in this paper was able to pro-
duce state-of-the-art results on multiple benchmarks, there
are both limitations with this work and potential future re-
search opportunities. First and foremost, this work mainly
explored the performance of our method on short-term pre-
dictions but further work could explore the impact of this
approach on long-term predictions. Futhermore, as seen
in the results on the Human3.6M [16] benchmark, our ap-
proach generally performs better on aperiodic actions than
periodic ones. One of the advantages of the approach de-
scribed in Mao et al. [22,23] is that it inherently captures the
periodicity of motions using DCT but this comes at the cost
of performance on aperiodic actions. A future work could
explore a combination of both methods which is able to cap-
ture periodic motion features while producing accurate pre-

dictions on aperiodic actions. Finally, while we decided to
use a 2D representation for pose histories, it may not be the
most efficient representation and several works [22,23] have
successfully utilized graph representations. Further adapt-
ing the multi-branch architecture to a graph convolution-
based network could allow for high prediction accuracy
while drastically reducing the overall network size. Finally,
our ablation study highlights an interesting result in which
the impact of the spatio-temporal attention modules are mi-
nor when applied to larger models with a fixed pose history
length of 30 frames. Further work could investigate the im-
pact of the attention on different lengths of pose history as
this may provide better analysis of its impact.

7. Conclusion

We proposed a novel high-resolution spatio-temporal at-
tention network (HR-STAN) for 3D human motion predic-
tion which stacks spatio-temporally separable dilated con-
volutions to observe multi-scale motion features. By main-
taining branches at multiple spatio-temporal scales and in-
corporating separate spatial and temporal self-attention, the
model is better able to capture long and short-term motion
features and make accurate short-term predictions. Com-
parison of our approach with previous state-of-the-art auto-
regressive and fixed-length methods shows 11% reduction
in average MPJPE over the entire prediction on the AMASS
dataset. For Human3.6M, it shows 11.3% reduction over
the entire prediction and 27% reduction on very short-term
(<160ms). Furthermore, our ablation study demonstrates
the impact of the proposed modules in HR-STAN, showing
an improvement in performance over the baseline using just
57% of the parameters.
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