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Abstract

Unsupervised Domain Adaptation (UDA) deals with
transferring knowledge from labeled source domains to an
unlabeled target domain under domain shift. However,
this does not reflect the breadth of scenarios that arise
in real-world applications since source domains could in-
crease. A plausible conjecture is: can we train a life-
long learning model learned on continuous source do-
mains given the target without the presence of labels?
We formalize this task as the Continuous Domain Adap-
tation (CDA) and empirically show that conventional do-
main adaptation methods may suffer severe generalization
deterioration due to the limited incremental transferabil-
ity and negative transfer. To tackle this issue, we pro-
pose a novel sample-to-sample framework—Consolidation-
and-Exploration Network (CENet) to facilitate incremental
transferring. This method underscores both the qualitative
and quantitative relationship between samples. Moreover,
we conduct comprehensive experiments to evaluate the ef-
fectiveness of each component in our pair-based method.
Extensive experiments show that our approach achieves sig-
nificant improvement over related state-of-the-art methods.
Our source code will be publicly available at https :
//github.com/GekFreeman/continuous_da.

1. Introduction

Unsupervised Domain Adaptation (UDA) has been
widely explored to mitigate the domain shift between la-
beled source domains and the unlabeled target domain [I,

, 30]. Tt specifically transfers the domain knowledge to
the target domain from a single source domain (i.e., Single-
Source Domain Adaptation (SSDA)) or multiple domains
(i.e., Multi-Source Domain Adaptation (MSDA)). Never-
theless, existing UDA research works conventionally as-
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Figure 1. The adaptation performance on the unlabeled target do-
main of MMD [30] (for UDA), MSDTR [5] (for MSDA) and our
CENet (for CDA) at different training stages. Given the same
source domains, MMD and our CENet are trained sequentially
with different labelled source domains at each training stage, re-
spectively; MSDTR is trained in a MSDA manner with all the
source domains together.

sume that all the data from source domains are pre-collected
well for training UDA models. This inevitably fails to
cope with a more practical scenario: the data from different
source domains are sequentially collected, or it is realisti-
cally intractable to adapt the model for the target domain
with all the available source data due to security issues and
data privacy.

Recently, there have been a few works that attempt to
transfer from continuous source domains [15,22,23]. How-
ever, their proposed problems are not scalable from the stan-
dard UDA and lack comparability with SSDA and MSDA
methods. In this paper, we consider a practical continuous
UDA problem (see Fig. 1): can we train a model to learn
from the crescent source domains adapting to the unlabelled
target domain? We refer to this realistic setting as Continu-
ous Domain Adaptation (CDA). CDA sequentially receives
different labeled source domains and is increasingly trained
with one source domain at once. For instance, medical re-
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sources are unbalanced in the world, we can easily collect
and train on the labeled domain from areas with rich med-
ical resources continuously to adapt to the unlabeled target
domain with resource-poor health facilities.

In the CDA task, the issue of adaptation drift arises re-
markably due to the sensitivity to the learning source data.
As shown in Fig. 1, MMD [30] (the UDA method) exhibits
a declining adaptation trend when sequentially trained with
different source domains. Due to the absence of annota-
tions in the target domain, the supervision information of
MMD is mainly determined by labels of the source do-
main and the domain discrepancy distance dominated by the
source resulting in overfitting of the source domain. MS-
DTR [5], trained in a MSDA manner, under-performs our
CENet (trained in a CDA manner), although it has all the
source domains in the whole training stage and costs more
computation for training with so many data. The reason is
that applying whole different source domains bring about
the discrepancy of distinct modal information.

To mitigate the adaptation drift issue of CDA, we pro-
pose a Consolidation-and-Exploration Network (CENet).
To prevent results in a tug-of-war dynamic, we propose a
pair-based alternative termed Contrastive Pair (CP) rather
than domain-based. CP aims to establish sample-to-sample
connections in domain and category aspects based on target
samples. However, due to the lack of annotation and domain
shift, the noisy feature may lead to blunders in the relation-
ship. Therefore, we first sieve the target derived from the
sample-to-prototype distance to accrue the relational bank.
Next, we use the embedding after the encoder and projec-
tor to establish an association map of the source domain,
and relational samples based on the Hierarchical Naviga-
ble Small World (HNSW) [8]. We construct a contrastive
pair of convergence (CP,) that represents the correlation of
semblable samples between different domains. We realize
the exploration of the source domain by constraining the di-
agonal elements of the cross-correlation matrix of CP. in
the feature space to make their feature vectors as similar
as possible. Besides, we propose another contrastive pair
of divergence (CP,) using the class discrepancy within the
relational bank. The cross-correlation matrix of CP, is con-
strained to make its eigenvectors orthogonal, thus preserv-
ing the reliable discriminative features learned from the his-
torical source domain and avoiding negative transfer during
exploration.

Instead of alignments between distributions or proto-
types, we propose a sample-to-sample alignment to address
the problem of incremental matching in continuous domain
adaptation. We also propose a symmetric form of differ-
entiation constraint to consolidate the reliable features of
the historical source domain to avoid the negative transfer.
We design class- and domain-based supervised relations for
the task compared to classical contrastive learning methods.

Ultimately, our method achieves desirable results on this
new problem. Compared to MSDA methods, our method
can be applied in more rigorous data usage scenarios, e.g.,
to learn the source domain sequentially without episodic
memory. At the same time, our method only requires a light
model to implement instead of designing domain-specific
network for each domain. We outperform current state-of-
the-art MSDA methods on multiple benchmarks.

2. Related Work

Domain Adaptation. Many works on UDA focus on
the adaptation from single source domain, while Multi-
Source Domain Adaptation (MSDA) attracts increasingly
attentions to leverage abundant labelled data from multi-
ple sources. MSDA originated from A-SVM [25] lever-
ages the ensemble of source-specific classifiers to tune the
target categorization model. Motivated by the distribution
weighted combining rule, some methods [13,24,30] learn
domain-specific classifier modules and obtain a weighted
ensemble prediction for target samples. Besides, another
MSDA strategy is prototype-based for sample-level domain
alignment [12,20,26]. SRDC [20] propose to directly un-
cover the intrinsic target discrimination via discriminative
clustering of the target data. Recently, self-training has
emerged as a simple and effective technique for UDA, at-
taining state-of-the-art performance on many image recog-
nition tasks [28]. However, when these UDA methods are
applied to CDA, their network structures need to be ex-
panded with the increase of source domains and may even
lead to adaptation drift due to the sensitivity to the learn-
ing source data. Compared with [26], we further enrich
the connections between samples and apply them to the ex-
ploration and consolidation representation learning tasks in
CDA.

Multi-Domain Continual Learning. Multi-Domain
Continual Learning (MDCL) is one of the most important
scenarios in continual learning. MDCL is concerned with
learning a task, such as image classification, sequentially
over multiple visual domains with the different label spaces.
Progressive Neural Networks [17], Dynamically Expand-
able Networks (DENs) [27], and Deep Adaptation Mod-
ules (DAMs) [16] are the earliest works in this field on
the classification task. [9, 10] learn a domain-specific bi-
nary mask over a fixed backbone architecture to get a com-
pact and memory-efficient solution. Other works [14, 5]
mitigate forgetting by using parameter-isolated-based ap-
proaches to dedicate a domain-specific subset of parameters
to each unique task. The learning objective in the CDA sce-
nario is to enhance the adaptation to a given target domain
with higher labeling costs. Since we are not concerned with
catastrophic forgetting of the source domains, CDA is not
required to set up any domain-specific modules to preserve
the knowledge of the source domains. Besides, this setting
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Figure 2. The architecture of the proposed CENet framework. (1) Consolidation: We use the margin and semantic association of the target
domain in the prior model CENet;_ to accrue Relational Bank, which includes the information to be preserved. Furthermore, we construct
contrastive pairs of divergence between banks of different objects and maintain the objects’ variance by equating the diagonal elements of
the cross-correlation matrix to zero. (2) Exploration: Based on the consolidation task, we propose to explore more generalizable feature
representations by establishing a sample-to-sample alignment. We introduce the Hierarchical Navigable Small World (HNSW) to build
the feature relation graph of the source domain samples. Then, we assemble contrastive pairs of convergence through the samples of the
relational bank querying the HNSW and try to equate the diagonal elements of the cross-correlation matrix to 1, resulting in eliminating

domain shift and exploring more adaptive feature representations.

is a natural extension of SSDA and MSDA, and one of the
core problems is to deal with the domain shift between the
labeled domain and the unlabeled domain, which does not
need to be concerned in MDCL. Moreover, our setting can
be directly compared with a broad range of UDA methods
for a specific target domain, which more readily reflects the
effectiveness of our method.

3. Method
3.1. Problem Setup

In CDA, n source domains are labeled and sequentially
given: D1 D52 .. D% the target domain D7 is unla-
belled. They share the same class space: {lg,l1,...,lv—1}.
In the n-th source domain D, it has N,, images X" with
labels Y5, denoted as (X 5, Y5 )={ (x>, 7" )} N . Tar-
get domain D7 is XT= {zT}Z_l, where N is the number
of samples in DT, F is the feature extractor and G' means
the projector.

3.2. Consolidation-and-Exploration Network

Domain shift is also the core problem of continuous do-
main adaptation. However, methods based on distribution
alignment may cause negative transfer of the target domain
under continuous alignment. This paper proposes a contin-
uous representation learning based on sample relations (re-
lational bank) to endow the model with the ability of incre-
mental transfer. In order to enhance the generalization per-

formance of the model in the target domain without causing
negative transfer, we correspondingly set two representation
learning tasks of exploration and consolidation. Similar to
contrastive learning, we take input pairs of related samples
in some way, which is called a contrastive pair (CP). For ex-
ploring and consolidating the representation learning of the
generalization of the target domain, we refine CPs to two
kinds: cross-domain and cross-class, respectively.

Relational Bank. Unlike self-supervised representation
learning, our CENet learns feature representations that are
robust to specific domains through the association of sam-
ples between categories and domains. The target domain
sample is the core of all sample relations. However, due to
the inevitable noise generated by the lack of labeling, we
filter unlabeled images with high confidence 7 and select
some samples with the closest distance to the class proto-
type to construct the relational bank, which is further used
to construct differentiated sample relations for learning ro-
bust representation to continuous learning.

Consolidation. The objective of the consolidation task
is to preserve reliable class-discriminative information in
the current network to prevent negative transfer while ex-
ploring novel domain knowledge. Therefore, we propose
the contrastive pair of divergence (CP,) based on samples
of diverse pseudo-classes in the relational bank. Moreover,
learning the differential feature representation of CP,4 plays
an essential role in disentangling the domain attribute out
of the domain distribution and balancing the proportion of
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various classes. Defining a CPg, i.e., (z], :c]T) with pseudo
labels (9;#7;). We set the symmetric representation learn-

ing objective as Lpq:

%

where C' is the cross-correlation matrix computed between
the outputs of the two identical networks along the batch
dimension:

z = G(F(x)), 2

- 2o %1% bj 3)
V2 (203 V 2 (#0,5)

where b indexes batch samples and ¢, 7 index the vector di-
mension of the networks’ output. C'is a square matrix with
size same as the dimensionality of the network’s output,
and with values comprised between -1 (i.e. perfect anti-
correlation) and 1 (i.e. perfect correlation). Intuitively, the
Lpq objective, by trying to equate the diagonal elements of
the cross-correlation matrix to zero, makes the embedding
orthogonal to the difference of labels.

Cl-j(z, Z/)

Exploration. The exploration task aims to learn infor-
mation from the source domain to improve the feature rep-
resentation of hard samples. Recent work [2] in domain
adaptation find that not all knowledge is transferable across
domains, and indiscriminate transfer may be detrimental to
the generalization. So it is necessary to pay attention to
the relevance of samples cross domains: the adaptation of
some samples in the target domain depends more on rel-
evant samples of source domains than others. This paper
proposes to construct CP,. to describe the partial connection
between source and target domains, which is used to obtain
class-unique feature cross domains.

CP. consists of relational samples and their similar
source domain samples. There are different domains and
similar categories between samples of CP.. To build the
relational map of samples, we introduce the Hierarchical
Navigable Small World (HNSW) [8], which is built by fea-
ture maps of the current source. HNSW builds a multi-layer
structure incrementally consisting of a hierarchical set of
proximity graphs for nested subsets of the source elements.
The minimum layer in which an element is present is se-
lected randomly with an exponentially decaying probability
distribution. Starting search from the upper layer together
with utilizing the scale separation boosts the performance
allows a logarithmic complexity scaling. We query HNSW
for its most similar top K points for each relational sample
in the bank. Then we sample one point according to the
probability with the relational sample to constitute the CP,
of this round. The probability of sampling is determined by

the distance in the map as follows:

1
d(zT ,25)
paf|a") = FF—7F—
Zj (T z%)
exp J

“4)

where d(zT, z7) means the distance between the sample

2T and 27 in the built HNSW. When we get the CP, as
(™, %), we define the representation learning objective as

Lepe:

Ecpc = Zp(xSLLT)(l - Cii(xTa ZS))Q (5)

Unlike L.pq, the L., objective, by trying to equate
the diagonal elements of the cross-correlation matrix to 1,
makes the embedding invariant to the domain shift, leading
to the generalizable feature space.

Finally, we further simply use the (z7, 97 to calculate
the cross-entropy loss as L. Finally, our representational
learning objective is as follows:

L= )\lﬁcpc + )\QL"cpd + £cls (6)

4. Experiment

To validate the effectiveness of our method, we compare
our CENet against state-of-the-art domain adaptation meth-
ods on three datasets: Office-31, Image-CLEF, and Office-
Caltech.

4.1. Experimental Settings

Dataset. Office-31 [18] is widely used as a benchmark
for domain adaptation, and it consists of three different do-
mains with 31 categories: Amazon (A) with 2,817 images,
Webcam (W) with 795 images and DSLR (D) with 498
images. Image-CLEF [7] is a benchmark dataset for Im-
ageCLEF2014 domain adaptation challenge, which is or-
ganized by selecting 1800 images meanwhile as three do-
mains: Caltech-256 (C), ImageNet ILSVRC 2012 (I), and
Pascal VOC 2012 (P). The Office-Caltech [4] dataset con-
sists of four different domains: Amazon (A), Caltech (C),
DSLR (D), and Webcam (V).

Implementation Details. To realize a general and sim-
ple application, we adopt ResNet-50 as our backbone for
all datasets. We set 7=0.95, K=80% x N, where N; is
the number of samples in the target domain. A;=X2=1.0 for
all the experiments. In optimization trajectory, we use the
SGD optimizer with the initial learning rate o = 0.01 which
is adjusted using the following formula: Ir = m,
where p is the training progress linearly changing from 0 to
1. v = 0.01. ¢ = 0.70 and o = 10. As for HNSW, we
set the dimension as 256. Moreover, the graph’s maximum
number of outgoing connections is set to 16. We choose the
squared L as the distance metric for querying.
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We not only follow the same three evaluation protocols
((1)-(3)) as MFSAN [30] but also add the fourth (4): (1) Sin-
gle Best (SB): we report the best single source transfer re-
sults among multiple source domains. (2) Source Combine
(SC): all source domains are combined into a traditional
single source. (3) Multi-Source (MS): training data from
multiple sources are available and used simultaneously. (4)
Continuous Source (CS): multiple sources are learned in
continuous ways where the historical domains are not ac-
cessible and we report results on each domain and their av-
erage for different datasets in Tab. 1, Tab. 2, and Tab. 3.

4.2. Main Results

For all datasets, we take each domain as the target do-
main and remaining domains as source domains to train
the model continuously. After all training trajectories, we
compare the accuracy of the target domain. Since there
is no published method for the CDA scenario, we extend
A2LP [28] and MFSAN [30] to the CS protocol for com-
parison. We show that the existing UDA methods cannot
maintain their excellent performance on SSDA and MSDA
when applied to CDA. Using the same source domain set,
MFSAN [30] drops from 90.2% (MS) to 89.5% (CS), for
instance.

CENet surpasses these UDA methods in all benchmarks
under the CS protocol. Counterintuitively, our method even
outperforms the MS protocol under the CS protocol. We
regarded the MS protocol as the upper limit of the CS due
to the widespread domain-specific modules and looser data
access constraints (all source domain data can be trained si-
multaneously). Nevertheless, our method employs a lighter
and fully shared network to learn multiple source domains
continuously without any data replay and achieves signifi-
cant improvement over the MS protocol’s methods. Taking
the Office-31 dataset as an example, the average target accu-
racy of CENet is 92.0%, which exceeds the 91.1% accuracy
of the state-of-the-art method MSDTR [29] in the MS proto-
col. Moreover, our method dramatically outperforms other
methods, using ResNet-50 as the backbone in the Office-
Caltech dataset. Compared with MOST [ 1] which take the
ResNet-101 as the backbone, our method also achieves very
similar accuracy with a much more lightweight network.

Experiments show that our proposed CENet effectively
solves the retrogressive adaptability of existing UDA meth-
ods in CS protocol. More importantly, exceeding the prior
MS works, our method can provide novel insight into the
multi-source domain adaptation. Recent work mainly ap-
proximates the target domain by mixing the distributions of
multiple source domains, but is this the optimal paradigm
for MSDA? The excellent performance of CENet on CDA
may provide further understanding for future exploration.

Table 1. Classification accuracy (%) on Office-31 dataset. The
method with the highest accuracy on the given target is empha-
sized in bold. Our method achieves 92.0% average accuracy out-
performing the others.

Protocols Models D w A Avg
SB Source Only [30] 993  96.7 625 86.2
RevGrad [3] 99.1 969 682 88.1

DAN [6] 99.5 968 66.7 87.7
D-CORAL [19] 99.7 980 653 87.7
SC DAN [6] 99.6 978 67.6 883

D-CORAL [19] 99.3 98.0 67.1 88.1
RevGrad [3] 99.7 98.1 676 88.5

MS DCTN [24] 99.3 982 642 872
SImpAlsp [21] 992 974 706 89.0

MFSAN [30] 99.5 985 7277 90.2

MSCLDA [5] 99.8 988 737 90.8

MSDTR [29] 99.7 98.3 752 91.1

CS MFSAN [30] 99.8 976 71.0 89.5
CENet(Ours) 100.0 99.8 76.1 92.0

Table 2. Classification accuracy(%) on Image-CLEF dataset for
multi-source unsupervised domain adaptation. The method with
the highest accuracy on the given target is emphasized in bold.
Our method achieves 90.7% accuracy.

Protocols Models P C I Avg
SB Source Only [30] 74.8 915 839 834
RevGrad [3] 75.0 962 87.0 86.1

DAN [6] 75.0 933 862 848
D-CORAL[19] 769 93.6 885 863

A2LP [28] 79.3 963 91.8 89.1

SC DAN [6] 776 933 922 877
D-CORAL[19] 77.1 936 91.7 875
RevGrad [3] 779 937 918 878

MS DCTN [24] 75.0 95.7 903 87.0
SImpAlsp [21] 775 933 910 873

MFSAN [30] 79.1 954 93.6 894

MSCLDA [5] 79.5 959 943 899

CS MFSAN [30] 782 959 939 893
A2LP [28] 733 943 902 859
CENet(Ours) 81.2 96.7 943 90.7

4.3. Ablation Study

We conduct thorough ablation studies with Office-31
dataset to demonstrate the effectiveness of each component
in our model. We remove CP. or CP; individually with
full CENet. As shown in Tab. 4, experiments have proved
that both CP, and CP, can bring improvements no matter
whether they work alone or together.

Based on the Image-CLEF dataset, we measure the av-
erage accuracy under all possible order settings, which is
still close to the state-of-the-art performance in MSDA. In
addition, we compare the performance of CENet and the
classical DA method in preventing negative transfer during
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Table 3. Classification accuracy (%) on Office-Caltech dataset.
The method with the highest accuracy on the given target is em-
phasized in bold. Our method achieves 98.1% accuracy and
surpasses all the methods with ResNet-50. MOST1¢:1 take the
ResNet-101 as the backbone, and we gain a comparable perfor-
mance with a lighter network that is easier to employ.

Protocols Models w D C A Avg
SC Source Only [30] 99.0 983 87.8 86.1 92.8
DAN [6] 99.3 982 89.7 948 955

MS DAN [6] 99.5 99.1 892 91.6 94.8

DCTN [24] 994 99.0 90.2 92.7 953
SImpAlso [21] 993  99.8 922 953 96.7
MSCLDA [5] 99.1 985 94.1 953 96.8
MOSTi101 [11]  100.0 100.0 96.0 96.4 98.1

CS MFSAN [30] 100.0 97.8 925 942 96.1
A2LP [28] 99.0 994 949 958 973
CENet(Ours)  100.0 100.0 959 96.4 98.1

Table 4. Ablation study on Office-31 dataset. ” v'” means with this
operation. — means the continuous learning sequence, = means
the adaptation to the target domain. We report the accuracy (%) on
both one domain adaptation setting and two domain CDA settting.

CP. CPy (W)=A (W—oD)=A
73.1 74.8
v 72.8 75.9
v 73.6 74.9
VAV 73.8 76.1

continuous domain adaptation. We take the domain clos-
est to the real-world scenario as the target domain 7'. The
learning sequence of the sources is set to the order of de-
creasing similarity with the target domain, which signifi-
cantly increases the possibility of negative transfer. We use
Maximum Mean Discrepancy (MMD), which made great
success in many domain adaptation tasks. As shown in
Fig. 3, the traditional method exhibits noticeable negative
transfer under this challenging learning sequence. That is,
the performance of the target domain degenerates with the
increment of source domains. On the other hand, CENet
achieves the desired goal of maintaining incremental trans-
fer learning capabilities in the case of diminishing domain
similarity.

5. Conclusion

In this paper, we propose a practical Continuous Domain
Adaptation (CDA) task for real-world scenarios and devise
a Consolidation-and-Exploration Network (CENet) to ad-
dress the domain drift issue in CDA. To endow the model
with incremental transferability, CENet utilizes the prior
knowledge of the model to construct contrastive pairs for
memory consolidation and adaptability exploration, respec-
tively. Based on the differential connections of these sam-

Ours MMD Ours MMD

(a) Office-31. (b) Image-CLEF.

Figure 3. We take the W domain as the target of the Office-31
dataset, and the learning sequence of the sources is (D—W). The
P domain is the target of Image-CLEF, and the corresponding or-
der is (I—=C). The red arrow indexes the negative transfer, which
means target accuracy deteriorates after learning a new source.
The green arrow means the incremental transfer. Our method per-
forms powerful incremental transferability.

ples, we design a representation learning objective based on
the cross-correlation matrix, which can acquire further do-
main adaptability in the current source domain while pre-
serving the reliable priors in the model. CENet effectively
mitigates the problem of adaptation drift of existing UDA
methods with lighter structure and higher computational ef-
ficiency. Under the strict constraints of model structure and
data usage, our performance even exceeds state-of-the-art
MSDA methods, which also provides new insights for do-
main adaptation.
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