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Abstract

Given a partially observed video segment, online action
detection and anticipation aim to identify a current action
and forecast future actions, respectively. To detect actions
in a streaming video for monitoring applications including
surveillance, robot assistants, and autonomous driving, on-
line action detection methods have been proposed. Con-
sidering the importance of current action in online action
detection, we introduce a novel information elevation unit
(IEU) that lifts and accumulates the past information rele-
vant to the current action, to compensate for forgotten es-
sential information. Using the IEUs, we propose an infor-
mation elevation network (IEN) that effectively identifies a
current action and anticipates future actions through the
dense prediction of past and current action classes within
the video segment. For its practical use in online moni-
toring applications, our IEN takes visual features extracted
from a fast action recognition using only RGB frames be-
cause extracting optical flows requires heavy computation
overhead. On THUMOS-14 and TVSeries, our IEN out-
performs state-of-the-art methods using only RGB frames.
Furthermore, on the THUMOS-14 dataset, our IEN outper-
forms the state-of-the-art methods.

1. Introduction

Because of the dramatic increase of streaming videos
from numerous cameras, we require the method to detect
every action of interest as soon as it takes place and an-
ticipate a future action in advance. Nowadays the video
surveillance industry has experienced dramatic growth with
the proliferation of CCTV cameras [13]. In addition, vehi-
cles equipped with multiple cameras installed inside or out-
side for autonomous driving and camera-equipped assistant
robots are increasing. Accordingly, online action detection
(OAD) methods [4–8, 18], some of which also include on-
line action anticipation (OAA) [7, 18], have been proposed
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in recent years.

Online action detection (OAD) aims to identify a current
action by using past and current visual information within
an untrimmed video segment from a streaming video. OAD
methods taking a partially observed video segment as input
recognize the current action at the latest frame within the
input segment. The video segment consist of a fixed num-
ber of chunks, each of which consists of a fixed number of
consecutive frames. For each chunk, the methods get a vi-
sual feature extracted from a pre-trained action recognition
network. The first OAD method [4] including a CNN-based
model for a single frame and an LSTM-based model taking
16 frames as input does not fully utilize past visual informa-
tion. Reinforced encoder-decoder network (RED) [7] based
on LSTM and temporal recurrent network (TRN) introduc-
ing a new recurrent unit, TRN cell, encode past and cur-
rent visual information within a video segment with equal
weights. However, all the chunks are not equally related
to the current action. Therefore, information discrimination
network (IDN) [5] and temporal filtering network (TFN) [6]
detect the current action for a video segment by emphasiz-
ing the visual information from chunks related to the cur-
rent action. Thus, it is important to take into account the
relevance of visual information to the current action in de-
signing an OAD method.

For temporal modeling, LSTM [9] takes temporal inputs
at every timestep from the previous hidden and cell states
(i.e., ht−1 and Ct−1) and a visual feature at each timestep
(i.e., xt) and does not consider the current information at
t = 0 (i.e., x0), which is an important input for OAD. Be-
cause of this, the forget gate of LSTM can lose the past in-
formation and accumulated information from the previous
hidden state (i.e., ht−1) by using only visual information at
each timestep (i.e., xt), as shown in Figure 1. To this end,
we introduce an information elevation unit (IEU), which is
an extension of LSTM for OAD. To maintain the informa-
tion related to the current action, the IEU has the additional
information elevation gate that lifts the past information rel-
evant to the current action to the cell state. Specifically,
the IEU adds the past information from the previous hidden
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Figure 1. Comparison between the original LSTM and our information elevation unit (IEU). In this video segment, past information at
times −T and −T +1 is related to the current action. However, when processing the information at time −T +2, the LSTM considers only
past information from the previous hidden and cell states and at −T + 1 timestep. In the LSTM, there is a risk of removing accumulated
information relevant to current action at the forget gate and accumulating information at the timestep that is irrelevant to current action at
the input and output gates. Therefore, the proposed IEU takes the current information together with the past information as inputs and adds
an elevation gate to lift and accumulate the past information relevant to the current action.

state (i.e., ht−1) as well as the visual feature at t timestep
(i.e., xt) multiplied by the output from the elevation gate
considering the relationship between the past and current
information (i.e., ht−1 and x0). Through this, the IEU can
reinforce the forgotten past information relevant to the cur-
rent action.

By using the IEUs, we propose an information eleva-
tion network (IEN) that detect a current action and antici-
pate future actions through the dense prediction of past and
current actions. To show the effectiveness and efficiency
of our IEN for OAD and OAA, we conduct extensive ex-
periments on two OAD benchmark datasets, THUMOS-14
and TVSeries. Taking the visual features from only RGB
frames, the IEN outperforms the state-of-the-art methods
using only RGB frames shows comparable performances to
the methods using both RGB and flow frames, with a per-
frame mAP of 60.4% and mcAP of 81.4% in THUMOS-14
and TVSeries, respectively. In addition, our IEU also out-
performs the state-of-the-art methods for OAA.

Our contribution is summarized as follows.

• To maintain the past information relevant to the cur-
rent action, we introduce IEU, which is an extension
of LSTM for OAD, by adding an information elevation
gate with an additional input of current information.

• Through the dense prediction of past and current ac-
tion, our IEN based on IEUs detects a current action
and also anticipates future actions with better perfor-
mance.

• For practical use of OAD for online monitoring appli-
cations, we adopt a fast action recognition network us-
ing only RGB frames as a feature extractor.

• On the THUMOS-14 and TVSeries datasets, our IEN
using RGB frames achieves comparable OAD and
outstanding OAA performances to the state-of-the-art
methods using RGB and flow frames, respectively.

2. Related Work
2.1. Offline action detection

Offline AD methods detect one or more actions in an
untrimmed video. The first OAD method [14] baintroduced
a proposal, classification, and localization networks. Af-
ter generating some video segments of different lengths,
the part related to action instances and the part related to
the background are identified through the proposal network.
The classification network recognizes what the action is in
the candidate interval. Finally, the localization network es-
timates the temporal overlap between GT and the candidate
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interval. Lin et al. [12] generated proposals by using the es-
timated start and end scores for action instances rather than
generating a proposal of a fixed length.

2.2. Online action detection

OAD was introduced by Geest et al. [4]. RED [7] is
based on the encoder-decoder structure and predicts the cur-
rent and future actions by using the past information ob-
tained from the encoder. The cell of a temporal recurrent
network, which is proposed by Xu et al. [18], generates fu-
ture information by using the past information and predicts
the current action using the past and generated future in-
formation. Both the methods consider all chunk with equal
priority. To improve this limitation, the information dis-
crimination network (IDN) [5] and temporal filtering net-
work (TFN) [6] processed the information of each times-
tamp based on its relevance to the current action, which are
based on RNN and CNN, respectively. The WOAD [8] pro-
vide online action recognition and online action start de-
tection in a weakly-supervised way trained with video-level
annotations.

2.3. Action recognition

For a given well-trimmed video containing a single ac-
tion instance, action recognition (AR) methods predict the
probability distribution for N action classes. The AR net-
works based on 2D and 3D CNNs have shown good perfor-
mances. Proposed AR networks have been used as feature
extractors for various video-related tasks including offline
and online temporal action detection. The C3D [16] and
I3D [1] features are widely used for video-related task but
extracting them requires heavy computation loads. To solve
this problem, fast AR methods efficiently extract and model
temporal information using shift operation and light-weight
motion information, in TSM [11] and PAN [19], respectivly.

3. Proposed Method

Figure 2 shows the overall architecture of our IEN. For
a given video segment, the IEN extracts a visual feature for
each chunk, converts the visual feature into a visual embed-
ding, and feeds it into each IEU. Each IEU takes past in-
formation from previous hidden and cell states related to a
visual feature at each timestep t and the current informa-
tion from the current chunk at time t = 0. Using each
hidden state at each timestep t, IEN predicts the probabil-
ity distribution for each chunk and returns the probability
distributions for the current action and future actions. In
this section, we explain component modules including early
embedding, IEU, and classification modules for OAD and
OAA, in detail.

Figure 2. The architecture of the IEN. Taking a video segment
consisting of T + 1 chunks V = {ct}0t=−T as an input, IEN out-
puts three probability distributions for a current action and two
future actions over K action classes and background by using the
concatenated hidden states. Merging lines implies concatenation
operations between vectors.

3.1. Problem definition

To formulate the online action detection and anticipation
problem, we follow the same setting as in previous meth-
ods [7, 18]. A chunk is denoted as c = {In}Nn=1 of a set
of N consecutive frames, where In indicates the nth frame.
Given a video segment V = {ct}0t=−T including a current
(i.e., at t = 0) and T past chunks (from t = −T to t = −1)
as inputs, an OADA model outputs the probability distribu-
tion p0 = {p0,k}Kk=0 of the current action and the proba-
bility distributions of Na future actions at {ta}Na

a=1 for the
input segment.

3.2. Early embedding module

For each chunk ct from a video segment V , the early
embedding module generates an embedded visual feature
xt. First, for a chunk ct, we obtain the extracted feature
c′t ∈ Rdv , where dv is the dimension of the extracted video
feature. We adopt TSM [11] as a feature extractor, which
is a fast AR model that efficiently extracts spatio-temporal
visual features with only RGB frames. We feed the ex-
tracted feature into a fully connected layer to generate the
embedded visual feature xt = ELU (Wc · c′t) ∈ Rde , where
Wc ∈ Rdv×de is a weight matrix, through the ELU acti-
vation function [3], and de represents the dimension of the
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embedded video feature.

3.3. Information Elevation Unit (IEU)

Figure 3. Structure of the information elevation unit (IEU). The
IEU is an extended LSTM by adding an elevation gate and taking
an additional input, current information x0. The IEU’s forget gate
(red box) is the same as the original LSTM and the input and out-
put gate (green box) is similar except the input x0. The elevation
gate (yellow box) is newly added. Merging lines implies concate-
nation operations between vectors.

We propose a novel RNN unit for OAD, called IEU,
which is an extension of the original LSTM unit in two
ways. First, the IEU additionally takes the current visual
embedding xt to determine which information is relevant to
the current action at all the modified gates except the forget
gate. Second, the IEU adds a new gate, called an eleva-
tion gate, in order to lift accumulated past information from
the previous cell state relevant to the current action, which
can be forgotten at the forget gate. The elevation gate takes
x0 ∈ Rde and the previous hidden state ht−1 ∈ Rdh , where
dh represents the dimension of the hidden state, to deter-
mine which information from the previous hidden state is
relevant to the current action. Figure 3 illustrates the struc-
ture of the IEU for OAD. The equations related to all the
gates of the IEU are expressed as follows.

ft = σ(Wf · [ht−1|xt]), (1)

et = σ(We · [ht−1|x0]), (2)

rt = tanh(Wr · [ht−1|xt]), (3)

it = σ(Wi · [xt|x0]), (4)

C̃t = tanh(Wc · [ht−1|xt]), (5)

Ct = (Ct−1 · ft) + (rt · et) + (C̃t · it), (6)

ot = σ(Wo · [xt|x0]), (7)

ht = ot · tanh(Ct), (8)

where | is the concatenation operation, Wf ,We,Wr,Wc ∈
R(dh+de)×dh , Wi,Wo ∈ R(de+de)×dh are learnable param-
eters, σ is the logistic sigmoid function, and tanh is the
tangent hyperbolic function.

3.3.1 Forget and Elevation Gates

As in Eq. (1), the forget gate of IEU is identical to that of
the original LSTM. The forget gate determines which accu-
mulated information from the cell state should be forgotten
without using the current information at time t. However,
the current information is directly related to the output of an
OAD model. As a result, even though the accumulated past
information from the previous cell states can be related to
the visual embedding at t = 0, there is a risk that the past
information can be forgotten if it has less of a relationship
with the previous hidden state at the forget gate. To over-
come this limitation, the IEU locates an elevation gate next
to the forget gate. The current information (i.e., x0) as well
as the past information from the previous hidden state (i.e.,
ht−1) instead of the past information at timestep t (i.e., xt)
are taken as input. First, as shown in Eq. (2), the eleva-
tion gate determines which past information is reinforced
through the sigmoid function with the previous hidden state
and the current information. The IEU obtains the output of
rt by taking the past information from the previous hidden
state and the visual embedding at time t in as inputs in Eq.
(3). To compensate for the forgotten information relevant to
the current action, the IEU adds the result of multiplying et
and rt to the cell state in Eq. (6).

3.3.2 Input and Output Gates

As in Eq. (4) and Eq. (7), the input and output gates of IEU
are modified by taking different inputs, the past information
at timestep t (i.e., xt) and the current information (i.e., x0)
instead of the previous hidden state (i.e., ht−1) to control
the two gates according to the current information. The in-
put and output gates determine which past information at
timestep t − 1 is relevant to the current information. The
output of the input gate affects the next cell state (i.e., Ct)
and that of the output gate affects the next hidden state.

3.4. Classification Module

In the classification module, our IEN predicts the prob-
ability distributions of the current chunk c + t over K+1
classes by feeding concatenated all T+1 hidden states from
−T to 0 as:

pt = [pt,k]
K
k=0, (9)

ptd = softmax(Wad · htd), (10)
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where [td]
0
d=−T , Wad ∈ Rdh×dcls is a trainable matrix, and

dcls is the dimension of action classes.

pta = softmax(Wta,aa · h0), (11)

where [ta]
Naa
a=1, Wt,aa ∈ Rdh×dcls is a trainable matrix, and

dcls is the dimension of action classes. To train our IEN,
we design a total classification loss K+1 classes consisting
of classification loss for action detection and classification
loss for action anticipation by employing the cross-entropy
loss as:

Lad = −
0∑

i=−T

K∑
k=0

yi,k log(pi,k), (12)

Laa = −
Naa∑
i=1

K∑
k=0

yi,k log(pi,k), (13)

L = α · Lad + (1− α) · Laa (14)

where α is a balancing parameter and yi,k is the ground-
truth label for the ith timestep. Finally, our IEN returns p0
= [p0,k]

K
k=0 as its OAD output and some pta = [pta,k]

K
k=0 as

its OAA outputs.

4. Experiments

We conducted experiments of the proposed IEN on the
two OAD benchmark datasets, THUMOS-14 and TVSeries.
First, this section gives an overview of these datasets. Sec-
ond, we explain the evaluation metrics used to evaluate
OAD performance and describe the experimental settings
for implementing the proposed IEN. Third, we compared
the performances of state-of-the-art methods to our IEN on
both the OAD datasets. Finally, we evaluate three versions
of LSTM variants to show the efficiency and effectiveness
of our IEU through an ablation study.

4.1. Datasets

4.1.1 THUMOS-14

THUMOS-14 [10] is a dataset initially publicized for a
competition for offline action detection and localization.
THUMOS-14 collected videos from YouTube. This dataset
was divided into 20 action classes related to sports such as
diving and tennis swing. As the training set of THUMOS-
14 consists of well-trimmed videos, its validation set was
used for training, and its test set was used for evaluation, as
in [5–7, 18]. Specifically, 200 validation videos were used
for training and 213 test videos were used for testing in the
experiment.

4.1.2 TVSeries

TVSeries [4] is a realistic dataset consisting of 27 episodes
from six famous TV series. Each video contains a single
episode whose length is approximately 20 minutes or 40
minutes. The 27 videos are divided into 13, 7, and 7 for
training, validation, and test set, respectively. A total of
6,231 action instances over 30 classes appear in this dataset.
As its videos are collected from TV series, the dataset in-
cludes actions with large variability, with the appearance of
several actors and actions occurring simultaneously.

4.2. Evaluation Metrics

Following the evaluation protocol in [5–7, 18], we used
the per-frame mean average precision (mAP) and per-frame
mean calibrated average precision (mcAP) at the frame-
level for THUMOS-14 and TVSeries, respectively.

4.3. Experimental Setting

We set the frame rate of all videos at 24 fps. Each chunk
consisted of 32 frames and each video segment consisted of
eight chunks. We extracted visual features for all chunks
within all training and test videos. As a feature extractor,
we used RGB-based TSM [11] pre-trained with Kinetics [2]
and extract features from the last global average pooling
layer. For training, we generate all positive and negative
samples corresponding to video segments from all training
videos with current frames of actions and background, re-
spectively. Then, we train the proposed IEN with 64 pos-
itive and 64 negative samples, which are selected from the
generated training samples, in a batch. For testing, we gen-
erate all test samples corresponding to video segments from
all test videos. For evaluation, we obtain the predicted re-
sults on all the test samples with the best IEN model, which
is trained through 50 epochs showing the best performance.
We set the dimensions of the extracted features (i.e. dv),
embedded features (i.e. de), hidden states (i.e. dh) as 2,048,
512, and 512, respectively. We used Adam as the optimizer,
set the learning rate to 0.0001. For the IEU model for both
OAD and OAA, we set α to 0.75.

4.4. Performance comparison

In this section, we compare our IEN to existing OAD
state-of-the-art methods on the two benchmark datasets,
THUMOS-14 [10] and TVSeries [4]. The OAD models are
divided into those using RGB features only (noted as RGB)
and those using two-stream features using RGB as well as
optical flow frames (noted as RGB+Flow). As a feature ex-
tractor for RGB+Flow input, RED [7], TRN [18], IDN [5],
and TFN [6] use the two-stream (TS) CNN [17] to extract
the same TS features using RGB frames for the appearance
and optical flows for the motion, as described in TRN [18]
in detail. For RGB input, RED [7] and TRN [18] use the
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same VGG-16 features [15], as described in TRN [18] in
detail, and IDN [5] and TFN [6] use only the appearance
part of the TS features. For RGB features, our IEN use
TSM [11] with only RGB frames. The IENs trained for
only AD and trained for both AD and AA, are denoted as
OursAD and OursAD+AA, respectively.

Table 1. OAD Performance comparison on THUMOS-14 [10].

Input Method Feature Extractor mAP (%)

R
TFN [6] TS-RGB [17] 45.5
OursAD+AA TSM-RGB [11] 59.3
OursAD 60.0

R+F

RED [7]

TS [17]

45.3
TRN [18] 47.2
IDN [5] 50.0
TFN [6] 55.7
IDN-kin. [5] 60.3

Table 2. OAD Performance comparison on TVSeries [4].

Input Method Feature Extractor mcAP (%)

R

RED [7] VGG [15] 71.2
TRN [18] 75.4
IDN [5] TS-RGB [17] 76.6
TFN [6] 79.0
OursAD+AA TSM-RGB [11] 80.9
OursAD 81.3

R+F

RED [7]

TS [17]

79.2
TRN [18] 83.7
IDN [5] 84.7
TFN [6] 85.0
IDN-kin. [5] 86.1

Table 1 and Table 2 report the OAD performances on
THUMOS-14 [10] and TVSeries [4], respectivly. Our
IEN achieves comparable OAD performances to the-state-
of-the-arts using both RGB and flow frames, on both the
THUMOS-14 and TVSeries datasets.

Table 3. OAA Performance comparison.

Method THUMOS-14 TVSeries
in 1s in 2s in 1s in 2s

ED [7] 36.8 31.6 74.6 71.0
RED [7] 37.5 32.1 75.5 71.2
TRN [18] 39.1 34.3 75.9 72.3
OursAD+AA 54.2 44.6 77.3 71.9

Table 3 reports both the OAA performances on
THUMOS-14 [10] and TVSeries [4]. Our IEN outper-
forms to the the-state-of-the-arts, on both the two bench-
mark datasets.

4.5. Ablation studies

4.5.1 Structure for IEU

To demonstrate the importance of our IEU adding a new el-
evation gate and using x0 appropriately, we compare the
evaluation results from four models using four recurrent
units, i.e., original LSTM, LSTM taking additional current
information in a naı̈ve way, LSTM taking additionally cur-
rent information in a sophisticated way, and our IEU. Figure
4 depicts the three recurrent units and our IEU.

Table 4. An ablation study when using different types of informa-
tion sets.

Model THUMOS-14 TVSeries
mAP (%) mcAP (%)

LSTMw/o−x0
58.5 79.9

LSTMw/−x0−bundle 58.9 80.5
LSTMw/−x0−sophisticated 59.4 80.7
Our IEU 60.0 81.3

As presented in Tab. 4, the performance of LSTMw/o−x0

shows the limitation of not using the current informa-
tion x0 for OAD. The LSTMw/o−x0

achieves the worst
performance compared to the other three units that take
the current information x0 as input. On THUMOS-
14 [10], LSTMw/o−x0

achieves at least 0.4% and at
most 1.9% lower performances. On TVSeries [4],
LSTMw/o−x0

achieves at least 0.6% and at most 1.5%
lower performances. This means that taking the cur-
rent information x0 as input is required for temporal
modeling for OAD. In addition, the second and third
units, LSTMw/−x0−sohpisticated and LSTMw/−x0−bundle,
achieve worse performances than our IEU on both
THUMOS-14 [10] and TVSeries [4]. This means that the
newly-added information elevation gate, which is not in-
cluded in LSTMw/−x0

s, effectively compensates for the
limitation of the forget gate. LSTMw/−x0−sophisticated out-
performs LSTMw/−x0−bundle, which means that assigning
inputs fed into each gate in an advanced way by considering
each gate is a more effective method of temporal modeling
for OAD than using inputs in a bundle.

4.5.2 Relationship between OAD and OAA

Table 5 shows the relationship between OAD an OAA per-
formance according to the balancing parameter α between
them. The IEN achieves the best OAD performance when
the IEN is trained only for OAD. In contrast, IENs achieves
better OAA performances when trained for both OAD and
OAA. Especially, the IEN trained only for OAA shows the
worst OAA performance between all the IENs except the
IEN trained only for OAD.
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Figure 4. Three compared models for the ablation study. (a) original LSTM w/o-x0 that does not contain x0, (a) LSTM w/-x0 in a
naı̈ve way that takes ht−1, xt, and x0 in a bundle as input (3) LSTM w/-x0 in a sophisticated way that uses x0 instead of xt or ht−1 by
considering the role of each gate.

Table 5. Performances according to the balancing parameter α.

α : (1− α)
THUMOS-14 TVSeries

0s in 1s in 2s 0s in 1s in 2s
1.00 : 0.00 60.0 2.6 2.1 81.3 50.9 49.9
0.75 : 0.25 59.3 54.2 44.6 80.2 77.9 72.5
0.50 : 0.50 58.4 53.8 46.4 80.2 77.9 72.5
0.25 : 0.75 58.2 53.4 43.9 76.6 77.1 72.0
0.00 : 1.00 2.2 50.5 41.3 51.5 74.7 67.5

4.5.3 Effects of dense prediction

To show the effectiveness of dense prediction of past and
current actions, we compare OAD performances between
dense prediction of all the chunks and single prediction of
the current chunk, as shown in Tab. 6 In all cases, the dense
prediction outperforms the single prediction.

Table 6. Performances comparison between dense and single pre-
diction for OAD

α
THUMOS-14 TVSeries

dense single δ dense single δ
1.00 60.0 59.6 -0.4 81.3 80.5 -0.8
0.75 59.3 59.1 -0.2 80.9 80.4 -0.5
0.50 58.4 57.8 -0.6 80.2 79.3 -0.9
0.25 58.2 57.4 -0.8 76.6 78.8 2.2

4.6. Processing Time for Feature Extraction

Table 7. Processing speed related to feature extraction.

RGB TSM [11] Optical Flow
Speed (fps) 266 1,162 12

For fast OAD, we also extracted visual features using
only RGB frames. Table 7 presents the three kinds of speed
values required for extracting RGB frames, extracting TSM
[11] features, and optical flows. We measured the feature
extraction speed in terms of frames per second (FPS), us-

ing a Titan XP GPU. Among them, the speed of extracting
optical flows is slowest at 12 fps for dense optical flows
in OpenCV. In addition, when adopting visual features ob-
tained from optical flows, we require additional time to ex-
tract visual features based on optical flows through an AR
network, which is not included in Tab. 7. Owing to the
excessive time cost for optical flows, adopting them makes
OAD methods infeasible for practical services such as video
monitoring for specific actions.

4.7. Qualitative Evaluation

As shown in Fig. 5, we visualize qualitative results on
THUMOS-14 [10] and TVSeries [4]. The top two parts and
bottom two parts of Fig. 5 show the results of the qualitative
evaluation on THUMOS-14 and TVSeries, respectively. In
particular, the IEN shows remarkable qualitative results on
THUMOS-14. On THUMOS-14, the IEN determines the
current action with high-predictive action probabilities for
the action. Moreover, on THUMOS-14, the predicted prob-
abilities between actions and background are distinguish-
able, as shown in Fig. 5.

5. Conclusion
In this paper, we propose a novel IEU, which extension

of LSTM for OAD, by adding a new elevation gate with
an additional input of current information to maintain and
aggregate necessary past information related to the current
action. Through the dense prediction of past and current ac-
tions, the IEN based on the IEUs enhances both the OAD
and OAA performances. To the best of our knowledge,
our IEN is the first attempt that considers the computa-
tional overhead for the practical use of OAD. For practical
use of OAD, we adopt a fast action recognition network,
TSM [11], for extracting RGB-based visual features by ex-
cluding flow frames that require heavy computation over-
head. On the OAD benchmark datasets, THUMOS-14 [10]
and TVSeries [4], we confirm that our IEN using only RGB
frames achieves comparable OAD performances and out-
standing OAA performances, compared to the state-of-the-
arts using both RGB and flow frames.
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Figure 5. Qualitative evaluation of IEN on THUMOS-14 [10] and TVSeries [4]. The frames painted in color represent detected actions
and the below graph represents the predicted action probabilities on their action class.
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