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Figure 1. We model the Persistent-transient duality of human
behaviors. In the default Persistent process (lower row), the human
subjects consider the whole scene from the global view with dense
relational connections (purple links). For an interactive action, they
switch on a Transient process (upper row) that zooms into a small
set of local objects that are directly interacted. When done with
such task, they switch back to the default Persistent mode.

Abstract

We propose to model the persistent-transient duality in
human behavior using a parent-child multi-channel neural
network, which features a parent persistent channel that man-
ages the global dynamics and children transient channels
that are initiated and terminated on-demand to handle de-
tailed interactive actions. The short-lived transient sessions
are managed by a proposed Transient Switch. The neural
framework is trained to discover the structure of the duality
automatically. Our model shows superior performances in
human-object interaction motion prediction.

1. Introduction
Human behavior is highly contextualized, reacting to

the rapid changes in the situation. This fast-changing nature
requires a model to adapt quickly in structure, representation,
and inference mechanism to follow the true patterns of the
behavior. Such requirement is critical in the problem of

human-object interaction (HOI) motion prediction, where
the subjects follow an overall plan but occasionally deviate
from it to solve emerging tasks [1].

Motion models on this task reflect the changing situations
by gradually adapting their relational structure. However,
with a fixed inference mechanism, they cannot account for
the discrete switching between distinctive mechanisms and
fail to keep up with the movement patterns. For example,
when the human subject deviates from the overall path to in-
teract with an object, these models will continue to consider
the interacted object as an equal member of the scene and
miss its importance as the action’s direct recipient.

We address this limitation by factorizing the human be-
haviors into two processes: a slow-changing persistent pro-
cess, which maintains a continuous default dynamic, and a
fast-changing transient process, which has an adaptive life-
cycle and a personalized structure that reflects the human’s
perspective in emerging events (See Fig. 1). The two pro-
cesses are modeled into a parent-child multi-channel neural
network called Persistent-Transient Duality. The Persistent
channel is a recurrent relational network operating on the
global scene spatially and throughout the session temporally.
The Transient channels instead have a contextualized graph-
ical structure constructed on the spot whenever the human
subjects shift the priority toward interacting with other en-
tities. The life cycles of these channels are managed by a
neural Transient Switch, which can learn to anticipate when
a Transient channel will be needed and trigger it in time.

Our model establishes the SOTA performance on the HOI
subset of the KIT Whole-Body Human Motion Database.

2. Method

2.1. Preliminaries

We consider the problem of modeling the sequential be-
haviors of N entities in a dynamic system, where each entity
i is represented by a class label ci and sequential features
Xi = {xt

i}
T
t=1. After observing T steps, we predict the

features in the next L steps, Yi = {yti}
T+L+1
t=T+1 . The entity

classes include the human and object (ci=”human”/”object”),
which decide the entity’s feature spaces and behaviors.
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Figure 2. The architecture of Persistent-transient Duality Networks (PTD). The persistent channel contains fully-connected recurrent
graph networks of all entities (squares) similar to current SoTA works. We introduce the new Transient channel to zoom into the local
context of each human (circles) when they interact with surrounding entities (triangles). The transient channels are initialized and terminated
on-demand, controlled by the neural Transient Switches (diamonds).

In this paper, we use a customized attention function
defined over the query q ∈ Rd and the identical key/value
pairs V = {vj}Nj=1 ∈ Rd×N :

Attn (q, V ) = σ

 N∑
j=1

softmaxj
(
W T

α [W qq;W vvj ]
)
W vvj


where [·; ·] is the concatenation, σ is a non-linear activa-

tion function, W v , W q , and W α are learnable weights.

2.2. The Persistent-Transient Duality

We model the persistent-transient duality of human be-
havior by a hierarchical neural network called Persistent-
Transient Duality Networks (PTD) (See Fig. 2). The network
has three main components: The Persistent Channel, the
Transient Channels, and the Transient Switch.

2.3. Persistent Channel

The Persistent channel oversees the global view of the
scene, including the humans and other entities. It has the
form of a recurrent relational network where entities interact
in the spatio-temporal space spanned by the video. The
temporal evolution of each entity is modeled as:

hP,t
i = RNNci

([
zP,t
i ,mt

i,T →P

]
, hP,t−1

i

)
, (1)

where RNNci is a recurrent unit that corresponds to the
class of the ith entity, maintaining hidden states hP,t−1

i

and consuming input vector zP,t
i . This input is formed as

zP,t
i = [xt

i;m
t
i], where xt

i is the entity’s feature and mt
i is the

message aggregated from the entity’s neighbor through atten-
tion, mt

i = Attn
(
ut
i,
{
ut
j

}
j ̸=i

)
with u t =

[
x t;h P,t−1

]
.

The unit also uses an optional transient-persistent mes-
sage mt

i,T →P which is non-zero if a corresponding transient
process (Sec. 2.4) is currently active.

The Persistent channel generates two outputs from its
hidden state: the future prediction ŷP,t

i and the message
mt

i,P→T to the Transient channel:

ŷP,t
i = MLP

(
hP,t
i

)
, mt

i,P→T = MLP
(
hP,t
i

)
. (2)

The channel’s prediction output ŷP,t
i are combined with

those from the Transient channel as detailed in Sec. 2.6.
This persistent channel is equivalent in modeling with the

major state-of-the-art HOI-M by using relational recurrent
models [2]. Our key novelty is the consideration of the
second side of the duality - the Transient process, presented
in the next section.

2.4. Transient Channel

Within the persistent-transient duality, the Transient pro-
cess allows the model to zoom in at relevant context and
take the local viewpoint of the human entity when it starts to
interact with objects. This human-specific process is imple-
mented by a Transient channel. The egocentric property of
this channel separates it from the global view of its parent
persistent channel and reflects in three aspects of feature
representation, computational structure, and inference logic.

The egocentric graph structure reflects the relations be-
tween the active subject and the surrounding passive entities.
We define the Transient graph for a human entity of index
i at time t to be Gt

i = (Vt
i , Et

i ). For a particular human,
subscript i will be omitted for conciseness.

The egocentric characteristic of Gt reflects in its star-like
structure: the nodes Vt includes a single center node r for
the considering human, and leaf nodes of indices {l}l ̸=r for
other entities. The dynamic edges Et connect the center
with the leaves in two directions: inward edges etl→r reflect
which objects the human pay attention to, and the outward
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Figure 3. The Transient Channel (a) and Transient Switch (b)

edges etr→l represents the objects are being manipulated by
the human. These edges are determined at each time step
by thresholding the center-leaf distances dtlr, making the
graph’s topology evolve within one single Transient session.

The Egocentric representation of the entities are com-
puted by transforming the geometrical features into the
egocentric coordinate system corresponding to the view-
point of the human center node r, x̄ t = fego (x

t, xt
r) =

x t − centroid(xt
r). This change of system puts various pat-

terns of the human’s motion into the same aligned space,
filters out the irrelevant global information, and facilitates
efficient inference of the egocentric model.

The Egocentric inference is made by updating the RNN
hidden state ht

− of each node in the transient graph structure
(see Fig. 3a). In detail, for the center node, the inward
messages from its leaves are aggregated into: mt

l→r =

Attn
([

x̄t
r;h

t−1
r

]
,
{[
x̄t
l ;h

t−1
l

]}
etl→r∈Et

)
. It is then com-

bined with the egocentric features x̄t
r and the message from

the persistent channel mt
P→T (Eq. (2)) to update the RNN:

ztr =
[
x̄t
r;m

t
l→r;m

t
P→T

]
, ht

r = RNNr

(
ztr, h

t−1
r

)
. (3)

For leaf nodes, they only update their states if the center
node interacts with them, indicated by the outward edge

ztl =
[
x̄t
l ;m

t
r→l

]
, ht

l =

{
RNNl

(
ztl , h

t−1
l

)
if etr→l ∈ Et

ht−1
l otherwise

,

(4)
where mt

r→l is the outward message from the center to its
leaves, calculated from its hidden state through an MLP.

The updated hidden states are used generate the transient
predictions ŷT ,t

i and the messages sent to the persistent pro-
cess mt

T →P (used in Eq. (1)):

ŷT ,t
− = f−1

ego

(
MLP

(
ht
−
))

,mt
T →P = ϕ

(
MLP

(
ht
r

))
, (5)

where f−1
ego is the function converting the egocentric back

to global coordinates. The transient predictions ŷT ,t
− are

combined with those from the Persistent process in Sec. 2.6.

2.5. Switching Transient Processes

The life cycles of the Transient processes are managed
based on the situation of human’s activity by a neural Tran-
sient Switch (See Fig. 3b).

The switch first considers the current persistent state and
the surrounding environment of the center entity r to update
its switch RNN hs,t

r :

hs,t
r = RNNs

([
hP,t
r ,ms,t

r

]
, hs,t−1

r

)
, (6)

where ms,t
r = Attn

(
hs,t−1
r , {x̄t

l}l ̸=r

)
, and x̄t

l =

fego (x
t
l , x

t
r) defined in Sec. 2.4.

The RNN unit is important in maintaining the switch’s
sequential properties, making it a state-full machine that can
handle patterns of on and off switchings and avoid spurious
decisions caused by noises. The switch-on probability ptr is:

p̂tr = γt
r · sigmoid

(
Whs,t

r

)
, (7)

where W is learnable weights. The discount factor γt
r ∈

[0, 1] responds to the distance from the subject to the nearest
neighbor: γt

r = exp
(
−β · min

{
∥dtlr∥2

}
l ̸=r

)
, where dtlr

are the center-leaf geometrical distances and β is a learnable
decay rate. This factor acts as a disruptive shortcut gate
that modulates the switching decision based on the spatial
evidence of the interaction.

Finally, the binary switch decision ŝtr is decided by thresh-
olding the switch score: the switch is on (ŝtr = 1) when
p̂tr >= 0.5, and is off otherwise. When it changes from 0
to 1, a new Transient process is created at time t for per-
son r. This transient process will keep running until the
switch turns off, then the persistent process again becomes
the single operator.

2.6. Future prediction

In PTD, future motions are predicted by unrolling the
model into the future of L time steps. At each future time
step t, the predictions from persistent channel Ŷ P,t (Eq. (2))
and those from Transient channel Ŷ T ,t (Eq. (5)) are com-
bined with the priority on the Transient predictions. For a
human entity, if its Transient channel is activated, the Tran-
sient prediction will be chosen; otherwise, the Persistent
prediction will be used. For an object entity, if it receives
an active outward Transient edge, it will take that channel’s
prediction. If it receives multiple outward edges, it uses the
prediction from the channel with the highest transient score
p̂tr. Otherwise, it uses the persistent prediction by default.

2.7. Model Training

The model is trained end-to-end with two losses: predic-
tion loss and switch loss, L = Lpred + λLswitch.
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Figure 4. Quantitative performances and model size in HOI-M.

The Prediction loss Lpred measures the mismatch be-
tween predicted values Ŷ and groundtruth Y , Lpred =

||Ŷ T :T+L − Y T :T+L||22.
The Switch loss Lswitch is used to supervise the

Transient Switch and is implemented as: Lswitch =

BCE
(
P̂ 1:T+L, P 1:T+L

)
, where P̂ t are the switch scores

(Eq. (7)) of all human entities, and P tare binary ground-
truth switch scores collected at time step t.

3. Experiment
Experiment settings. Following the standard protocol [2],
we extract a subset of the Whole-Body Human Motion
Database (WBHM) [4], which includes scenes that contain
body poses of at least one human entity, multiple movable
objects, and a stationary object such as “table”. This set
includes 233 videos with 20 entity classes. The selected
features include 3D skeleton poses of 18 joints for human
entities and 3D bounding boxes for objects, sampled at 10Hz,
consistent with the compared methods [2].

We compare PTD with CRNN [2], Structural RNN [3],
and the simple GRU, whose implementations are redone for
consistency. We follow the common settings of observing
10 time steps (1 second) and predicting future human and
object motions for the next 20 time steps (2 seconds). The
models are conventionally trained on 80% of the videos and
evaluated on the remaining 20%.

Quantitative evaluation. The performances are measured
by prediction errors of joint positions in the Euclidean dis-
tance (in mm). The means and standard deviations from five
independent runs are plotted in Fig. 4 and show that PTD
consistently outperforms the state-of-the-art, especially in
long-term prediction.

Visual analysis. We further verify the benefit of the dual-
ity by visualizing the internal output predictions and graph
structures of PTD compared to CRNN [2]. The upper row
of Fig. 5 shows that PTD could learn to switch from the Per-
sistent dense graph to the Transient egocentric graph when

PTD
(Ours)

CRNN

hu
man

cu
p

tab
le

table

cup

human

(a) Interaction free

Persistent graph

Attn Matrix

l1

r

l3

table

cup

human

hu
man

cu
p

tab
le

Transient graph

Attn Matrix

(b) Interaction involved

Figure 5. Persistent-transient duality in HOI-M. When the situation
changes from interaction-free (a) to interaction-involved (b), PTD
(Upper row) switches on its Transient channel with egocentric
structures and handles the interaction accurately; In contrast, CRNN
[2] (Lower row) uses a single mechanism, resulting in the sluggish
adaptation of the attention map, leading to inaccurate predictions.

the situation changes from interaction-free (a) to interaction-
involved (b). Particularly, in (b), the Transient graph reflects
the interactions correctly thanks to it being trained only on
targeted interaction samples free of noises.

In contrast, CRNN [2] (lower row) holds on to a single
global mechanism and does not evolve adequately for the
swift change in the true relational topology, resulting in
inaccurate and unrealistic interactions.

4. Conclusion
In this work, we have introduced a new concept of the

Persistent-Transient duality to model the interleaving of
global dynamics and the short-lived interactions in human be-
havior. We model this conceptual duality into a parent-child
multi-channel network that can switch between the two pro-
cesses seamlessly. The superior performance of our model
on the HOI subset of WBHM confirms the effectiveness of
this duality in human behavior modeling.
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