
Multi-Camera Multiple 3D Object Tracking on the Move

for Autonomous Vehicles

Pha Nguyen1, Kha Gia Quach2, Chi Nhan Duong2, Ngan Le1, Xuan-Bac Nguyen1, Khoa Luu1

1 CVIU Lab, University of Arkansas, USA 2 Concordia University, CANADA
1{panguyen, thile, xnguyen, khoaluu}@uark.edu 2{dcnhan, kquach}@ieee.org

Abstract

The development of autonomous vehicles provides an op-

portunity to have a complete set of camera sensors cap-

turing the environment around the car. Thus, it is impor-

tant for object detection and tracking to address new chal-

lenges, such as achieving consistent results across views of

cameras. To address these challenges, this work presents a

new Global Association Graph Model with Link Prediction

approach to predict existing tracklets location and link de-

tections with tracklets via cross-attention motion modeling

and appearance re-identification. This approach aims at

solving issues caused by inconsistent 3D object detection.

Moreover, our model exploits to improve the detection ac-

curacy of a standard 3D object detector in the nuScenes de-

tection challenge. The experimental results on the nuScenes

dataset demonstrate the benefits of the proposed method

to produce SOTA performance on the existing vision-based

tracking dataset.

1. Introduction

Object detection and tracking have become one of the

most important tasks in autonomous vehicles (AV). Re-

cent development of deep learning methods has dramati-

cally boosted the performance of object understanding and

tracking in autonomous driving applications thanks to the

availability of public datasets. Far apart from prior video

tracking datasets collected via single or stereo cameras, e.g.,

KITTI [13], recent public datasets and their defined tracking

problems have become more realistic with multiple cam-

eras in autonomous vehicles. They usually have a full set of

camera sensors that aim to create a 360◦ surround view and

provide more redundancy as backup, i.e. more overlapping

field-of-views. There are some popular large-scale tracking

datasets with multiple sensor setup, such as nuScenes [2],

Waymo [32], Lyft [30], or Argoverse [6]. They have a lot

more data than KITTI ranging from multiple surrounding

cameras, LiDAR, radars and GPS.

Figure 1. First row: the object detector and tracking method

DEFT [5] fails to detect partial objects in one camera but can de-

tect in another camera, Second row: The detector fails to detect

objects in both cameras. Green arrow indicates true positive detec-

tion sample, red arrows indicate false negative detection samples.

Having enormous data as in recent public datasets helps

to improve deep learning based 3D object detection. How-

ever, it also poses more challenging problems in practice,

such as maintaining high accuracy and latency performance

in variety points of views and environments. In addition,

Multiple Object Tracking (MOT) is usually employed to-

gether with 3D object detection to track objects and main-

tain stability of prediction across video frames. In order

to handle multiple views, a common approach to Multi-

Camera Multiple Object Tracking (MC-MOT) [3, 7] is to

firstly apply an MOT approach on each camera indepen-

dently, i.e. single camera tracking (SCT), then link lo-

cal tracklets across cameras together via global matching

steps based on Re-ID features. However, this approach cre-

ates more errors, i.e. fragmented local tracklets, and more

computation since the data association and the matching

steps will perform multiple times both locally and globally.

Therefore, using SCT multiple times is not the optimal op-

tion. In addition, it is unable to handle scenarios when the

detector fails to detect objects from one of the cameras as

shown in Fig. 1.
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Therefore, this work proposes to formulate MC-MOT

problem as a global association graph in a 360◦ view using

an object detection as the inputs instead of SCT trajectories.

Our proposed MC-MOT approach not only models object

motion but also the appearance of each tracked object. We

encode both location and appearance features in the node

embeddings of the proposed graph where the nodes corre-

sponding to each tracked object are updated and added to

the graph over time. In addition, we adopt the new self-

attention and cross-attention layers to decode motion and

location, then propagate them across camera systems via

3D-to-2D transformation.

Contributions of this Work. The main contributions of

this work can be summarized as follows. A new MC-MOT

framework is firstly introduced where a global graph is con-

structed with nodes containing both appearance and motion

features of the tracked objects and the weighted edges be-

tween tracked objects or nodes. The edge weights are com-

puted based on the similarity in appearance and location be-

tween two tracked objects or nodes. Secondly, we present

a new Auto-regressive Graph Transformer network includ-

ing a self-attention layer to transform appearance features

and cross-attention to predict the motion features of objects.

This network can help to obtain a more robust node embed-

ding to maintain accurate tracking when objects are on side

views of cameras. Then, we further post-process the pre-

diction results with motion propagation and node merging

modules. Finally, the proposed framework will be evalu-

ated with a comprehensive evaluation criterion to demon-

strate its robustness compared against previous MC-MOT

frameworks. The proposed method even helps to improve

the detection accuracy of a standard 3D object detector on

the nuScenes benchmark.

2. Related Work

MOT problem on AVs has recently received a lot of at-

tention from the research community. There is an increasing

amount of research work targeting trajectory estimation on

moving sensors [8, 36] or combining appearance informa-

tion to determine object IDs [14, 42, 43].

Tracking using Motion Model Weng et al. [36] propose

a simple yet effective baseline that utilizes classic state es-

timator Kalman Filter for 3D bounding boxes. They can be

obtained not only from a LiDAR point cloud object detec-

tor [20, 21, 28, 44, 45] but also from an image-based object

detector [14,26,29,43]. Chiu et al. [8] improves the Kalman

Filter tracking system by measuring the Mahalanobis dis-

tance between the predicted states and observations. This

method is promisingly reliable in filtering outliers and han-

dling both partially and fully occluded objects.

Tracking using Appearance Model Zhou et al.’s ap-

proaches [42, 43] are widely used in single camera tracking

problems. By treating objects as points, these approaches

simplify the tracking procedure that is usually a combina-

tion of many expensive steps from detection to assigning

object ID. Simonelli et al. [29] introduce a novel disentan-

gling transformation for detection loss and a self-supervised

term for bounding boxes confidence score. Hu et al. [14] try

to estimate robust 3D box information from 2D images then

adopt 3D box-reordering and LSTM as a motion module to

link objects across frames.

Tracking using Hybrid Approaches Chaabane et al. [5]

train the object detection and the object association task si-

multaneously by adding a feature extractor and a matching

head after object detector. Besides, an LSTM is used as a

motion prediction module as an alternative to Kalman Fil-

ter. Similarly, Yin et al. [39] follow the same process, but

perform feature extraction on point cloud maps.

Tracking using Modern Approaches Graph Neural Net-

work, Self-Attention, and Transformer [34] introduce a

new learning-from-context paradigm. It recently has at-

tracted considerable attention from the research commu-

nity because of its promising performance in a wide range

from Natural Language Processing [10, 17, 19, 24] to Com-

puter Vision [4, 11, 25, 33, 35, 47] tasks. Currently, there

are none of these methods applied in MC-MOT on au-

tonomous vehicles but it is worthy to name a few SCT-

MOT approaches [9, 12, 18, 31, 37, 38, 46]. Weng et al. [37]

propose the first feature interaction method that leverages

Graph Neural Network to individually adapt an object fea-

ture to another object features. Meinhardt et al. [18] pro-

pose a new tracking-by-attention paradigm besides existing

tracking-by-regression, tracking-by-detection and tracking-

by-segmentation to deal with occlusions and reason out

tracker’s spatio-temporal correspondences. Sun et al. [46]

utilize Query-Key mechanism to perform joint-detection-

and-tracking, disentangle complex components in previous

tracking systems.

3. Our Proposed Method

In this section, we first overview our proposed 3D object

tracking pipeline where we construct and maintain a Global

Graph with the Graph Transformer Networks in Subsection

3.1. Then, Subsection 3.2 will detail the structure of Graph

Transformer Networks and how it is used to model appear-

ance and motion of tracked objects. Finally, Subsection 3.4

describes how we train the Graph Transformer Networks.
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3.1. MC-MOT via Global Graph Constructing

Given C cameras, denoted by the set C = {c1, . . . , cC},
they are used to perceive surrounding environment of a ve-

hicle. In MC-MOT, we assume each camera attached with

an off-the-shelf 3D object detector to provide initial lo-

cation of objects in real-world coordinates. In this work,

KM3D [16] is used to provide 3D object location and fea-

tures but it can be replaced by any other 3D object detectors.

In the previous MC-MOT approaches [3] [7], [40] [22],

the methods depend on tracking results of an MOT algo-

rithm on each camera independently. There is no mecha-

nism to model the relationship between cameras while they

have a strong relations. Instead, our proposed MC-MOT

take detection results directly from the detectors and match

with current tracked objects using an auto-regressive ap-

proach by taking the cameras relation into consideration. In

our approach, a single graph is constructed and maintained

across time by graph transformer networks (detailed in Sec.

3.2).

At time step t, our MC-MOT framework receives de-

tection outcomes O(t)
c = {o(t)

i,c} generated by a 3D ob-

ject detector from all synchronized camera inputs. The de-

tected i-th object o
(t)
i,c contains its location in 3D l

(t)
i,c and

its features f
(t)
i,c . Then, our MC-MOT framework will up-

date and maintain a set of tracked objects, called tracklets

T (t)
c = {tr(t)k,c}, based on detected objects at time step t and

previous tracklets at time step t − 1. Each tr
(t)
k,c is a vector

with 3D location and features of the corresponding tracked

object. This set of tracklets are represented by a global

graph G(t) = (V(t), E(t)), where the vertex set V(t) contains

all the tracklets T (t)
c tracked up to time t and the edge set

E(t) contains geometry distance between two tracklets. In

this way, G(t) can be obtained using graph transformer net-

works from a joint set of NT nodes of the previous graph

G(t−1) and NO new nodes formed by current detections

O(t)
c s. The changes in the global graph from frame-to-frame

are likely adding new nodes as new objects are detected or

removing old nodes as tracklets are out of view. This step

is done by graph link prediction using a Softmax classifier

similar to [23]. Next, we will discuss how the transformer

decoder can be employed to update the embedding features

for each node with self-attention layer and how to predict

tracked objects’ motion via cross-attention layer.

3.2. Auto-Regressive Graph Transformer Networks

In this section, we introduce Graph Transformer Net-

works (GTN) to transform and update node embeddings by

attending to other nodes for robust appearance and motion

modeling. First, the building blocks of this GTN, i.e. graph

self-attention layer and graph cross-attention layer, are pre-

sented in Sub-sec. 3.2.1 and 3.2.2, respectively. Then, we

perform motion propagation and node merging operators

that include the removing and the adding nodes in the graph

via link prediction in Sub-sec. 3.2.3 and 3.2.4, respectively.

3.2.1 Graph Self-Attention Layer for Appearance

Modeling

Each node k ∈ V(t) in the graph G(t) contains the object’s

3D location l
(t)
k,c and its feature embedding f

(t)
k,c, i.e. Re-ID

features. The Re-ID features are provided by KM3D [16]

as its outputs together with 3D box predictions. To con-

sider the effects of cameras on appearance features, the self-

attention layer takes the input node features as the concate-

nation of embedding features with camera and location en-

coding as hl
k = {f (t)k,c|c|l

(t)
k,c} ∈ R

DE , where l = 0 only ap-

plied for the input of the first layer, f
(t)
k,c ∈ R

DF , c ∈ R
DC

and l
(t)
k,c ∈ R

3. We use pre-computed camera and loca-

tion encoding to concat with the node features before the

first layer, similar to how positional encodings are added in

the original Transformer [34]. Then, the self-attention layer

provides the output embeddings as hl+1
k for layer l. This

output can be used as the input for the next layer if there is

more than one self-attention layer.

In order to further improve pairwise attention scores as in

[34], we incorporate pairwise edge features by multiplying

them together. In summary, the output of the self-attention

layer is computed as follows,

h′l+1
k = Ol

h

H

∥
i=1





∑

j∈V(t)

w
i,l
kjV

i,lhl
k



 (1)

e′
l+1
kj = Ol

e

H

∥
i=1





∑

j∈V(t)

w′i,l

kj



 (2)

w
i,l
kj = softmaxj(w

′i,l

kj) (3)

w′i,l

kj =

(

Qi,lhl
k ·Ki,lhl

j√
Dh

)

·Ei,lelkj (4)

where w
i,l
kj are the attention coefficients for the i-th at-

tention head, ∥ is the feature vector concatenation opera-

tion, Qi,l,Ki,l,Vi,l,Ei,l ∈ R
DZ×DE denote the ªqueriesº,

ªkeysº, ªvaluesº linear projection matrices and node em-

bedding, respectively, as defined in [34] and DZ is the out-

put feature dimension. H denotes number of attention head

in multi-head attention setting.

The outputs hl+1
k and el+1

kj are then passed through feed

forward layers with residual connections and normalization
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Figure 2. The proposed framework via Graph Transformer Networks. For every new detected object, we calculate new graph feature

described in Sub-sec. 3.2.1 and 3.2.2. Then, we perform motion propagation and node merging operators that include the removing and

the adding nodes in the graph via link prediction in Sub-sec. 3.2.3 and 3.2.4.

layers (see Fig. 2), defined as follows.

h′′l+1
k = norm

(

h′l+1
k + hl

k

)

(5)

h′′′l+1
k = FFNl

h

(

h′′l+1
k

)

(6)

hl+1
k = norm

(

h′′l+1
k + h′′′l+1

k

)

(7)

where h′′l+1
k and h′′′l+1

k denote the outputs of intermediate

layers. FFN is the feed forward layers.

e′′
l+1
kj = norm

(

e′
l+1
kj + elkj

)

(8)

e′′′
l+1
kj = FFNl

e

(

e′′
l+1
kj

)

(9)

el+1
kj = norm

(

e′′
l+1
kj + e′′′

l+1
kj

)

(10)

where e′′
l+1
k and e′′′

l+1
k denote the outputs of intermediate

layers.

3.2.2 Graph Transformer Layer for Motion Modeling

In this section, we demonstrate how tracked objects in track-

let nodes are used as queries while newly detected objects

are used as keys and values in our proposed transformer

layer. This layer perform a cross-attention mechanism in-

stead of self-attention mechanism where queries are differ-

ent from keys. The input of this layer are the output node

embedding from previous self-attention layers and the out-

put of this layer are new tracklet nodes for the current frame

t. It takes an object feature from previous frames as input

query instead. This inherited object feature conveys the ap-

pearance and location information of previously seen ob-

jects, so this layer could well locate the position of the cor-

responding object on the current frame and output ªtracking

boxesº. This design helps to capture the attention on current

frame detection features and previous frame track queries,

to continuously update the representation of object identity

and location in each track query embedding.

We first put together all detected objects as XO ∈
R

NO×DZ and all tracked objects as XT ∈ R
NT ×DZ . Then

the l-th output of the multi-head cross attention layer is de-

fined as

zlk = Ol
z

H

∥
i=1





∑

j∈XO

W
i,l
kjV

i,lXT
T [k]



 (11)

W
i,l
kj = softmaxj

(

Qi,lXT
T [k] ·Ki,lXT

O[j]√
Dh

)

(12)

where Qi,l,Ki,l,Vi,l ∈ R
DE×DZ , are the ªqueriesº,

ªkeysº and ªvaluesº linear projection matrices, respectively,

as defined in [34] and DZ is the output feature dimension.

Similar to attention layer, we can stack multiple cross-

attention layers together. Then we get the final output to

pass through FFN to provide final set of new node embed-

dings including location and class predictions for frame t.

3.2.3 Cross-Camera Motion Propagation

In this section, we provide a more detailed formulation on

how to obtain Re-ID features of the detected objects from

camera ck to camera cj . First, we compute the transforma-

tion matrix to transform 3D object locations to 2D/image

coordinates. This transformation which is composed of

a transformation from camera-to-world for camera ck, a

transformation from world-to-camera for camera cj , and a

transformation from camera-to-image for camera cj , is de-
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fined as follows.

Mkj = MIj ∗MEj
∗M−1

Ek
(13)

where MEj
and M−1

Ek
are the extrinsic camera matrix for

camera ck to camera cj , respectively. MIj is the intrinsic

camera matrix for camera cj . Note that we only consider

two adjacent cameras ck and cj where they have a certain

amount of overlapping views. Then, we use the transformed

2D/image location to extract the re-id features at the cor-

responding location on the image. Finally, we update the

existing node or add a new node for all the tracked objects

tr
(t)
k,cj

.

3.2.4 Node Merging via Edge Scoring

After having transformed node and edge features, we train

a fully connected layer and a softmax layer as a classifier

to determine the similarity between two nodes as previ-

ously proposed in [23]. The classifier produces a proba-

bility score s ∈ [0, 1]. The higher the score is, the more

likely the two nodes are linked. Then we remove detec-

tion nodes that have a low class score which indicates that

the detection is matched with an existing tracklet. We also

merge nodes that have high similarity scores that have the

same camera encoding, i.e. detected within single camera

and update edge weights as the similarities among tracklet

nodes to indicate the same target ID from different cam-

eras. These necessary steps are similar to a non-maximum

suppression (NMS) applied to trajectory for post-processing

although cross-attention layer help spatially discriminate al-

most identical track query embeddings merging to the same

target ID.

3.3. Processing Flow

In this section, we briefly summarize the pipeline of

our proposed graph transformer networks to predict tracklet

motion, motion propagation and node merging in Algorithm

1.

3.4. Model Training

In this section, we present how to train our proposed

graph transformer networks, including self-attention and

cross-attention layers.

Training Data. We train our proposed method on a large-

scale dataset, i.e. nuScenes, training set with 750 scenes of

20s each and use its validation set for our ablation study.

The ground truth 3D bounding boxes and the extracted

ReID features from the pre-trained models in [22, 41] were

used together as the inputs for training GTN. Each train-

ing sample contains a chunk size of two consecutive frames

from a training sequence.

Algorithm 1 The process pipeline for global graph con-

structing, motion prediction, propagation & node merging

1: Init t← 0 /* Time */, V ← ∅
2: while t < tmax do

3: Obtain the set of detected objects O(t)
c from 3D ob-

ject detector [16] in all cameras.

4: for o
(t)
k,c ∈ O

(t)
c do

5: V(t) ← V(t−1) ∪ o
(t)
k,c /* Add new nodes to graph

*/

6: /* Use the vector {f (t)k,c|c|l
(t)
k,c} as node features. */

7: end for

8: for k ∈ V(t) do

9: Obtain new node embedding h′
k /* Section 3.2.1

*/

10: end for

11: Obtain new set of nodes V ′(t) with location and clas-

sification of tracked objects tr
(t)
k,c via motion model-

ing /* Section 3.2.2 */

12: for c ∈ C do

13: Propagate the location of tr
(t)
c to adjacent cameras

/* Section 3.2.3 */

14: end for

15: for vi ∈ V ′(t) do

16: Obtain edge scoring to the remaining nodes and

node merging /* Section 3.2.4 */

17: Assign ID based on edge scores.

18: end for

19: t← t+ 1
20: end while

Training Loss. Our framework can be trained with two

adjacent frames by optimizing for detections and tracklets

prediction at frame t, given previous frame tracklets. Our

joint objective function include learning node embedding

capturing both structural information from the graph, com-

puting weighted linking score between two nodes in the

graph and learning to predict tracklets motion.

For learning node embedding, we measure binary cross-

entropy loss Lemb between nodes that belong to the same

objects for the model to output similar feature embeddings.

Lemb(vk) =
∑

vj∈N
(t)
b

(vk)

− log
(

σ

(

< e
′
vk

, e
′
vj

>

))

− wg

∑

vi∈N
(t)
g (vk)

log
(

1− σ

(

< e
′
vk

, e
′
vi

>

))
(14)

where < · > is the inner production between two vec-

tors, σ is Sigmoid activation function, N (t)
b (vk) is the set

of fixed-length random walk neighbor nodes of vk at time

step t, N (t)
g (vk) is a negative samples of vi for time step

t, N (t)
a (vk) = N (t)

b (vk) ∪ N (t)
g (vk) and wg , negative sam-
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Method mATE ↓ mASE ↓ mAOE ↓ mAVE ↓

3D KF [36] 0.8153 0.5155 0.7382 1.6186

LSTM [5] 0.8041 0.4548 0.6744 1.6139

Ours 0.5132 0.4388 0.3677 1.2189

Table 1. Motion Errors comparison for different motion modeling

pling ratio, is an adjustable hyper-parameter to balance the

positive and negative samples.

For edge scoring, we use a cross-entropy loss function

Lc(ekj) based on measurement features to ensure the score

between two nodes that are connected is higher than other

nodes.

For learning to predict tracklets motion, we set predic-

tion loss to measure the set of predictions for NO detections

and NT tracklets comparing with ground truth objects in

terms of classification and location (bounding boxes). Set-

based loss produces an optimal bipartite matching between

NO detections and ground truth objects while NT track-

lets will be matched with boxes from previous frames. The

matching cost is defined as follows.

Lset =

NO+NT
∑

i=1

(λclsLcls + λboxLbox + λiouLiou) (15)

where λcls, λbox and λiou are combination weighting pa-

rameters for each component losses. Lcls is the cross-

entropy loss between prediction classification and ground

truth category labels. Lbox and Liou are the ℓ1 loss and

the generalized intersection over union (IoU) [27] for 3D

bounding boxes. Finally, we have the total loss defined as

Ltotal = Lemb + Lc + Lset (16)

4. Experimental Results

In this Section, we detail the benchmark dataset and met-

rics in Subsection 4.1. Then, the setups for all experiments

and the ablation study will be presented in Subsections 4.2

and 4.3 respectively. The comparisons with the State-of-

the-Art (SOTA) methods will be detailed in Subsection 4.4

on a large-scale Tracking Challenge, i.e. nuScenes Vision

Track.

4.1. Benchmark Dataset and Metrics

4.1.1 Dataset

nuScenes [2] is one of the large-scale datasets for Au-

tonomous Driving with 3D object annotations. It contains

1,000 videos of 20-second shots in a setup of 6 cameras, i.e.

3 front and 3 rear ones, with a total of 1.4M images. It also

provides 1.4M manually annotated 3D bounding boxes of

23 object classes based on LiDAR data. This dataset is an

official split of 700, 150 and 150 videos for training, valida-

tion and testing, respectively.

4.1.2 Metrics

The proposed method is evaluated using both detection and

tracking metrics described in [2].

Detection Metrics. A commonly used metric, i.e. Mean

Average Precision (mAP), is defined as a match using a 2D

center distance on the ground plane instead of intersection

over union cost for nuScenes detection challenges.

Similarly, other motion-related metrics are also defined

in nuScenes, such as Average Translation Error (ATE) mea-

suring Euclidean center distance in 2D in meters, Average

Scale Error (ASE) computing as 1 − IOU after aligning

centers and orientation, Average Orientation Error (AOE)

measuring by the smallest yaw angle difference between

prediction and ground-truth in radians, Average Velocity Er-

ror (AVE) measuring the absolute velocity error in m/s and

Average Attribute Error (AAE) computing as 1−acc, where

acc is the attribute classification accuracy.

Last but not least, we also use the nuScenes Detection

Score (NDS) that is based on a simple additive weighting of

the mean of all other metrics above, including mAP, mATE,

mASE, mAOE, mAVE and mAAE.

Tracking Metrics. The tracking performance is mea-

sured using the popular CLEAR MOT metrics [1] includ-

ing MOTA, MOTP, ID switch (IDS), mostly tracked (MT),

mostly lost (ML), fragmented (FRAG). Similar to nuScenes,

we use two accumulated metrics introduced in [36] as the

main metrics, including the average over the MOTA metric

(Average MOTA (AMOTA)) and the average over the MOTP

metric (Average MOTP (AMOTP)).

4.2. Experiments Setup

The proposed graph transformer networks module is

trained with two consecutive frames where the graph

{G(t−1)} in the previous time step is used to predict new

graph G(t) at time step t. Then, Mini-batch (chunk of two)

gradient descent is employed with Adam optimizer to learn

all the parameters in the attention layers.

4.3. Ablation Study

In this section, we present some experiments to ablate the

effect of each component of the proposed framework. Par-

ticularly, this section aims to demonstrate the followings: 1.

better motion modeling with cross-attention layer in GTN;

2. the role of architecture choice of graph transformer net-

works.

The Role of Motion Model In this experiment, we evalu-

ate the effectiveness of different motion modeling methods

on detection performance. We use the locations predicted

by motion models to compare with ground truth locations in
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Figure 3. Our proposed method (top) can recognize a positive tracking case compare with a MC-MOT system which has no object’s

correlations linking module (i.e. DEFT) for all cameras (bottom). Green arrows indicate true positive tracking samples, red arrows indicate

false negative tracking samples. Best viewed in color and zoom in.

Figure 4. Our proposed method (top) can recover a false negative detection case compared with a MC-MOT system which runs indepen-

dently on each camera (i.e. DEFT) (bottom). Green arrows indicate true positive detection samples, red arrows indicate false negative

detection samples. Best viewed in color and zoom in.

Structures mATE ↓ mASE ↓ mAOE ↓ mAVE ↓

Self-attn 1-layer 0.812 0.298 0.820 1.187

Self-attn 2-layer 0.785 0.286 0.703 1.284

Self-attn 3-layer 0.750 0.293 0.485 1.432

Cross-attn 1-layer 0.824 0.293 0.866 1.281

Cross-attn 2-layer 0.772 0.279 0.670 1.287

Cross-attn 3-layer 0.513 0.439 0.368 1.219

Table 2. Ablation study on different configuration for self-

attention and cross-attention layers.

terms of motion-related metrics. In such way, we can eval-

uate how good the motion model capturing and predicting

the motion of tracked objects. We compare with two other

commonly used motion models, i.e. 3D Kalman Filter [36]

and LSTM [5]. As shown in Table 1, our GTN gives better

results than a classical object state prediction technique, i.e.

3D Kalman Filter used in [36] and a deep learning based

technique, i.e. LSTM module, used in [5].
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Method Glo. Assoc. AMOTA AMOTP MOTAR MOTA ↑ MOTP ↓ RECALL ↑ MT ↑ ML ↓ IDS ↓ FRAG ↓

MonoDIS [29] ✗ 0.045 1.793 0.202 0.047 0.927 0.293 395 3961 6872 3229

CenterTrack [42] ✗ 0.068 1.543 0.349 0.061 0.778 0.222 524 4378 2673 1882

DEFT [5] ✗ 0.213 1.532 0.49 0.183 0.805 0.4 1591 2552 5560 2721

QD-3DT [15] ✗ 0.242 1.518 0.58 0.218 0.81 0.399 1600 2307 5646 2592

Ours ✓ 0.24 1.52 0.568 0.197 0.832 0.453 1643 2162 1362 1462

Table 3. Comparison of 3D tracking performance on the nuScenes validation set for Vision Track challenge. Glo. Assoc. indicates method

linking object IDs across all cameras

Method mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
MonoDIS [29] 0.2976 0.3685 0.7661 0.2695 0.5839 1.3619 0.184

MonoDIS [29] + Our MP + NM 0.3019 0.3893 0.6558 0.2410 0.6787 1.3209 0.184

CenterNet [43] 0.3027 0.3262 0.7152 0.2635 0.6158 1.4254 0.6567

CenterNet [43] + Our MP + NM 0.3487 0.4016 0.5417 0.2023 0.6317 1.3094 0.6567

KM3D [16] 0.2763 0.3201 0.7495 0.2927 0.4851 1.4322 0.6535

KM3D [16] + Our MP + NM 0.3503 0.4117 0.6998 0.2323 0.1861 1.8341 0.5166

Table 4. Comparison of 3D object detectors with and without using our motion propagation (MP) and node merging (NM) modules in

terms of detection metrics on the nuScenes validation set for Vision Detection challenge

The Configuration for Graph Transformer Networks

We conduct additional ablation studies to evaluate the ef-

fects on configuration of the attention modules in GTN,

including the number of attention layers. Table 2 shows

the performance of our proposed framework in terms of de-

tection metrics using various configuration of the attention

modules. We change the number of layer for self-attention

and the cross-attention layers independently. We use a fixed

number of layers, i.e. 2, for self-attention and the cross-

attention layers while changing the other, respectively.

4.4. Comparison against The State-of-the-Art
Methods

In this section, we first compare our proposed frame-

work with other vision-based (without using LiDAR or

RADAR information) tracking approaches, which are the

top in nuScenes vision only tracking challenge leaderboard.

Then we conduct an experiment to demonstrate that using

tracked 3D bounding boxes from our tracking framework

can actually improve the detection metrics.

Comparison against Tracking Methods on Tracking

Metrics This experiment compares our proposed method

with other vision-based methods, including MonoDIS [29],

CenterTrack [42] and DEFT [5], QD-3DT [15] which are

the top/winner of nuScenes vision only tracking challenge.

As we can see in Table 3, our method decreases error rates

compared to top approaches, i.e. DEFT, in most of the met-

rics. Fig. 3 illustrates the key factor that help improve the

tracking performance is that we perform appearance match-

ing across cameras in addition to motion modeling. It shows

that our proposed method (top) can assign object ID glob-

ally between cameras compared with DEFT [5] (bottom).

Comparison against Detection Methods on Detection

Metrics Table 4 demonstrates that the combination of ob-

ject detector and our motion propagation (MP) and node

merging (NM) modules achieves the better results than

original object detector. In this experiment, we compare

three different 3D object detectors, including KM3D [16],

MonoDIS [29] and CenterNet [43]. The best result achieves

with the combination of KM3D object detector [16] and our

MP+NM modules since it is guided by global decoded lo-

cations from our transformation procedure as described in

3.2.3. Fig. 4 illustrates the improvement on detector fail

cases with the help from our tracking framework.

5. Conclusions

This paper has introduced a new global association graph

model to solve the MC-MOT problem for AV. The pro-

posed framework can learn to perform tracking frame-by-

frame in an end-to-end manner starting from detections to

motion prediction and global association tracklets with de-

tections. These tasks are enhanced with self-attention and

cross-attention layers so that the proposed graph can cap-

ture both structural and motion across cameras. The ex-

periments show performance improvements in a large-scale

dataset in AV in terms of vision-based detection and track-

ing accuracy.
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