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Mathematical Institute for Data Science, Johns Hopkins University, Baltimore, MD, USA

Abstract

Adversarial training (AT) is a simple yet effective defense
against adversarial attacks to image classification systems,
which is based on augmenting the training set with attacks
that maximize the loss. However, the effectiveness of AT as
a defense for video classification has not been thoroughly
studied. Our first contribution is to show that generating
optimal attacks for video requires carefully tuning the at-
tack parameters, especially the step size. Notably, we show
that the optimal step size varies linearly with the attack bud-
get. Our second contribution is to show that using a smaller
(sub-optimal) attack budget at training time leads to a more
robust performance at test time. Based on these findings, we
propose three defenses against attacks with variable attack
budgets. The first one, Adaptive AT, is a technique where the
attack budget is drawn from a distribution that is adapted as
training iterations proceed. The second, Curriculum AT, is
a technique where the attack budget is increased as train-
ing iterations proceed. The third, Generative AT, further
couples AT with a denoising generative adversarial network
to boost robust performance. Experiments on the UCF101
dataset demonstrate that the proposed methods improve ad-
versarial robustness against multiple attack types.

1. Introduction
Deep neural networks (DNNs) have led to significant

advances in many computer vision tasks, including image
classification, object detection, and image segmentation.
However, a key challenge to DNNs is their vulnerability to
adversarial attacks [35], i.e., small perturbations to the input
data that fool the classifier. This has motivated the develop-
ment of various defense mechanisms against such attacks.
Among them, Adversarial Training (AT) [10,24,42], a tech-
nique that extends the training set with examples that maxi-
mize the loss, shows state-of-the-art adversarial robustness.
Nevertheless, the robust performance against adversarial at-
tacks is still far from perfect as there is a significant differ-
ence between clean accuracy and adversarial accuracy.

In this work, we are interested in studying the adversar-
ial robustness of DNNs for classifying actions in video data.
Action classification aims to predict a single action label for

a video and is one of the main tasks in video understand-
ing. Numerous DNN-based methods have been developed
for this task, e.g., [5, 9, 12, 20], which exploit the spatio-
temporal information from consecutive frames in the video.

Unlike image attacks, video attacks consider not only
spatial but also temporal information. For example, flick-
ering attacks [27] generate a flickering temporal perturba-
tion whereas other attacks, such as the frame saliency at-
tacks [16], generate temporally sparse perturbations. More-
over, AT has been found to be difficult to successfully train
a robust model on large-scale problems [21], thus it is a nat-
ural extension to study the effectiveness of AT for videos.

Although adversarial attacks in the case of videos are not
as investigated as in the image domain, a few attack gener-
ating methods have been recently proposed [16, 17, 27, 40].
Similarly, defenses in the video domain are less explored.
Xia et al. [41] proposed adversarial frame detection from
videos leveraging temporal consistency by applying optical
flow estimation to consecutive frames. However, this tech-
nique can only tell if the video is adversarial or not. Lo
et al. [23] proposed using AT with multiple independent
batch normalization layers. However, the experiments are
limited to weak attacks, and the robust performance against
stronger attacks has not yet been reported.

Paper Contributions. In this paper, we study the effective-
ness of AT for video classification. Since AT is based on
generating attacks that maximize the loss during training,
we begin by understanding how to generate such optimal at-
tacks. We observe that generating optimal attacks requires
carefully tuning the attacker parameters, such as the attack
budget, the step size, and the number of steps. In particular,
we show that there is an optimal choice for the step size that
changes linearly with the attack budget. Next, we focus on
understanding whether optimal attacks at training time lead
to better defenses at test time. Surprisingly, the answer to
this question is no. Specifically, we show that using attacks
with a smaller (sub-optimal) attack budget during training
leads to a more robust performance at test time. Based
on these findings, we propose three defenses, adaptive AT,
curriculum AT and generative AT, which use sub-optimal
attacks with an adaptive attack budget during training. In
summary, this paper makes the following contributions:
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• We show that generating optimal attacks is very sensitive
to the choice of the step size and requires careful tuning.
We also show that the optimal step size varies for different
attack budgets and that their relationship is linear.

• Contrary to the common belief that the key to solving the
min-max problem in AT is to find optimal adversarial ex-
amples [15], we empirically demonstrate that AT with an
optimal attack does not lead to a strong defense. Rather,
we show that AT with a smaller attack budget leads to a
better defense. We also show that AT with a higher attack
budget does not necessarily lead to a better defense.

• Since AT with a single perturbation type does not often
yield robustness to multiple attack types, we propose AT
with an adaptive random sampling of variable attack types
and budgets. Moreover, based on our finding that AT
with optimal attacks fails, we propose curriculum based
adversarial learning with an increasing attack budget as
training proceeds. We also propose to combine adversar-
ial AT with a GAN-based perturbation elimination net-
work [18] as a pre-processor to improve robust perfor-
mance. Finally, we demonstrate the robustness of the pro-
posed methods with experiments on the UCF101 dataset.

2. Related Work
In this section, we briefly review adversarial attack meth-

ods related to this work as well as the adversarial training
technique that we will study. In addition, we briefly discuss
generative defense techniques related to our method.

Adversarial Attacks. Given an image X and a classifier F
with parameter θF , an additive adversarial attack is a small
perturbation δ to the image X which is designed to delib-
erately fool the classifier, i.e. F (X + δ; θF ) 6= F (X; θF ).
The perturbation δ is assumed to be sufficiently small so that
they are imperceptible to humans. A common assumption is
that the perturbations lie within a ball Bε = {δ : ‖δ‖p≤ ε},
where ε denotes the attack budget and p ∈ {0, 1, 2,∞}.

Ever since Szegedy et al. [35] first observed that DNNs
are vulnerable to adversarial attacks, several attack methods
have been proposed by the research community. These at-
tack methods can be classified in two categories: white-box
and black-box attacks. White-box attacks assume access to
the gradient information of the model, while in black-box
attacks, the attacker does not have access to the parameters
of the model. White-box attacks [3, 10, 24] basically maxi-
mize the loss value by iteratively computing a perturbation
and adding it to the data, whereas black-box attacks [7, 44]
are usually performed by using a different model and trans-
ferring adversarial examples to the target model.

In this work, we focus on white-box attacks obtained by
maximizing the cross-entropy loss, i.e.

δ̂ = arg max
δ∈Bε

Lce(F (X + δ; θF ), y), (1)

where y is the label for image X . Goodfellow et al. [10]
propose the Fast Gradient Sign Method (FGSM), a single
step gradient based attack, to compute the perturbation δ:

δ = ε sign(∇δLce(F (X; θF ), y)). (2)

Madry et al. [24] extend this by introducing an iterative
approach to finding the optimal attack known as Projected
Gradient Descent (PGD), which can be formulated as:

δi+1 = ΠBε {δi + α sign(∇δLce(F (X + δi; θF ), y))} ,
(3)

where ΠBε denotes the projection of the perturbation onto
the norm ball Bε, while α is the step size and i is the current
step. In this work, we will mostly consider PGD bounded
`∞-based attacks and denote it as PGD∞.

Adversarial Attacks to Video Data. So far, most adversar-
ial attack studies have focused on the image domain, leaving
attacks for videos less explored. However, there are few at-
tack techniques for videos. Masked PGD attacks apply the
PGD∞ attack to a patch of a frame given a random top-left
position and a patch ratio r. The patch height and width
are computed by multiplying the frame height and width by√
r. Frame Border attacks apply the PGD∞ attack to the

border of a frame instead of a random patch. The thickness
of the border b given a ratio r is calculated as a function of
the image size. Beyond `∞ attacks, sparse adversarial at-
tacks [40] fool action classification networks by using `2,1
optimization to compute the perturbations.

Frame saliency attacks [16] extend iterative gradient-
based attacks to prioritize which parts of the video frames
should be perturbed based on saliency scores. The base-
line variant is the one-shot attack, which only involves one
iteration of the attack. Here, the loss is computed with re-
spect to each input frame. The other variant is an iterative-
saliency attack that generates adversarial examples by iter-
atively perturbing some frames of the video one at a time in
order of decreasing saliency score until it fools the network.

Flickering attacks [27] generate a flickering temporal
perturbation that is imperceptible to human observers by
adding a uniform offset to theC color channels of the pixels
in every frame of a video. The perturbation is computed by
optimizing the following objective function:

δ̂ = arg min
δ

λ
∑
j

βjDj(δ)+
1

N

N∑
n=1

Lcw(F (X+δ; θF ), y),

(4)
where Lcw denotes the C&W loss [3], λ controls the impor-
tance of the adversarial attack relative to the regularization
terms Dj(·), which control the imperceptibility of the at-
tack. The parameter βj weights the relative importance of
each regularization term. Here, the regularization terms are
thickness regularization that enforces the perturbation to be
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small in all color channels and roughness regularization that
penalizes temporal changes of the perturbation pattern.

Adversarial Defenses. The discovery of vulnerabilities in
DNNs has raised security concerns and attracted significant
attention from the research community. Accordingly, vari-
ous defense methods have been proposed [14]. Papernot et
al. [26] propose a distillation defense that uses knowledge
from the distillation process to reduce the magnitude of net-
work gradient which could successfully mitigate perturba-
tions computed by FGSM. Guo et al. [11] use a transforma-
tion technique that replaces input patches with clean patches
to remove the perturbations. Dhillon et al. [8] propose ap-
plying dropout to each layer in order to prune a random
subset of activations with a weighted distribution. While
such methods do not require retraining the model, Athalye
et al. [1] show that they suffer from the obfuscated gradients
problem, which gives a false sense of robustness.

Adversarial training (AT) [10, 35] is based on solving a
min-max optimization to achieve robustness via retraining
the model with adversarial examples. Shaham et al. [31]
formalize AT as the following robust optimization problem:

min
θF

E
(X,y)∼D

[
max
δ∈Bε

Lce(F (X + δ; θF ), y)

]
, (5)

where (X, y) is the training data sampled from the data dis-
tribution D. The inner maximization problem aims to gen-
erate an optimal adversarial example for each (X, y), while
the outer minimization problem trains the model to be ro-
bust to such adversarial examples.

AT using the PGD attack to solve the inner maximization
problem is a widely used technique that yields state-of-the-
art performance in many image-based tasks [37]. However,
Kurakin et al. [21] show that AT is difficult at ImageNet
scale and Sharma and Chen [32] show that training using
`∞ adversarial examples yields limited robustness.

Generative Adversarial Defenses. Song et al. [33] empir-
ically show that most adversarial examples lie in low prob-
ability regions of the training data distribution, thus propos-
ing a generative method that tries to project adversarial ex-
amples back onto the clean data manifold prior to classifi-
cation. This technique is based on the idea of purification
and it uses PixelCNN [39] to approximately find the highest
probability example constrained to be within an ε-ball of a
perturbed image. Similarly, Samangouei et al. [29] propose
to use a Generative Adversarial Network (GAN), instead
of PixelCNN, to project adversarial examples back onto the
manifold of the generator. On the other hand, She et al. [18]
propose an approach called Adversarial Perturbation Elim-
ination with GAN (APE-GAN) that allows for training a
GAN to systematically clean the perturbations from the ad-
versarial examples thus learning a manifold mapping from
adversarial data to clean data. Lin et al. [22] propose a

method known as Dual Manifold Training that uses pertur-
bations in the latent space of StyleGAN [19] as well as in
the image space in order to adversarially train a model with
the aim of defending against `p and non-`p attacks. How-
ever, this requires a pre-constructed On-Manifold dataset,
which is too expensive for video data.

3. Empirical Analysis of Adversarial Training
with PGD Attacks for Action Classification

In this section, we present an empirical analysis of ad-
versarial training (AT) with PDG attacks for action classi-
fication in the UCF101 dataset. We first show that a naı̈ve
application of PGD to action classification fails to produce
optimal attacks, i.e., attacks that maximize the loss. Specifi-
cally, we show that generating optimal attacks requires care-
fully tuning the parameters of PGD, especially the step-size.
We also show that different attack budgets require a differ-
ent step size in order for PGD to find an optimal attack, and
that the relationship between the optimal step size and the
attack budget is linear. As a consequence, we obtain a prac-
tical procedure for obtaining optimal attacks for action clas-
sification via suitable tuning of the PGD parameters. Next,
we show that optimal attacks during training do not lead to
a strong defense. Specifically, we show that choosing an
attack budget at training that is smaller than the attack bud-
get at testing leads to a more robust performance at testing.
This motivates us to propose various modifications to AT
and generative defenses, which will be discussed in Sec. 4.

3.1. Optimal PGD Attacks via Parameter Tuning

Let us first recall the definition of an optimal attack for
video classification. Let X ∈ RT×H×W×C denote a video
with T frames, where H and W denote, respectively, the
height and width of each frame, and C denotes the number
of color channels. Let y ∈ {1, . . . ,K} denote the label
for the video. In this case, the perturbation is also a video
denoted as δ = [δ1, δ2, . . . , δT ] ∈ RT×W×H×C , where δt
denotes the perturbation to the tth frame xt of the video X .

Given an action classification model F with parameters
θF , and an attack budget ε > 0, an optimal adversarial
attack is computed by finding a perturbation δ that maxi-
mizes, e.g., the cross-entropy loss function Lce, i.e.:

δ̂ = arg max
δ∈Bε

Lce(F (X + δ; θF ), y), (6)

where Bε = {δ : ‖δ‖p≤ ε} is the `p-norm ball with radius
ε, and p ∈ {0, 1, 2,∞}. The Projected Gradient Descent
(PGD) method solves the above optimization problem using
the following iterative algorithm for i = 1, . . . ,M ,

δi+1 = ΠBε {δi+α sign(∇δLce(F (X+δi; θF ), y))} , (7)

where ΠBε is the projection of the perturbation onto the ball
Bε, α is the step size and M is the number of iterations.
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(a) Benign (ε = 4) (b) Benign (ε = 8) (c) AT (ε = 8)

Figure 1. (a) Adversarial loss surface of a benign model trained on clean data when the input is perturbed by PGD∞ attack with a budget
ε = 4, (b) Adversarial loss surface of the same benign model perturbed by PGD∞ attack with a budget ε = 8. (c) Adversarial loss surface
of the same model after trained with adversarial examples for 10 epochs with a budget ε = 8. The x-axis is the step size α; the y-axis is the
number of steps M , and the z-axis is the adversarial loss value. From (a) and (b), observe that generating optimal attacks require tuning
the step size in a thin region. Specifically, a small step size, i.e. below some threshold, generates a very weak attack, while increasing the
step size after the optimal value also reduces the attack strength. Moreover, the adversarial loss becomes a flat when α ≥ 2ε. From (b) and
(c) we can see that the adversarial loss decreases significantly and the step size region that can generate the optimal attack becomes wider.

In order to evaluate the effects of the attack parameters α
and M in generating an optimal perturbation for a given ε,
we visualize the adversarial loss of a benign model trained
on clean data. We adopt a 3D CNN architecture based
on residual networks (ResNets) [13], namely 3D ResNeXt-
101 [12], as a backbone for the action recognition task. We
adopt the training strategy and configuration of parameters
from [20]. The network was first pre-trained on Kinetics-
700 [4], a large-scale video dataset with more than 650,000
videos covering 700 categories. This step is important as
such networks require an enormous amount of data. The
Kinetics-700 pretrained network was then fine-tuned on the
UCF101 dataset [34], a widely used dataset in action recog-
nition. The UCF101 dataset consists of 13,320 videos with
101 action classes providing a large diversity of actions,
variations in lighting conditions, camera motion, viewpoint,
and partial occlusion. The dataset is split into 9,537 videos
for training and 3,783 videos for testing.

Figure 1 shows the adversarial loss of the benign model
for a PGD∞ attack as a function of the step size α and the
number of iterations M for a fixed value of ε = 4 (1a) and
ε = 8 (1b). As it can be seen from the plot, there is a very
small range of values of α that will generate the optimal
attack. Indeed, a step size below the threshold will generate
a very weak attack, while the loss becomes flat if a step size
above 2ε is used. Note that the optimal step size changes
with the attack budget, since α̂ ≈ 1 for ε = 4 and α̂ ≈ 1.8
for ε = 8, hence α must be properly tuned.

We further investigated the relationship between the op-
timal step size α̂ and the attack budget ε by computing the
loss surfaces for multiple values of ε in the range [1, 12] and
finding the optimal α for each ε. As we can see from Fig-
ure 2, there is a linear relationship between the optimal step

size and attack budget, which is given by α̂ ≈ 0.2(ε+ 1).
Next, we investigate the effect of AT on the adversarial

loss. Figure 1b shows the adversarial loss surface of the
benign model for ε = 8 and Figure 1c shows the adver-
sarial loss surface of an adversarially trained model for 10
epochs. We observe that, as the iterations proceed, (1) the
adversarial loss surface becomes approximately piece-wise
constant, (2) there is a wider range of values for the step size
that yield an optimal attack, (3) the optimal value of the step
size for the benign model is still optimal for the adversari-
ally trained model, and (4) the adversarial loss value at the
optimum decreases significantly. Therefore, for a fixed ε, as
the iterations of AT proceed, there is no need to change the
value of α and finding effective attacks becomes harder.

3.2. Adversarial Training with Optimal Attacks
Gives Suboptimal Performance at Test Time

Adversarial training is predicated on the idea of train-
ing with optimal attacks. For example, Huang et al. [15]
claim that the key to solving the min-max problem of AT
is to find optimal adversarial examples. The results from
the previous section show us how to tune the parameters of
PGD to obtain optimal attacks for video classification. In
this subsection we wish to verify whether AT with optimal
attacks gives a strong defense. Moreover, we wish to under-
stand if the attack budget at training time should be chosen
to be the same as the attack budget at test time.

We validate the effectiveness of AT with the PGD∞ at-
tack for different attack budgets ε ∈ {4, 8, 12} and step
sizes α ∈ {α̂, α̂/2, ε} using the top-1 test accuracy on the
UCF101 dataset. The results of the benign and adversari-
ally trained models for different attack budgets at test time
are shown in Table 1. As expected, the benign model per-
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Figure 2. Optimal step size vs attack budget: The relationship
between the optimal step size α̂ and the attack budget ε is well
approximated by linear regression (dash line) as α̂ ≈ 0.2(ε+ 1).

forms well on clean data (ε = 0), but its accuracy deteri-
orates quickly from 92.3% to around 2% when evaluated
with adversarial examples. On the other hand, AT with op-
timal attacks, AT(ε = 8, α = α̂), has lower standard ac-
curacy (28.8%) and higher robust accuracy (9.39%-20.5%)
than the benign model, but it generally underperforms AT
with sub-optimal attacks, AT(ε = 8, α 6= α̂), in terms of
both standard and robust accuracy.

Another interesting observation is that the step size in
sub-optimal regions controls the trade-off between standard
accuracy and robustness. Loosely speaking, a smaller step
size (α = α̂/2) helps preserve standard accuracy to some
extent but suffers from poor robustness, while increasing the
step size (α = ε) improves robustness but reduces the stan-
dard accuracy. The results also show that using a stronger
attack budget during training (ε = 12) reduces both stan-
dard and robust accuracy, while using a weaker attack bud-
get (ε = 4) improves standard accuracy as well as robust-
ness against weaker attack (ε = 4).

Overall, the results thus far suggest that when the attack
budget at test time is known, we should use AT with the
same attack budget at training time and a suboptimal choice
for the step size. However, when the attack budget at test
time is unknown, we need a mechanism for selecting the
attack budget and step size at training time. This motivates
the extensions of AT that we discuss next.

4. Extensions of Adversarial Training
Based on our findings from the previous section, in this

section we propose three defenses against attacks with vari-
able attack budgets. The first one, Adaptive AT, is a method
where the attack budget is drawn from a distribution that
is adapted as training iterations proceed. The second one,
Curriculum AT, is a technique where the attack budget is
increased as training iterations proceed. The third one, Gen-
erative AT, further couples AT with a denoising generative
network to boost robust performance. The overall architec-
ture of the proposed methods is illustrated in Figure 3.

Table 1. Top-1 test accuracy on the UCF101 dataset of both benign
and adversarially trained models with PGD∞ for different attack
budgets and step sizes. All attacks at test time are computed using
PGD∞ with a fixed attack budget and the optimal step size.

Model Evaluation Attack
ε = 0 ε = 4 ε = 8 ε = 12 ε = 15

Benign 92.3 2.65 2.38 2.11 1.89

AT(ε = 8, α = α̂) 28.8 20.5 13.9 10.6 9.39
AT(ε = 8, α = α̂

2 ) 72.9 40.0 19.5 11.0 8.22
AT(ε = 8, α = ε) 64.1 39.9 23.3 13.6 10.6
AT(ε = 4, α = ε) 70.1 40.5 19.9 12.8 10.4
AT(ε = 12, α = ε) 34.3 24.8 17.8 13.5 12.1

4.1. Adaptive Adversarial Training (AAT)

As it can be seen from the AT framework (see Eq. 5),
the attack budget is predetermined for a fixed attack type.
While this can provide robustness to that particular attack
type and budget, it does not guarantee robustness against
different attacks at test time [36]. For example, Schott et al.
[30] show that increasing robustness to one attack type can
decrease robustness to other attacks. Besides, the results in
Table 1 show that a model trained with an attack budget ε
almost always outperforms models trained with a different
budget when evaluated on attacks with the same budget ε.

Here, we propose a technique to train the model with ad-
versarial examples generated from a discrete set of attack
types T , e.g. T = {Frame Saliency, Frame Border, PGD
Patch, Flickering}, or a discrete set of B attack budgets
E = {ε1, . . . , εB} to yield simultaneous robustness against
multiple attacks at a test time. A naı̈ve approach to han-
dle this could be to sample the attack type or budget from a
uniform distribution on T or E and generate an attack with
that type or budget. However, the resulting model could
be more robust to some attacks and less robust to others.
To address this issue, we propose to adapt the distribution
of attack types or budgets depending on the performance of
the current model for different attacks. For example, we can
calculate the probability of attack budget εi ∈ E as

P(εi) :=

∑N
n=1 Lce(F (Xn + δin; θF ), yn)∑B

j=1

∑N
n=1 Lce(F (Xn + δjn; θF ), yn)

, (8)

where δin is an attack for (Xn, yn) with budget εi. As adapt-
ing this probability at each epoch can be costly, we update it
only every ξ epochs. Algorithm 1 summarizes the proposed
AAT algorithm with adaptive sampling of multiple attack
budgets. Multiple attack types can be handled similarly.

4.2. Curriculum Adversarial Training (CAT)

The framework of AT tries to optimize the inner max-
imization by generating the optimal adversarial examples,
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Figure 3. Overall architecture of the proposed methods – Given a video X , an adversarial perturbation δ is added to it to generate an
adversarial exampleX ′, which is then passed to the action classifier model for Adversarial Training (AT). Adaptive AT and Curriculum AT
extend AT by changing the attack budget and attack type during training. In the case of 3D APE-GAN, the generator network is trained to
eliminate perturbations from X ′ and reconstruct X̂ , which is then passed to the benign model, while the discriminator is trained to classify
the original video X from reconstructed video X̂ . Generative AT is an end-to-end integration of 3D APE-GAN and AT.

Algorithm 1 Adversarial training with an adaptive random
sampling of variable attack budget

Require: set of attack budgets E , set of attack step sizes A
1: function ADAPTAT
2: randomly initialize P(ε) for ε ∈ E
3: for k ← 1 to K do . number of epochs
4: for n← 1 to N do . number of batches
5: ε ∼ P . sample attack budget
6: α = A(ε) . set step size for ε
7: δn ← ATTACKER(F,Xn, yn, ε, α) . Eq. 7
8: θF ← θF −η∇θFLce(F (Xn+ δn; θF ), yn)
9: end for

10: if k mod min(ξ, K|E| ) ≡ 0 then
11: for i← 1 to |E| do
12: P(εi) :=

∑N
n=1 Lce(F (Xn+δ

i
n;θF ),yn)∑B

j=1

∑N
n=1 Lce(F (Xn+δ

j
n;θF ),yn)

13: end for
14: end if
15: end for
16: end function

however, adversarially robust generalization might hurt the
standard generalization [38]. Plus, the optimal adversarial
attack does not always lead to better defense, or it might
even lead the training to fail and result in a worse gener-
alization in both standard and robust performance [43]. It
has also been found that AT overfits the adversarial exam-
ples observed [2, 28]. To mitigate all these issues, we pro-
pose a curriculum-based AT, wherein the model is trained
with adversarial examples generated with an increasing at-
tack budget at every ξth iteration as the training proceeds.
Cai et al. [2] propose a similar approach to the image classi-
fication task, however, it only increases the number of steps

while the attack budget is fixed, and again this does not pro-
vide guaranteed robustness for other attack budgets [36].

4.3. Generative Adversarial Training (GAT)

Defense methods based on deep generative models such
as GANs have shown promising results in the image do-
main. However, these techniques lag in video generation
and state-of-the-art results are very far from satisfying [6].

In this work, we propose 3D APE-GAN, an extension of
APE-GAN [18] that removes perturbations from adversar-
ial videos by projecting them onto a clean data manifold.
Specifically, given an adversarial video, the 3D APE-GAN
generatorG is trained to reconstruct a clean video, while the
discriminator D is trained to distinguish the original video
from the video produced by the generator. This is achieved
by solving a min-max problem of the form:

min
θG

max
θD

E
(X,y)∼D

[
γ1Lmse(G(X + δ̂; θG), X)

+ γ2( log(D(X; θD))− log(D(G(X + δ̂; θG); θD))
]
,

(9)

where θG denotes parameters of the generator, θD denotes
parameters of the discriminator, Lmse is the MSE loss

Lmse :=
1

TWH
‖X −G(X ′; θG)‖2F , (10)

and δ̂ := arg maxδ∈Bε Lce(F (G(X + δ; θG); θF ), y).
Notice that the min-max objective is a weighted combi-

nation of the MSE loss and the GAN objective with weights
γ1 and γ2, respectively. We solve this problem in an alter-
nating minimization fashion, where given θG, we find θD as

max
θD

E
(X,y)∼D

log(D(X; θD))− log(D(G(X + δ̂; θG); θD).

(11)
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Then, given θD, we find θG as

min
θG

E
(X,y)∼D

[
γ1Lmse(G(X + δ̂; θG), X)

−γ2 log(D(G(X + δ̂; θG); θD))
]
.

(12)

One extension we propose is to train 3D APE-GAN with
AT so that the generator can be used as a preprocessing step
to eliminate the perturbations before being fed to the video
action recognizer. We can first train the 3D APE-GAN to
generate clean videos given adversarial videos, freeze the
pre-trained generator and adversarially train only the action
recognition network F . This can be formulated as:

min
θF

E
(X,y)∼D

[
max
δ∈Bε

Lce(F (G(X + δ; θG); θF ), y)

]
. (13)

Another extension we propose is to train 3D APE-GAN and
the action recognition network end-to-end by optimizing:

min
θF

min
θG

max
θD

E
(X,y)∼D

[
γ1Lmse(G(X + δ̂; θG), X)

+ γ2( log(D(X; θD))− log(D(G(X + δ̂; θG); θD))

+ Lce(F (G(X + δ̂; θG); θF ), y)
]
.

(14)

5. Experiments and Results
As discussed before, the results in Table 1 show that a

model trained with an attack budget ε almost always out-
performs models trained with a different budget when eval-
uated on attacks with the same budget ε. This suggests we
need to train our model with multiple attack budgets to pro-
vide better robustness to different attack at test time. In this
section, we evaluate the performance of the proposed AAT,
CAT and GAT methods against multiple attack types.

5.1. AT with Variable Attack Budget

The first method we evaluate is AAT, i.e., the proposed
adversarial training method with an adaptive random sam-
pling of variable attack budgets, as presented in Algo-
rithm 1. The network is trained with a set of attack budgets
E = {0, 2, 4, .., 12} sampled based on the probability dis-
tribution computed via Eq. 8 updated every ξ = 10 epochs.
The second approach we evaluated is the proposed Curricu-
lum AT (CAT) where we increase the attack budget from
ε = 0 to ε = 12 or decrease it from ε = 12 to ε = 0 as the
training proceeds. The overall results are shown in Table 2.

As we can see from the results, AAT improves the robust
performance (especially against stronger attacks). However,
the standard accuracy reduces by almost 10% when com-
pared to AT. On the other hand, CAT with an increasing
attack budget outperforms all the other previous methods in
all adversarial attacks while it lessens the standard accuracy

Table 2. Adversarial training with variable attack budgets –
Top-1 test accuracy on the UCF101 dataset of both benign and ad-
versarially trained models with PGD∞ for variable attack budgets
and step sizes. All attacks at test time are computed using PGD∞
with a fixed attack budget and the optimal step size. AAT with
attack budget ε = auto represents the adaptive random sampling
method of variable attack budgets. CAT with ε =↑120 indicates
curriculum training with an increasing attack budget from ε = 0
to ε = 12, while CAT with ε =↓120 indicates a decreasing budget
from ε = 12 to ε = 0.

Model Evaluation Attack
ε = 0 ε = 4 ε = 8 ε = 12 ε = 15

Benign 92.3 2.65 2.38 2.11 1.89
AT(ε = 8, α = 8) 64.1 39.9 23.3 13.6 10.6

AAT(ε = auto, α = ε) 54.5 38.3 25.7 18.7 16.0
CAT(ε =↓120 , α = ε) 47.8 24.4 11.5 6.61 5.40
CAT(ε =↑120 , α = ε) 61.1 42.2 29.2 21.0 17.2

by only 3% from AT. That being said, although CAT im-
proves robust accuracy, the overfitting problem [28] is still
not fully solved: Figure 4 shows that the generalization gap
goes up as the training iterations and attack budget simul-
taneously increase. This demonstrates that the generaliza-
tion gap when training with stronger attacks is higher than
with weaker attacks. Thus, this suggests that further work is
needed to close this gap in order to yield better robustness
against optimal attacks at test time.

5.2. Generative Adversarial Training

In this experiment, we evaluate the 3D APE-GAN
method and the end-to-end trainable GAT method. The
performance of both techniques with the previous best per-
forming technique is presented in Table 3. The results show
that the 3D APE-GAN with benign model significantly im-
proves the standard and robust accuracy when compared
with previous AT methods. Moreover, GAT further im-
proves the performance in almost all evaluations. However,

Table 3. 3D APE-GAN with AT – Top-1 test accuracy on the
UCF101 dataset of both benign and adversarially trained models
with PGD∞ for different attack budgets and step sizes. All attacks
at test time are computed using PGD∞ with a fixed attack budget
and the optimal step size. APE denotes the proposed 3D APE-
GAN method using benign action recognition network, while GAT
represents the Generative AT, i.e. end-to-end adversarial training
of both 3D APE-GAN and action recognition network.

Model Evaluation Attack
ε = 0 ε = 4 ε = 8 ε = 12 ε = 15

Benign 92.3 2.65 2.38 2.11 1.89
AT(ε = 8, α = 8) 64.1 39.9 23.3 13.6 10.6
CAT(ε =↑120 , α = ε) 61.1 42.2 29.2 21.0 17.2

APE(ε =↑120 , α = ε) 81.6 69.7 59.8 54.6 54.1
GAT(ε = 8, α = 8) 81.1 72.6 63.8 56.6 51.3
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Table 4. Robustness to multiple attack types –Test accuracy on 100 videos of the UCF-101 dataset of benign and adversarially training
models with different video attack types. For each attack type, the results presented here are an average top-1 test accuracy of three
experiments with varying parameters. The results of each attacks with the different parameters is depicted in Figure 5.

Model
Evaluation Attack

No attack
Frame saliency

(one-shot)
Frame saliency

(iterative) Masked PGD Frame Border Flickering

Benign 93.0 0.00 0.00 7.0 0.00 42.3
Video Compression [25] 92.6 48.6 50.0 7.0 10.0 40.3

AAT (ε = auto, α = ε) 92.6 74.4 74.9 67.5 80.2 53.1
APE (ε = auto, α = ε) 92.7 74.0 76.6 63.1 63.4 55.3
GAT (ε = auto, α = ε) 79.3 85.1 86.3 81.9 86.6 58.1
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Figure 4. Generalization gap of curriculum adversarial train-
ing – The generalization gap keeps increasing as the curriculum
training proceeds. The x-axis is training iterations and the y-axis
is the top-1 accuracy. The red and blue lines indicate the top-1
training and validation accuracy, respectively.
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Figure 5. Robustness to multiple attack types – robust perfor-
mance of models trained with different video attack types evalu-
ated on 100 videos of the UCF-101 dataset.

note that the generator is being used as a pre-processing step
and thus it is not being attacked.

5.3. AT with Multiple Attack Types

In this experiment, we evaluate the effectiveness of our
methods against different attack types. We consider five
video attack methods – frame saliency (one-shot), frame
saliency (iterative), masked PGD, frame border, and flicker-
ing attacks. The baseline method we use is the video com-
pression defense [25]. The methods are trained with adver-
sarial examples generated from an adaptive distribution of
four attack methods (except the flickering attack). The ro-
bustness performance of the methods to the different video
attacks is illustrated in Figure 5. The average performance
against each attack type is listed in Table 4. From the re-
sults, it is evident that AAT provides robustness to multiple
attack types and Generative Adaptive AT boosts the robust-
ness, but reduces the standard accuracy by just above 10%.

6. Conclusions

In this paper, we showed that generating optimal attacks
for video requires carefully tuning the attack parameters, es-
pecially the step size. We also showed that the optimal step
size varies linearly with the attack budget. We demonstrated
that using a sub-optimal attack budget at training time leads
to more robust performance at testing, and that the general-
ization gap rises as the attack budget increases during test-
ing. Based on these findings, we proposed three defenses
against attacks. Adaptive AT and Curriculum AT extend AT
by using variable attack budgets as the training iterations
proceed. This is achieved by adapting the distribution of
attack budgets to the performance and increasing the attack
budget, respectively. Generative AT integrates AT with a
denoising generative network to further improve robust per-
formance. Our proposed approaches significantly increase
the robustness to multiple attack budgets and attack types.
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