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Abstract

In videos that contain actions performed unintentionally,
agents do not achieve their desired goals. In such videos, it
is challenging for computer vision systems to understand
high-level concepts such as goal-directed behavior, an abil-
ity present in humans from a very early age. Inculcating
this ability in artificially intelligent agents would make them
better social learners by allowing them to evaluate human
action under a teleological lens. To validate this ability
of deep learning models to perform this task, we curate
the W-Oops dataset, built upon the Oops dataset [11]. W-
Oops consists of 2,100 unintentional human action videos,
with 44 goal-directed and 30 unintentional video-level ac-
tivity labels collected through human annotations. Due
to the expensive segment annotation procedure, we pro-
pose a weakly supervised algorithm for localizing the goal-
directed as well as unintentional temporal regions in the
video leveraging solely video-level labels. In particular, we
employ an attention mechanism based strategy that predicts
the temporal regions which contributes the most to a clas-
sification task. Meanwhile, our designed overlap regular-
ization allows the model to focus on distinct portions of the
video for inferring the goal-directed and unintentional ac-
tivity, while guaranteeing their temporal ordering. Exten-
sive quantitative experiments verify the validity of our local-
ization method. We further conduct a video captioning ex-
periment which demonstrates that the proposed localization
module does indeed assist teleological action understand-
ing. Project website can be found at: https://asu-—
apg.github.io/TragedyPlusTime.

1. Introduction

Traditional video action recognition [4, 10, 20, 27, 49,
, 63] focuses on predicting only atomic actions present
on the surface appearance of a video. On the other hand,
teleological understanding of actions entails understanding
the underlying goal of actions and why it was performed.
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Figure 1. State-of-the-art action recognition models trained on tra-
ditional video activity datasets view an unintentional action scene
as an atomic action. Although this scene involves a man falling on
his face, the man’s ultimate goal was to hit the ball. Green lines
indicate the regions of the video which indicate the man’s goal, red
lines indicate the regions where the action deviates from the goal,
and purple lines indicate the region the action recognition model
focuses on.

These goals can be easily inferred from intentional actions
as they are directly defined by their outcome. However,
many actions do end up in unintended results where the goal
of the action is partially or never achieved. As shown in
Fig. 1, an agent tries to hit the ball with a bat, but ends
up landing on his face, hence not being able to achieve
his goal of hitting the ball. State-of-the-art action recog-
nition models are all trained with vewing the whole scene
as “faceplant” without paying attention to the goal-
directed behavior which was to “hit the ball”.

Teleological action understanding provides the invalu-
able ability to explain and justify an action, as well as learn
from mistakes in the case the goal was not achieved [8]. For
fine-grained understanding of unintentional actions, it is im-
portant to know the goal of the action, why was it not ful-
filled, and when (in time) did the action start transitioning
away from its goal. These abilities are present in humans
from a very early age [2,7,18,44,60]. However, this is a
challenging task for deep learning models since it requires
the model to understand high level concepts such as goal-
directed behavior from unintentional actions which would
not be possible without penetrating deeper than the surface
appearance of the action [2]. There are few previous works
which have taken initial steps towards teleological action
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understanding. [ | 1] builds a dataset rich in unintentional hu-
man actions, along with single point transition times man-
ually labeled by human annotators which separate the in-
tentional and unintentional regions of the video. They also
train models on classification and localization tasks. How-
ever, it does not contain well defined classes for the goal-
directed action or why this goal gets disrupted. [47] focuses
on predicting whether an activity was intentional or unin-
tentional, but not the understanding of the underlying goal
of an unintentional action. Previous efforts [12,24,61] have
tried to speculate about all possible effects of actions but do
not explore which effects are undesirable.

In order to build a model which is capable of capturing
the unintended activity, it is crucial to first build a dataset
containing goal-directed actions and why they get disrupted
Additionally, in order to localize their respective regions in
time, one may manually label the transition point as in [1 1]
and fully supervise the training. However, these annotations
are prohibitively expensive to collect and suffer from human
error and bias. Previous works such as [23,28,31,33,34,40,

], which focus on segmenting atomic action scenes from
untrimmed videos tackle this problem of expensive manual
labelling by training a model in a weakly supervised manner
using only video level action labels. Though this task differs
from our task (which involves separating the goal-directed
action from the region it starts deviating from its goal), it
still provides encouragement to solve our task in a weakly
supervised manner.

We bring Weakly Augmented OQops (W-Oops), an aug-
mented human activities dataset which contains “fail”
videos, building upon Oops [11] but also contains high
quality video-level annotations which describe the goal-
directed as well as unintentional actions in the video. We
further develop an algorithm which allows the model to
attend to contextualized visual cues to localize these re-
gions as well as associate them with their respective goal-
directed/unintentional class label, leveraging solely video-
level labels. Our proposed learning schema includes an en-
coder to encode the joint representation of the goal-directed
and unintentional action in the video as well as temporal at-
tention modules which help the model focus on the respec-
tive regions of interest in the video. We also introduce a
novel optimization target known as Overlap Regularization
which allows the model to pay attention to distinct parts of
the video for inferring both types of actions while ensur-
ing their temporal ordering. Finally, we use class-agnostic
(bottom-up) as well as class-specific (top-down) attention
mechanisms to localize both types of actions. Additionally,
we conduct a video captioning experiment leveraging our
localization module to demonstrate it’s teleological ablity.

To summarize our contributions:

1. We curate W-Oops, an augmented video dataset, built
upon Oops [ 1], containing high quality video level

labels for the goal-directed as well as unintentional ac-
tion. To the best of our knowledge, we are the first to
make a step towards such fine-grained understanding
of unintentional actions.

2. We propose an attention mechanism based method that
highlights relevant temporal regions of the video im-
portant to a classification task when inferring the goal-
directed and unintentional action while also ensuring
their temporal ordering.

3. Finally, we provide in-depth and comprehensive ex-
perimental analysis, which validates the effectiveness
of our method compared to competitive weakly super-
vised action localization methods on W-Oops. Addi-
tionally, we demonstrate the teleological ability of our
localization module through a video captioning exper-
iment.

2. Related Work

Intent Recognition from Visual Input. There has been an
increasing research focus on intent recognition of agents in
videos. [58] proposes a hierarchical model to predict the in-
tention, as well as the attention of an agent’s eye gaze from
a RGB-D video. [55] focuses on predicting the action, mo-
tivation and scenes from an image by using a third order
factor graph built using text. [47] proposes an unsupervised
algorithm to discriminate between an intentional and un-
intentional action performed by an agent. [ 1] too focuses
on discriminating between an intentional and unintentional
action, as well as predicting the point in an unintentional
video when the action deviates from it’s original goal, but
does this in a supervised manner. Our work differs from
these as we focus on discriminating between the different
goal-directed and unintentional action categories in unin-
tentional videos, as well as localizing these action regions
in a weakly supervised manner. Action anticipation can also
be relevant to predicting an unintentional action or the on-
set of it. [17, 19, 30, 38, 39] focus on forecasting an event
or action based on a small snippet of a video. [51, 56] fo-
cus on self supervised learning approaches to predict future
action representation using unlabeled videos. [15, 37, 52]
focus on predicting a pedestrian’s intent to cross the road
using the Joint Attention for Autonomous Driving (JAAD)
dataset [36]. Our work differs from this as it not only fo-
cuses on the past and not on predicting the future, but is
also generalized to more diverse environmental settings.

Weakly Supervised Action localization (WSAL) has been
drawing increasing attention due to the expensive man-
ual labelling process involved in a fully supervised set-
ting. Previous efforts involve localizing action regions in
an untrimmed video by training a model using only video
level action labels [3, 21, 33, 35,41-43,46, 50, 59], or sen-
tences [5, 13, 14,29,32,45]. In particular, STPN [33] trains
a classification model using sum of features weighted by
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their class-agnostic attention weights, which it learns us-
ing a sparsity loss on the attention weights. It then per-
forms the localization by using both the classification ac-
tivation as well as these class-agnostic weights, threshold-
ing them to select action locations. WTALC [34] forces the
foreground action features from the same action class to be
similar and the background features pertaining to an action
class to be dissimilar from its foreground feature, and fi-
nally localizes the action by thresholding the classification
activation. A2CL-PT [31] uses foreground and background
features to form triplets and apply the Angular Triplet Cen-
ter Loss [25] to separate the foreground and background
features, as well as use an adversarial branch in order to
find supplementary activities from non-localized parts of
the video. DGAM [40] propose to separate action frames
from context frames by modeling the frame representation
conditioned on the bottom-up attention. TSCN [62] fuse the
attention sequences from the RGB and optical flow stream
and use it as pseudo ground truth to supervise the training.

3. Methodology

We intend to identify the goal-directed and unintended
human activities, as well as their corresponding moment
of occurrence from an unintentional video in a weakly-
supervised manner. To be specific, given the video V
and its categorical labels representing the goal-directed
activity, y™, and the unintended activity, y*, we ex-
pect the model to predict the triplets (s A c'A) and
(sUA VA cUA) containing the starting point, end point and
action class associated with this segment by leveraging only
the video-level annotations as weak supervision. We formu-
late this challenge as a weakly supervised action localiza-
tion (WSAL) task, and address it using an attention mecha-
nism based approach. We start this section by providing an
overview of our model, followed by the details of formula-
tions and our proposed learning objective.

3.1. Task Formulation

To encode the videos, pre-trained 3D neural networks
are exploited to extract a set of clip-level representations
X. We find that in order to encode the goal-directed and
unintentional features from the video, directly using static
features is not sufficient. Hence, we encode the clip em-
bedding by an encoder network JF, which outputs a joint
representation for the goal-directed and unintentional ac-
tion: O = F(X), where O € R!*? denotes the repre-
sentations in d dimensions for [ clips. Here, encoder net-
work F can either be a bidirectional Gated Recurrent Unit
or a Transformer Encoder [53]. On this basis, we introduce
two bottom-up attention modules, which outputs the tempo-
ral attention weights that reflect the temporal importance of
clip representations for the goal-directed/unintentional ac-
tivity respectively. This is achieved by training the model

with a classification loss, e.g., multiple instance learning
loss. Note that these attention weights are agnostic to the
specific action, and are used to identify generic regions of
interest. A stack of 1-D Convolution layers with RELU ac-
tivation between layers, followed by a Sigmoid function is
used to obtain the attention weights A4, \UA ¢ R! with a
scale between 0 and 1.

In order to obtain goal-directed and unintentional fea-
tures, we compute a dot product between the joint repre-
sentation O and each of the bottom-up attention weights
A4 and AUA. These features would represent those parts
of the joint representation O which correspond to the goal-
directed and unintentional region respectively. Formally,

OIA =0- )\IA’ OUA =0- AUA. (1)

We then compute Temporal Class Activation Maps
(TCAM) [33], C"* € R*Nun CUA ¢ RIXNua for the
goal-directed as well as unintentional actions, with N5 and
Nuya corresponding to the number of goal-directed and un-
intentional classes, by employing two weight-sharing linear
transformation layer on O' and OVA respectively. These
are one dimensional class-specific activations that signify
classification scores over time for both the types of actions
for each segment (as illustrated in Fig. 2). These class-
specific distributions, along with the class-agnostic distri-
butions are used to predict the triplets (s, e ') and
(sUA eUA cUAY associated with the goal-directed and unin-
tentional activities respectively.

3.2. Video Encoder

In order to learn a joint representation for inferring the
goal-directed and unintentional actions, we use a Bidirec-
tional Gated Recurrent Unit [6] as the video encoder. 3D-
CNN architectures like R(2+1)D [49] and I3D [4] capture
very short clip level information. However, capturing infor-
mation which helps discriminate between the goal-directed
region and an unintentional region requires longer temporal
context which can be modeled by a GRU. Specifically, our
GRU consists of a reset gate r which controls how much
importance to give the previous hidden state h*~! in order
to calculate the current hidden state A, and an update gate
u which determines how much of the previous hidden state
ht=1 should be carried on to the current hidden state h!.
Given the backbone feature X, we compute the hidden state
at each time-step ¢ using the following equations:

2t = (WX + U R D) Update Gate
rt=o(W'X"+ U A" Reset Gate @
h' = tanh(r’ - UR'™' + WX') New Memory
' =1 -2 h' 42 AT Hidden State

where U and W correspond to learnable parameters of this
module. In order to capture the forward information flow
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Figure 2. Illustration of our overall architecture. A backbone feature extractor is used to convert raw videos into features, i.e., X and

is kept frozen throughout the training process.

X 1is then passed to a video encoder which can be either a GRU [6] or a Transformer

Encoder [53], to extract high level features Q. The two attention modules use O to predict the bottom-up attention weights A™* and AU for
the goal-directed and unintentional action respectively, which are used for the Overlap Regularization. We calculate the goal-directed, i.e.,
O™ and unintentional feature, i.e., OY by computing a dot product between O and their respective bottom-up attention weights. Finally
we pass the goal-directed and unintentional feature through weight-shared linear layers to extract their respective TCAMs C™ and CU2.

These TCAMs are used for the MIL Loss.

_; . . <‘

h®) as well as backward information flow h(Y) we use a
Bidirectional-GRU and obtain the final representation O by
concatenating these features from the final hidden layer.

3.3. Multiple Instance Learning Loss

Following previous works in weakly supervised action
localization [28,31,34], we use the k-max Multiple Instance
Learning (MIL) [64] loss function for classifying the goal-
directed and unintentional activities in the video. For each
video, we average out the top-k elements of the TCAMs,
i.e., C'" and CY2 along the temporal axis for each class to
obtain the video-level classification scores A" € RV74 and
AYA ¢ RNua,| Here, k is set by [é} where s is a hyper-
parameter that regulates the number of clips to consider
when making the classification. We then apply a softmax
function over class scores, in order to obtain a probability
mass function (pmf) over the goal-directed as well as unin-
tentional classes, i.e., p"* and pU*. Let 4" and yY* be the
ground truth label vectors for a video. We then [, -normalize
them to obtain ground-truth pmfs ¢'* and ¢Y. Finally we
conduct cross entropy between these two.

N Nia

Lh= 5203 —d () og (v

L= 30>

i (5))
3)
() log (pi*(5)),

where N corresponds to the total number of training videos,
and the final loss is the combination of them: L£.s = £ds

L9

cls®

3.4. Overlap Regularization

Let M2, AVA € [0,1] V ¢ € [1,1] be the bottom-up atten-
tion weights for the goal-directed actions and unintentional
action respectively, obtained from the respective attention
modules. \; signifies the temporal attention weight for a
clip t. During training, a trivial solution which could be
learned by the model is to pay attention to the entire video
when inferring the goal-directed and unintentional action,
e, N4 \UA = 1V ¢ € [1,1], though these actions take
place at two distinct sections of the video. Simply applying
the MIL loss cannot guarantee that such distinctions can be
learnt from the data as shown in Section 4.4. We solve this
problem by appending an additional regularization term on
the overlap of these attention weights:

nyTUA /\TUA I
Lrg=max(0, —————— — —
A ( NTUA p)
SN )\TIA I “)
EUA = max(O, NiTlA — ;))

Eoverlap = £IA + EUAa

where T™ and TYA are the set of temporal indices of
the bottom-up goal-directed and unintentional attention
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weights at which they are more than a predefined thresh-
old. Nt and Npua are the lengths of the sets of activated
temporal indices. p is a design parameter which controls
the amount of allowed overlap between the attention maps.
Lower the value of p, lower the penalization of overlaps.

In the goal-directed as well as unintentional regions of
the video, the attention weights should ideally be low at the
borders of their respective ground truth region and high to-
wards the center of this region. Hence we view Aja, Aua
as Gaussian distributions Pja ~ N (pua, CTI2A) and Pya ~
N (pua, 03). Every unintentional action begins with an
agent performing a goal-directed action in order to achieve
it’s goal, which then gets disrupted and transitions into an
unintentional action. Using this prior that a goal-directed
action transitions into an unintentional action, we need to
ensure puja < pua. We approach this by formulating the
following regularization:

Ay
- l
Yoy P
l A
_ Zt:lPtUA't (@)
HUA = 1 AUA
Zt:l Pt
— l
ﬁorde’r = max(O, MIAlﬂ + 6)a

where PMA and P are probability distributions obtained
by applying softmax over the temporal axis of Ajp and Aya
respectively. ¢ is a design parameter that helps control the
margin by which pya has to be greater than gi5. Our model
is end-to-end trained with the overall loss as follows:

L= /\Lcls + (1 - )\)(['overlap + ['orde'r)7 (6)

where ) is the weighting hyper-parameter that controls the
trade-off between MIL loss and overlap regularization.

3.5. Classification and Localization

After training our network, we use it to classify goal-
directed and unintentional actions as well as localize the
regions in which they occur. For a single video, after ob-
taining the pmf p'* and pU* over each of the classes, as
mentioned in Section 3.3, we use mean average precision
(mAP) to conduct evaluation for the classification task. For
localization of the goal-directed and unintentional regions,
we consider only categories having classification scores
ie., A and AY* above 0. For each of these categories,
we first scale the respective TCAM outputs to [0,1] using
a Sigmoid function and weight these using the bottom-up
attention weights. This can be formally expressed by:

(™) = Ma - Sigmoid(C™ (™)) e [1, Nia],
P (") = Aua - Sigmoid(CPA (™)) "t e 1, Nua),

where 14 (c!4), 9pUA(cVA) € R! are the weighted TCAMs,
for the respective classes c¢'* and cVA. We finally threshold

@)

P () and YA (V) to obtain the triplets (s, e!A, c1A)
and (sUA eUA cUA),

4. Experiments
4.1. Dataset & Implementations

Data Preparation. The original Oops Dataset [ 1 1] consists
of 20,338 videos containing unintentional human actions
obtained by collating “fail” videos from different users on
YouTube. Amazon Mechanical Turk workers are then asked
to label the time at which the video starts transitioning from
the goal-directed action to the unintentional action, as well
as indicate whether a video does not indicate an uninten-
tional action.

In order to create our dataset, which is built upon the
labeled portion of the Oops dataset, we follow a similar
pre-processing step as in [1 1] by removing those videos
that 1). Do not contain an unintentional action 2). Are
More than 30 seconds which are likely to contain multi-
ple scenes, as well as those less than 3 seconds which are
not likely to contain one full scene 3). Where the transi-
tion time occurs in the initial/ending 1% of the video, since
there would not be enough context to understand the goal-
directed/unintentional action respectively. Post this process,
we were left with a total of about 7,800 labeled videos.

The authors of [1 1] also provide annotations in the form
of natural language descriptions, which were obtained by
asking Amazon Mechanical Turkers to watch the video and
answer: “what was the goal?” and “what went wrong?”.
Since we want to collect a distinct set of goal-directed and
unintentional actions, we followed a technique similar to
the Epic Kitchens Dataset [9], by extracting the verbs and
associated noun using the SpaCy' dependency parser and
concatenating them to form an action. We replace all com-
pound nouns by it’s second noun: e.g., “ride mountain bike”
is replaced with “ride bike” and so on. Due to the diversity
of the worker’s vocabulary, we find that the resulting actions
are of low quality, with many of them having ambiguous
meanings, i.e., “fly bike” as well as redundant meanings. In
order to overcome this, we manually go over each of these
extracted actions and remove those with ambiguous mean-
ings as well as merge the redundant ones, i.e., “jump over
fence” and “jump over chair’ into a more general “jump
over obstacle” category. We finally carry out a human eval-
uation, going through all the videos manually and ensuring
the correctness of the labels, and correcting them if need be.
We also give the evaluator an option to discard the video if
the goal of the actor was ambiguous. We build an annota-
tion tool in order to make this process easier (refer to the
Appendix for details). Finally, we keep a threshold of 15
for the number of videos per goal-directed and unintentional
action class, discarding all classes below this threshold, as

Int tps://spacy.io/
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mAP @ IoU
Model Feature  Segment | '\, 03 04 05 06 07 08 09 | AVG.
Goal | 449 417 330 257 183 100 50 37 12 | 204
STPN[33]  RC+DD  ypyme | 309 266 218 157 99 52 18 100 0.1 | 125
Goal | 451 418 361 289 228 159 104 81 20 | 235
WIALC[34]  RE+DD e | 255 212 153 126 77 43 23 10 05 | 101
Goal | 411 388 343 284 239 166 109 84 25 | 228
A2CL-PT[31]  REZ+DD yppye | 302 242 198 142 86 50 18 06 01 | 116
o Roanp | Goal | 453 451 440 418 3901 295 219 139 35 | 316
urs 2+D) Unlnt 346 334 284 236 195 150 100 34 1.0 18.8
Goal | 448 428 349 278 199 111 61 40 16 | 215
STPN [33] 13D Unlnt | 363 313 261 195 130 68 17 06 002 | 150
Goal | 388 364 304 263 186 131 72 45 18 | 197
WTALC [34] 3D Unlnt | 229 184 142 110 68 36 12 05 01 | 88
Goal | 38.1 367 318 266 227 176 125 90 49 | 222
A2CL-PT [31] 3D Unlnt | 324 261 216 153 99 52 16 07 01 | 125
o 3D Goal | 515 513 499 449 411 325 243 144 50 | 350
urs Unlnt 394 390 364 322 300 266 17.6 102 28 | 26.0

Table 1. Performance comparison of our model with competitive weakly supervised action localization (WSAL) models. We adjust the
WSAL models by attaching two classification heads to compute two TCAMs (for the goal-directed and unintentional action). We then
retrain it on our dataset (W-Oops). We can see that our model significantly outperforms the other methods.

Architecture Feature [ GOAL cMAP UNINT. cMAP

Chance - 2.7 3.3
STPN R2+1)D 44.0 32.6
WTALC R(2+1)D 48.5 37.5
A2CL-PT R(2+1)D 46.6 32.6
Ours R(2+1)D 50.5 38.4
STPN 13D 45.3 37.5
WTALC 13D 50.2 38.2
A2CL-PT 13D 48.5 34.8
Ours 13D 52.6 41.1

Table 2. Mean average precision of activity classification results
using different methods. First row shows the mAP of random
chance.

well as the videos associated with these classes. This leaves
us with 44 goal-directed and 30 unintentional classes. We
provide detailed statistics and analysis of the dataset in the
Appendix.

Implementation Details. We extract RGB features by cre-
ating chunks of 16 consecutive and non-overlapping frames
and using the I3D [4] as well as R(2+1)D [49] pretrained ar-
chitectures to extract clip-level features from these chunks
(details provided in the Appendix). This backbone feature
extractor is kept frozen throughout the entire training pro-
cess. The kernel-size of all the 1-D convolutional layers for
the bottom-up attention modules are set to 1. The learning
rate and loss weighting function X is set to 10~2 and 0.8
respectively. We set the MIL loss hyper-parameter s to 3.
The parameters of the Overlap Regularization, p and ¢, are
set to 1000 and 10 respectively. Finally we set the num-
ber of layers of our bidirectional GRU to 3. Our network is
implemented and trained on a machine with a single Tesla

mAP @ IoU
Ecls ['order ﬁoverlap SEG. 03 05 09 AVG.
v Goal 34.7 17.6 0.9 21.2
B B Unlnt 31.1 144 0.1 174
v v Goal 46.3 35.2 2.7 30.1
B Unlnt 31.7 179 0.7 19.0
Goal 499 41.1 5.0 35.0
o v Y | Unnt 364 30.0 2.8 26.0

Table 3. Ablation study on contributions of different losses in our
model.

X Pascal GPU for 10,000 iterations using the Adam Opti-
mizer [22] with a batch size of 16.

4.2. Goal-directed/Unintent. Action Localization

Our model should be able to focus on the correct regions
of the video in order to infer the goal-directed and unin-
tentional action segments, hence understanding the transi-
tion between these two. In order to evaluate our model on
the task of localizing goal-directed as well as unintentional
segments, we follow the standard evaluation protocol for
temporal localization tasks by calculating the mean aver-
age precision (mAP) over different intersection over union
(IoU) thresholds for both the types of actions. Since there
are no quantitative results reported on our dataset, we use
competitive models from the traditional weakly supervised
action localization task as baselines. Since these models
are trained using only one classification head which is used
to identify the atomic actions in the video, we repurpose
these models by adding an additional classification head
(for the goal-directed and unintentional action) and bottom-
up attention module (in the case of STPN [33]) or addi-
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tional branch (in case of A2CL-PT [31]) to adapt it to our
task. We then retrain these models on our dataset and re-
port quantitative results for comparison in Tab. 1. It may
be noted that our method performs significantly better than
other weakly supervised methods on this task, when using
the same backbone. For example, the average mAP@IoU
score of our method outperforms A2CL-PT by 12.8% for
the goal-directed action and 13.5% for the unintentional ac-
tion, when using an I3D backbone. We conjecture that this
localization improvement is due to our overlap regulariza-
tion on the bottom-up attention weights since it enforces the
model to focus on distinct portions of the action scene while
ensuring the temporal order of the actions, which is a crucial
property for solving this task. The qualitative results (see
Appendix) show how the WSAL models focus on overlap-
ping regions when inferring the goal-directed/unintentional
action which reduces it’s localization performance.

4.3. Goal-directed/Unintent. Action Classification

Given any video our model is trained to predict the goal-
directed action as well as the unintentional action it even-

tually transitions into. Following previous works [33, 34],
we use mean average precision (mAP) to evaluate the clas-
sification performance of our model on predicting the goal-
directed action as well as unintentional action. We report
our results in Tab. 2. It is interesting to note that our method
performs the best on the classification task as well. For
example, it performs 4.1% higher on the Goal cMAP and
6.3% higher on the Unintentional cMAP than A2CL-PT
when using an I3D backbone.

4.4. Ablation Study

We conduct an ablation study to analyse various com-
ponents of our model. We analyse the significance of the
overlap regularization introduced in Section 3.4. We ob-
serve very clearly in Tab. 3 that only using L5 is not suffi-
cient to localize the goal-directed and unintentional actions,
and our final model performs the best. This implies that
all components are necessary in order to achieve the best
performance and each one is effective. We further analyse
the importance of the hyper-parameters p and ¢ used in the
overlap regularization in Fig. 4. We can see that increasing
p from 1 to 10? results in a significant increase in the av-
erage mAP@IoU. This shows that the localization perfor-
mance increases by penalizing the overlap of the bottom-up
attentions more, but plateaus after the 103 mark. Analysing
the ¢ hyper-parameter, we notice that increasing the value
of ¢ decreases the performance. Since increasing the value
of g results in a lower margin of separation between the ex-
pectations of the goal-directed and unintentional bottom-up
attention weights, we can conclude that a lower value of
q, i.e., higher margins of separation helps achieve a bet-
ter localization performance. However, ¢ = 1 signifies
the extreme 