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Abstract

While recognition accuracies of video classification
models trained on conventional benchmarks are gradually
saturating, recent studies raise alarm about the learned
representations not generalizing well across different do-
mains. Learning abstract concepts behind an activity in-
stead of overfitting to the appearances and biases of a spe-
cific benchmark domain is vital for building generalizable
behaviour understanding models. In this paper, we intro-
duce Pose-based High Level View Contrasting (P-HLVC),
a novel method that leverages human pose dynamics as a
supervision signal aimed at learning domain-invariant ac-
tivity representations. Our model learns to link image se-
quences to more abstract body pose information through
iterative contrastive clustering and the Sinkhorn-Knopp al-
gorithm, providing us with video representations more re-
sistant to domain shifts. We demonstrate the effectiveness
of our approach in a cross-domain action recognition set-
ting and achieve significant improvements on the synthetic-
to-real Sims4Action benchmark.1

1. Introduction
End-to-end deep learning facilitated a remarkable

progress in the field of human activity recognition
(HAR) [12, 68, 76] with impressive accuracies reported on
datasets such as HMDB51 [40] or Kinetics-400 [12]. How-
ever the vast majority of published methods rely heavily on
the assumption that the data used in training and testing is
independently and identically distributed (i.i.d). This as-
sumption is rather naive in real-world applications, where
we continuously experience domain shifts, e.g., through
changes of sensor type or placement. Recent activity
recognition research provides worrying evidence that mod-
ern activity recognition frameworks are highly sensitive to
changes in data distribution [57, 58] (for example an ac-
curacy drop of > 60% is reported in [58] if the domain
switches from synthetic to real data).

1Code: https://github.com/simplexsigil/p-hlvc
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Figure 1. We pre-train a network on body pose dynamics and use
the learned representations in a cross-domain manner to learn ac-
tions from synthetic data. We show that this generalizes well to
real world scenarios and present an unsupervised adaptation strat-
egy to improve results further.

Existing CNN-based activity recognition ap-
proaches [12, 68] often pre-train their models on RGB
videos of large labelled activity recognition datasets in a
supervised manner, after which the models are fine-tuned
for the target downstream task. Categorizing activities after
their appearance has changed is very difficult for such mod-
els [58], but humans handle this task without any effort.
What helps us identify an action? While the appearance in
RGB videos is strongly affected by, e.g., a transition from
synthetic to real data, more abstract modalities, such as
body poses, have higher tolerance in this regard. Multiple
frameworks successfully leveraged alternative supervision
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signals computed from the videos itself (e.g. optical flow)
in the context of self-supervised learning [5, 27], but this
paradigm remains underresearched for body pose dynamics
or performance under distributional shifts which is the
main motivation of our work.

We seek to investigate body poses as an effective super-
vision signal for pre-training video representation models
less susceptible to changes of data distribution and intro-
duce Pose-based High Level View Contrasting (P-HLVC)
– a new model for representation learning of human activ-
ities. A key ingredient of our approach is iterative con-
trastive clustering applied jointly on the videos and the
body poses extracted from them. Our model learns to con-
nect videos and the more abstract skeleton representations
through the Sinkhorn-Knopp algorithm as a pre-training
step, after which the video embedding model can be fine-
tuned for the downstream task, leading to activity recog-
nition models much more tolerant to domain shifts. How-
ever, the benefit of the P-HLVC approach goes beyond well-
generalizable activity representations. Since the supervi-
sion signal is extracted from the data itself, our model does
not require any activity labels during the body pose-based
pre-training.

We evaluate our idea in the context of domain generaliza-
tion on a synthetic-to-real activity recognition benchmark
Sims4Action as well as for video retrieval on HMDB51 and
UCF101, yielding a significant improvement in recognition
quality in all settings. Our findings provide encouraging
evidence, that modern activity recognition frameworks can
benefit more from learning to connect video data and body
pose sequences as part of pre-training, especially for learn-
ing domain-agnostic video representations.

To summarize, our main contributions are:

• We explore human pose dynamics as a supervision sig-
nal for learning domain-invariant activity representa-
tions and introduce the novel Pose-based High Level
View Contrasting (P-HLVC) model.

• We conduct in-depth experiments in cross-domain
human activity recognition and demonstrate clear
benefits of the proposed model. Our approach
considerably improves upon the state-of-the art on
the synthetic→real activity recognition benchmark
Sims4Action. Additionally, our approach does not re-
quire any category labels in the pre-training step and
performs on-par with the fully supervised approaches.

• As retrieval problems also require well-generalizable
feature encoders, we further validate the quality of our
model in the action retrieval task on HMDB51 and
UCF101, yielding state-of-the-art results.

2. Related work
2.1. Representation learning

Representation learning without manual annotations is
well explored, due to its applicability for training on very
large unlabelled datasets. Recent self-supervised meth-
ods typically either train to detect low or high level in-
stance transformations [5, 35] or they split the informa-
tion contained in a sample on the instance level which
may include separating color channels or clips along the
time dimension and train by matching representations of
the separated data or by reconstructing the information
[22, 25, 26, 33, 51, 75, 76]. [27] make use of paired video
and optical flow sequences to mine positive class samples in
an alternating way. Contrastive learning is often applied on
multiple generated views of existing data, for example af-
ter applying image transformations [14, 28, 62] or as multi-
modal contrastive learning [1, 38, 43, 52, 53]. Contrastive
clustering based losses have been used for image represen-
tation learning [3, 11] as well as recently for learning rep-
resentations from video [2]. The research most similar to
ours is presumably the concurrent work of Rai et al. [56].
However, while Rai et al. [56] also briefly consider body
poses, their experimental focus is clearly put on image-
based modalities.

2.2. Action recognition with body poses

With the availability of good body pose estimation meth-
ods from video [10], performing action recognition from
pose has been explored in many different works for exam-
ple with Recurrent Neural Networks [44,74], Graph Convo-
lutional Networks [60, 71], or with CNN based methods on
generated pseudo images [7, 8, 16]. Some works use body
poses and RGB sequences effectively in combination by us-
ing pose information as an attention mechanism, for exam-
ple [19] or [18]. However, these works do not aim at learn-
ing representations contrastively but rather leverage pose or
pose feature extractors as an additional source of informa-
tion for categorical supervised classification.

2.3. Synthetic datasets and domain adaptation

Until recently, very few datasets targeted action recog-
nition from synthetic data, significant progress has been
made over the past years. [20, 46, 65] and [29] evaluate the
usage of synthetic data to augment real data during train-
ing, [54] use it to learn action compositions and [58] in-
tend to learn human actions from virtual data only. Most
unsupervised domain adaptation frameworks aim to match
within-network feature distributions of the source and tar-
get domain, for example by leveraging a domain adversar-
ial loss [24,31]. Newer publications extend this by combin-
ing it with attention to align multiple temporal cross-domain
features [13], with a self-supervised learning loss which is
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applied on both domains, source and target [15] or the ex-
tension to multiple modalities [49].

3. High level view contrasting
In this work we explore contrastive multi-view represen-

tation learning limited to the video modality paired with
body poses generated from video sequences. Human body
poses can be extracted using off-the-shelf detectors which
are trained in a self-supervised way, for example [30,36,64],
but results tend to be better with supervised models like
[10]. Note, that we do not need the pose estimator to be
trained on our pre-training dataset, which allows us to pre-
train on unlimited datasets without human labelling effort.
We represent body joint movements with the SkeleMotion
representation of [8], which calculates the magnitude and
direction of joint movements and arranges the results in an
image like structure which is well suited to be interpreted
with a very lightweight CNN. One advantage of body joints
instead of arbitrary points of interest or optical flow maps is
the inherent semantically meaningful structure of the data.
This allows for a smaller representation in comparison to
unstructured data like optical flow maps.

Our pre-training method draws inspiration from
SvAW [11]. They use a single CNN encoder to calculate
representations for multiple augmented 2D images and
then project these representations onto movable cluster
centers which are distributed on the unit sphere. Since this
would lead to trivial solutions, they use the work of [3] and
apply the Sinkhorn-Knopp algorithm to match a calculated
target cluster assignment of paired images instead of the
projected cluster assignment itself.

Instead of applying low level data augmentations with
the same representation encoder for all augmented views,
we use generated body poses as a high level view and apply
two different representation encoders fΘ and gΘ to work
with the different data sources. A detailed overview of our
architecture is provided in the supplementary.

3.1. Representation space

Video Embeddings For a video v ∈ RL×W×H×3 with
L being the length of the video (Kinetics-400: 10 sec-
onds, 30 fps sampled, L = 300), W and H being the
height and width and the last dimension representing the
RGB space, we sample sub-sequences xv ∈ RT×H×W×3

with T being the desired clip length, randomly on each
epoch. After applying randomly chosen data transforma-
tions like cropping, rotations or color changes (consistent
over the clip length), we use a 3D CNN video encoder
f with parameters Θ to attain a normalized representation
vector fΘ(xv) = yv ∈ Rm, ∥yv∥ = 1 with m being the
representation vector dimensionality. We refer to the space
Rm containing the representation vectors as the Represen-
tation Space. The encoder f is either a slightly adapted

version of the R-2D3D network [25], the S3D network [68]
or MoViNet A2 [37], however, f can easily be exchanged
with other architectures.

Body pose-time embeddings Given a body pose se-
quence xb ∈ RJ×L×3 with J being the number of body
joints, L being the time steps in the video and the last
dimension describing the positions in three dimensional
space, we compute a SkeleMotion representation using the
work of [8] and then select clip length crops in order to
achieve a representation xs ∈ RT×I×6 which encodes the
orientation and magnitude of body joint movements from
consecutive frames. We use these representations as input
to compute body pose-time embeddings gΘ(xs) = ys ∈
Rm, ∥ys∥ = 1 with our body pose dynamic representation
encoder gΘ, likewise to the generation of the video clip rep-
resentations. The encoder g is a custom lightweight and
simple CNN, similar to the one proposed in [8]. A Skele-
Motion image of size 32 × 49 × 6 which is paired with a
video clip of size 32× 128× 128× 3 increases the size of
the input data per sample by less than 1% in comparison to
double the size when using an additional augmented view
of the video clip. This effect is even more significant with
larger input clips of size 224×224×3, since the size of the
SkeleMotion representations does not increase with image
size. Doing contrastive learning on multiple views which
consist of paired image data or optical flow is computation-
ally much more expensive.

3.2. Assignment space

We define a set C of n cluster center vectors C =
[c1, .., cn]

T ∈ Rn×m, ∥ci∥ = 1, i ∈ {1..n} in the repre-
sentation space which are influenced by optimizing the loss
function. For each vector y in representation space we gen-
erate cluster assignment vectors z ∈ Rn

[−1,1] where z = Cy.
We refer to Rn

[−1,1] as the assignment space. Finally, we
generate assignment prediction vectors p = softmax(z)
which contain probability values for each cluster.

It is not clear how many cluster centers are effective.
A small number of learnable clusters may impact perfor-
mance, too many clusters at the start can prevent successful
training. This can be handled by growing the number of
clusters during training, as explained in Section 3.4.

To enforce an equal partitioning of the data to the
clusters, we use the Sinkhorn-Knopp algorithm to cal-
culate the target assignments Q = [q1, .., qn]

T =

sinkhorn(exp( [z1,..,zn]
T

ϵ ) ∈ Rnxm with ϵ being a param-
eter to influence the smoothness of the target assignment.
Using a small ϵ is crucial to distribute the data to multi-
ple clusters successfully. Empirically, we found ϵ < 0.012
to be sufficient for preventing the backbone networks from
converging to a trivial solution.
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3.3. The agreement accentuating CE loss

Although our approach was tested to work with the orig-
inal SwAV-loss from [11], it requires a careful choice of
hyper parameters to prevent it from converging to a trivial
solution, especially at the beginning of training. It is not
surprising that training in this setting is more difficult than
for [11] in the image domain, since we apply a two-stream
architecture and our two types of input data have very dif-
ferent structures and semantics. For this reason we propose
a new loss function that is better suited for the task of con-
trastive clustering in the video domain.

For a cluster assignment prediction p and its paired target
cluster assignment q (from another view), [11] define the
loss lSwAV in Eq. 1:

lSwAV(p, q) = −
X

k

q(k) log p(k) (1)

Instead, we propose the loss lAXent:

lAXent(p, q) = −
X

k

q(k) log p(k)+(1−q(k)) log(1−p(k))

(2)
We call this loss the Agreement Accentuating Cross-

Entropy Loss (lAXent). On a first glance it is similar to the
often used definition of the binary cross-entropy loss. How-
ever, these are not the same functions. The binary cross-
entropy loss expects a dual class problem with q ∈ {0, 1}
which means that in any case only one of the two terms
will be non-zero. AXent on the other hand is defined for
q ∈ [0, 1]. This is a linear combination of the two edge
cases which make up binary cross-entropy and perfectly
well suited for a problem, where q is a continuous variable
indicating the attraction to a desired class and the loss is
minimized by varying p. In a system where q ∼ p, this loss
function accentuates the agreement of these two variables
either towards (p, q) = (0, 0) or towards (p, q) = (1, 1).

In a batch of N samples, each sample might be aug-
mented multiple times to generate multiple video views V
with |V | = Kv and multiple body pose tracks Si with
|Si| = Ks. While Kv is fixed during training, Ks may
be different for every sample and is only limited by a max-
imal number of the allowed body tracks. We make use of
all V × Si, i ∈ {1..N} combinations per sample. lAXent is
used twice, once on the body pose assignment prediction psi
and video target assignment qvi and once on the video as-
signment prediction pvi and body pose target assignment qsi .

l = − 1

N

NX

i=1

X

s∈Si

X

v∈V

lAXent(p
s
i , q

v
i ) + lAXent(p

v
i , q

s
i )

2

(3)

We ablate the AXent-loss function in table 1 and provide a

...

SinkhornBatch Distribution

Desired Distribution

Updated Targets

frozen
weights

hΨ hΣ

Figure 2. Overview of our domain adaptation method. We evaluate
the batch distribution of label predictions and use the Sinkhorn-
Knopp algorithm to calculate target predictions which conform to
a desired distribution.

further analysis of the differences between the AXent-loss
and the SwAV-loss in the supplementary.

3.4. Iteratively growing the assignment space

Empirically, we found that there is a certain relation be-
tween the dimensionality of the assignment space and the
number of cluster centers, as using significantly more or less
cluster centers increases the probability for the algorithm to
converge to a trivial solution which does not transfer well.
We enabled the ability to train on very large numbers of
clusters with an iterative cluster splitting algorithm. In or-
der to distribute the data more evenly, we sum the cluster as-
signments for each epoch and select the clusters with most
assignments as splitting candidates di. New cluster centers
are then introduced as d̂i = di + dϵ with dϵ ∈ Rn

[−ϵ,+ϵ]. We
then rely on the sinkhorn algorithm and gradient updates to
push the cluster duplicates apart and to distribute them more
evenly on the unit sphere.

3.5. Unsupervised domain adaptation

We leverage our pre-trained architecture by evaluating it
on unsupervised domain adaptation from synthetic to real
world data and append a classifier hΨ on top, which is
then trained on the source domain. To further improve
our transfer performance, we present an unsupervised self-
calibration technique which performs teacher-student train-
ing on the target domain, an overview is provided in Fig-
ure 2. We assume a plausible label distribution and enforce
it during batch-wise training on the target dataset by phras-
ing the assignment of labels to classes as an optimal trans-
port problem from a uniform marginal to the assumed pre-
diction marginal with the class scores per sample forming a
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Modalities Loss UCF HMDB

Top 1 Top 5 Top 1 Top 5

Video + Video AXent 58.1 85.5 30.0 66.0
Video + Pose InfoNCE 68.0 92.5 39.8 74.8
Video + Pose SwAV 81.0 95.0 52.8 81.2
Video + Pose AXent 83.0 96.3 55.1 82.2

Table 1. Transfer learning comparison of combinations of different
loss functions and modalities.

cost matrix. Similar to our pre-training procedure, we can
use the Sinkhorn-Algorithm to solve this problem and re-
ceive new predictions which follow the assumed distribu-
tion more closely. A student network hΣ which was initial-
ized with the teacher weights Ψ is then trained on the target
dataset to predict the teacher’s calibrated predictions. While
distribution matching is one of the foundational principles
of domain adaptation [4, 45, 77], most approaches perform
this on the feature level. This does not apply to our archi-
tecture, since our backbone is pre-trained on real world ex-
amples and frozen during fine-tuning on the synthetic do-
main. Despite a similar underlying intuition, the usage of
the Sinkhorn-Knopp algorithm, our teacher-student archi-
tecture as well as the focus on the label distribution rather
than the within network feature distribution separates our
technique from previous approaches.

A reasonable assumption for the desired label distribu-
tion is the label distribution of the source dataset, addition-
ally our method can be transformed into weakly supervised
domain adaptation by providing an oracle based distribu-
tion or sampling a small part of the target domain samples
to generate a distribution estimate.

4. Experiments
We use Kinetics-400 [34] (videos sampled at 30 frames

per second) as our pre-training dataset and HMDB51 [40],
UCF101 [61] and Sims4Action [58] as the downstream
datasets. We do not use any labels of Kinetics-400. Evalu-
ation after performing transfer learning on Sims4Action is
perfomed on Toyota Smarthome [17] as described in [58].
We also use the Kinetics-Skeleton dataset [71] contain-
ing pose sequences for Kinetics-400. We note that poses
can also be extracted using self-supervised detectors, e.g.
[30, 36, 64]. The Kinetics-Skeleton dataset made use of an
off-the-shelf pose estimator which was trained on data un-
related to Kinetics-400, preventing any manually labelled
supervisory signal from Kinetics itself to influence our re-
sults. This is similar to [43] who make use of supervised
speech recognition models to generate text from audio for
multi-modal representation learning.

Our dataset contains 122k video samples after filtering
videos which do not have a correspondence in the Kinetics-

Skeleton dataset, while the original training set contains
224K videos. It is interesting to observe that even with half
of the training examples, our approach performs on par with
approaches trained on the full K400 data. This further signi-
fies the potential and effectiveness of our approach. Unless
noted otherwise, evalutation is performed on the video fea-
ture encoder f .

4.1. Ablation studies

First, we validate three key ingredients of our approach:
(1) contrastive clustering as learning mechanism, (2) the
usage of body pose as a complementing view and (3) the
introduction of the BXent loss. We compare our contrastive
clustering method with “vanilla” contrastive learning using
the InfoNCE loss [14] while keeping the same backbone
architectures and hyper parameters for both methods. To
evaluate the feasibility of body poses as a learning signal,
we train a network on two differently augmented video
views sampled from two random locations within a video
instead of combining video and pose for 200 epochs and
using frames of size 128× 128. The results are listed in Ta-
ble 1 where we compare downstream transfer performance
to HMDB51 and UCF101 as well as in Table 5 where the
InfoNCE experiment is referred to as P-HLVC NCE and
the video-video contrastive learning experiment is referred
to as V-HLVC. Pose-based contrastive learning results in
strong representations for action video retrieval (Table 5),
while video-video contrastive learning does not reach this
performance, despite extensive augmentations with tempo-
ral shifts between the matching views. Note, that training
with two video views requires roughly the double amount
of resources (GPU, RAM and time). Pre-training with
the AXent loss results in measurably improved transfer
learning performance compared to the original SwAV loss,
improving top-1 performance on HMDB51 by 3.1% and on
UCF101 by 2%.

4.2. State-of-the-art comparison

We compare our model to state-of-the-art approaches in
the context of cross-domain synthetic-to-real recognition as
well as on k-Nearest Neighbour (K-NN) action retrieval.
The variations in architectures, image sizes and clip lengths
for existing approaches make it difficult to provide a one
to one comparison with all existing methods. For this rea-
son, we list P-HLVC results for three different lightweight
architectures, the R2D3D architecture as used in [25, 26],
the S3D architecture as used in [5, 27, 48, 58, 68] and the
recently presented MoViNet architecture [37] in its A2 set-
ting. Detailed information about our training procedure and
architecture as well as transfer learning results on HMDB51
and UCF101 are provided in the supplementary.
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Figure 3. Comparison of direct transfer (top) with unsupervised
distribution training assuming the source label distribution (uni-
form) or using the target cross-subject train label distribution.

4.2.1 Cross-domain action classification

We evaluate the impact of the proposed pre-training tech-
nique on model generalization to new domains using the
Sims4Action testbed [58] for synthetic→real transfer in Ta-
ble 2. Additionally, we test our domain adaptation method
described in Section 3.5 and present the results in Table 3.

After our pose-supervised representation learning, we
freeze all pre-trained weights during the transfer learning on
synthetic Sims4Action videos, except for one experiment
marked with †† to illustrate the effects of end-to-end fine-
tuning. The evaluation takes place on real data obtained
from Toyota Smarthome [17]. Sims4Action is further re-
ferred to as the source dataset and Toyota Smarthome as the
target dataset. We follow evaluation procedure of [58] and
predict a label for the middle 90 frame chunk per video. Ad-
ditionally, we evaluate on the full video, using averaged ten-
crop predictions in order to provide comparable results for
approaches which predict an action based on longer video
clips. We reprt the accuracy as well as the mean Per-Class
Accuracy (mPCA / balanced accuracy).

Pre-training significantly improves generalization per-
formance (see Table 2). We find that the best results are
achieved by keeping the trainable classification head as
shallow as possible, the models with three fully-connected
layers or full end-to-end fine-tuning perform worse, which

Method Pre-
training

Full Video Mid-Chunk

Acc mPCA Acc mPCA

Domain Generalization (No Pre-Training)
S3D [58] 18.5 13.4 20.0 12.4
OursV 13.4 10.0 13.0 9.1
OursB 12.2 14.0 12.0 12.7
OursV +B 11.8 13.3 12.4 13.2

Domain Generalization (Pre-trained)
S3D [58] K400 36.0 27.3 34.1 23.2
TA3N [13] IN 12.42 13.61 -
APN [73] IN 18.1 19.7 -
VideoDG [73] IN 19.6 23.6 -
OursV | 38.8 21.3 35.6 19.8
OursV † | 37.85 20.6 35.2 19.4
OursV †† KS 20.9 18.9 20.7 19.3
OursB | 24.8 19.6 24.7 18.8
OursV +B | 40.4 29.0 38.3 28.0

V Video B SkeleMotion V+B Concatenated Features
K400 Kinetics-400 IN ImageNet KS Kinetics-Skeleton

† Classifier using three linear layers instead of one.
†† End-to-end fine-tuning.

Table 2. Domain generalization results from Sims4Action to Toy-
ota Smarthome with evaluation on the cross-subject test set fol-
lowing [58]. Our approach only needs a dataset with paired body
skeleton sequences for pre-training.

Method Target
Superv.

Full Video Mid-Chunk

Acc mPCA Acc mPCA

Unsupervised Domain Adaptation
TA3N [13] 8.8 12.7 -
Ours 40.6 31.3 36.0 28.1
Ours† 39.4 29.3 36.3 27.1

(Weakly) Supervised Domain Adaptation
TA3N [13] Labels 33.1 13.4 -
Ours Dist. 53.4 25.5 49.9 24.3
Ours† 53.2 26.0 49.3 25.5
† Classifier using three linear layers instead of one.

Table 3. Unsupervised and supervised domain transfer from
Sims4Action to Toyota Smarthome with evaluation on the cross-
subject test set. Our domain adaptation technique is weakly super-
vised, since we only make use of the label distribution in contrast
to using the labels themselves.

Method ROSE UCF HMDB
P-HLVC (S3D) ✗ 83.2 54.4
P-HLVC (S3D) ✓ 59.5 (-23.7) 44.5 (-9.9)

Table 4. Transfer learning results on the original HMDB51 and
UCF101 test splits and on the ROSE challenge benchmark.
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Figure 4. Grad-CAM [59] results on Toyota Smarthome. The columns depict the original image as well as negative attributions and positive
attributions shown as heatmaps. (a)-(c) and (d)-(f) show Grad-CAM being applied at convolutional layers three and nine, respectively. It is
clearly visible, how our method focuses on the human body as an indicator to determine an action.

we attribute to the deterioration of well-transferable back-
bone weights and overfitting. This supports our assumption
that a pre-trained feature encoder for domain generalization
should be as descriptive of human actions as possible, since
a more general pre-training might require a more sophisti-
cated multi-layer classification head.

Apart from the comparison to [58], we also provide re-
sults for recent domain generalization and unsupervised do-
main adaptation frameworks with publicly available imple-
mentations, VideoDG [73] (including APN as baseline) and
TA3N [13]. [58] provide results for the S3D architecture
being pre-trained in a fully-supervised manner on Kinetics-
400. This is a challenging comparison, since the super-
vised pre-training on Kinetics-400 can learn many of the
relevant action classes on real data and only has to recog-
nize their label assignment in the synthetic domain, while
our own approach faces the concept of actions in the syn-
thetic domain for the first time. We consider this an im-
portant scenario since the usage of synthetic data is mainly
justified by avoiding the need for annotated real-world ac-
tion datasets. Despite solving a harder task in this sense,
our combined video and body pose backbones which were
pre-trained without action labels outperform action based
Kinetics-400 pre-training on all metrics.

In Table 3 our domain adaptation technique is compared
with the results of [13]. We consider different calibration
strategies by either using the source dataset label distribu-
tion (unsupervised) or using additional information about
the label distribution in the cross-subject train set of Toyota
Smarthome (weakly supervised). On unsupervised domain
adaptation we achieve an accuracy of 40.6% outperform-
ing randomly initialized domain generalization (Table 2) by
27%. The framework of [13] allows for using supervised
domain adaptation, we compare these results with our work
by making use of the target set label marginal for our cal-

ibration method instead of the source marginal and outper-
form them by 20.3% on accuracy. Unsurprisingly, assuming
the uniform label distribution of Sims4Action works better
for mPCA, as the metric treats every category as equal and
the target dataset label marginal maximises standard accu-
racy. We list Figure 3 to visualize the effects of our calibra-
tion strategies on our video model.

4.2.2 Action video retrieval

Next, we evaluate the representations generated with our
body pose-driven pre-training approach on HMDB51 and
UCF101 action retrieval. We sample 10 clips of all videos
in the test and train set of these datasets and average these
clip representations per sample. We did not apply any aug-
mentations apart from random cropping.
As commonly performed, the test set sample representa-
tions are used to query the classes of the train set samples by
evaluating their representation similarity and the Recall@K
is reported based on the top k returned results. The results
of this experiment are listed in Table 5 where we compare
with other representation learning methods which pre-train
on another dataset than the retrieval set, a setting which
requires good generalizability of the feature encoder. Our
models show very good performance, improving over Co-
CLR [27] on all datasets or ViCC on HMDB51 which share
the same S3D backbone network.

4.2.3 ROSE Challenge

In order to evaluate the robustness of our pose-supervised
pre-training strategy, we list our S3D fine-tuning results on
HMDB51 and UCF101 in Table 4 and compare them to the
2022 Robustness in Sequential Data challenge (ROSE). The
performance losses are substantial, but we find that despite
the heavy alterations on the input data, P-HLVC still shows
a certain robustness, even outperforming older approaches
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Method
k 1 5 10 20

HMDB51 (UCF101 Pre-Training)
VCOP [70] 7.6 22.9 34.4 48.8
VCP [47] 7.6 24.4 36.3 53.6
MemDPC (R2D3D) [26] 7.7 25.7 40.6 57.7
PRP [72] 10.5 27.2 40.4 56.2
Pace [67] 12.9 31.6 43.2 58.0
CoCLR (S3D) [27] 23.2 43.2 53.5 65.5
ViCC (S3D) [63] 25.5 49.6 61.9 72.5

HMDB51 (Kinetics Pre-Training)
CtP (R3D-18) [66] 11.8 30.1 - -
VCLR (R2D-50) [39] 35.2 58.4 68.8 79.8
P-HLVC (R2D3D) 8.0 27.1 41.3 58.6
V-HLVC (S3D) 9.6 25.1 38.0 53.6
P-HLVC NCE (S3D) 24.5 49.3 62.4 74.7
P-HLVC (S3D) 27.3 53.7 66.3 79.1
P-HLVC (MVN) 29.7 56.5 69.20 80.0

UCF101 (UCF101 Pre-Training)
VCOP [70] 14.1 30.3 40.0 51.1
VCP [47] 19.9 33.7 42.0 50.5
Jigsaw [50] 19.7 28.5 33.5 40.0
OPN [41] 19.9 28.7 34.0 40.6
MemDPC (R2D3D) [26] 20.2 40.4 52.4 64.7
PRP [72] 23.2 38.1 46.0 55.7
Buchler [6] 25.7 36.2 42.2 49.2
Pace [67] 25.6 42.7 51.3 61.3
CoCLR (S3D) [27] 53.3 69.4 76.6 82.0
ViCC (S3D) [63] 62.1 77.1 83.7 87.9

UCF101 (Kinetics Pre-Training)
SpeedNet (S3D-G) [5] 13.0 28.1 37.5 49.5
TempTrans [32] 26.1 48.5 59.1 69.6
CtP (R3D-18) [66] 29.0 47.3 - -
VCLR (R2D-50) [39] 70.6 80.1 86.3 90.7
P-HLVC (R2D3D) 14.0 34.4 46.7 61.1
V-HLVC (S3D) 19.1 35.5 45.0 55.8
P-HLVC NCE (S3D) 37.4 59.2 69.9 79.4
P-HLVC (S3D) 39.7 64.0 73.5 81.9
P-HLVC (MVN) 53.7 74.2 82.0 88.2

Table 5. Video retrieval on HMDB and UCF in %. If a backbone
is used by mutiple approaches, best results are underlined.

like [25] on the HMDB51 test set. A full transfer-learning
comparison table is listed in the supplementary.

5. Qualitative analysis
Next, we showcase the image regions driving the deci-

sion of our model using Grad-CAM [59]. Figure 4 shows
alpha blended heat maps of negative and positive attribution
to the ground truth prediction, respectively. Samples (a)-(c)
analyze the shallow third convolutional layer of S3D, while
samples (d)-(f) are the result of applying Grad-CAM after
the convolutional layer number nine. We refer to the sup-

plementary for more details on the implementation as well
as further examples. The results show how our pre-training
forces the network to focus on the human body, for both,
positive and negative decisions. Samples (a) to (c) demon-
strate, that this is not only the case for high level layers,
but rather a property which is already present in low level
layers. In sample (b), it is visible, that the body provides
contradicting information to the network and in sample (f)
it appears that the action class “cook” might actually be a
result which is inferred from the environment, rather than
the body itself.

6. Conclusion
P-HLVC is a new approach for representation learning

from automatically generated body poses aimed to improve
domain generalization of synthetic-to-real action classifica-
tion. Our approach does not require any category labels and
can therefore be utilized on large unlabelled video datasets.
We demonstrated the quality of our feature encoder by
performing ablation experiments and presenting state-of-
the-art results on action retrieval as well as the difficult
Sims4Action domain generalization benchmark. We fur-
ther improved these results by presenting a simple but very
effective unsupervised domain adaptation technique which
is complementary to existing adversarial loss approaches.
Our experiments demonstrate the potential of body poses as
an effective domain-agnostic supervisory signal.

Broader impact and limitations P-HLVC was devel-
oped to improve assistance applications for activities of
daily living. For such scenarios, the collection of datasets
can be privacy infringing and great care has to be taken to
protect the right of informational self-determination. With
our work we hope to drive research to improve applica-
bility of synthetic datasets which offer relieve for such
problems and additionally provide opportunities to counter
dataset biases for example by simulating generational or
ethnical diversity. This field of research remains limited by
strong domain and performance gaps which prevent syn-
thetic datasets from being used commonly for such applica-
tions. We believe this gap to shrink with the development of
realistic simulation engines, driven by the gaming industry.

Although action recognition frameworks raise ethical
questions since they might be applied for surveillance or
military applications, we believe that the possible merits of
our specific research direction outweigh these general con-
siderations and we hope to propel human-assistive research
with P-HLVC as well as with our future efforts.
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and Cordelia Schmid. Potion: Pose motion representation for
action recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7024–
7033, 2018. 2

[17] Srijan Das, Rui Dai, Michal Koperski, Luca Minci-
ullo, Lorenzo Garattoni, Francois Bremond, and Gianpiero
Francesca. Toyota smarthome: Real-world activities of daily
living. In The IEEE International Conference on Computer
Vision (ICCV), October 2019. 5, 6, 12

[18] Srijan Das, Rui Dai, Di Yang, and Francois Bre-
mond. Vpn++: Rethinking video-pose embeddings for
understanding activities of daily living. arXiv preprint
arXiv:2105.08141, 2021. 2

[19] Srijan Das, Saurav Sharma, Rui Dai, Francois Bremond, and
Monique Thonnat. Vpn: Learning video-pose embedding for
activities of daily living. In European Conference on Com-
puter Vision, pages 72–90. Springer, 2020. 2

[20] César Roberto de Souza12, Adrien Gaidon, Yohann Cabon,
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