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1. Overview

This document provides additional details and further
analysis of our model architecture. We start by providing
detailed statistics about the W-Oops dataset in Sec. 2. We
further analyse the dependence of unintentional actions on
goal-directed actions in Sec 3. We then give more details
on the choice of our backbone features and experimenting
with human-pose features in Sec. 4 . We further analyse the
video embedding module by removing it entirely/replacing
it with a Transformer Encoder [16] in Sec. 5. We study the
effect of different selections of λ, the hyperparameter that
controls the trade-off between our losses in Sec. 6. Details
into the 3D-CNN feature extraction is provided in Sec. 7.
Finally, we explain more about our annotation tool in Sec. 8,
and provide additional qualitative results for the localization
and captioning experiments in Sec. 9 and Sec. 10.

2. W-Oops Statistics and Analysis

The final W-oops dataset contains 1582 train samples
and 526 testing samples, containing a total of 44 diverse
goal-directed and 30 unintentional action classes, as seen in
Fig. 1. We have also provided the distribution of the goal-
directed and unintentional segment lengths, as well as the
total video lengths. It shows that the goal-directed and un-
intentional segment lengths are well diversified over then
entire length of the video. The lengths of the video are
short in general, with a majority of them ranging from 6.2 -
7.7 seconds. This makes the task of identifying these sub-
regions in the video challenging. In our benchmark, train
samples contain only video-level labels whereas the test
samples contain both the video-level labels as well as the
unintended activity transition points (taken from the orig-
inal Oops dataset), which we use to split the video into a
goal-directed and unintentional region in order, for evalua-
tion.

3. Can Unintentional Actions be predicted
knowing the Goal-Directed Action?

In this section we analyse the amount of information
knowing about a goal-directed action gives us when infer-
ring the unintentional action. In order to do this, we cal-
culate a probability distribution of the unintentional actions
conditioned on the goal-directed actions and calculate their
entropy. An entropy of 0 would indicate that the uninten-
tional action can predicted from the goal-directed action
alone. On the other hand, an entropy of 4.91(− log2(30))
indicates that the unintentional actions are uncorrelated
with the goal-directed action. Fig. 2 shows us that the con-
ditional entropy of unintentional actions lies between these
two values, suggesting that they are correlated but are not
completely predictable knowing the goal-directed action.

4. Using 2D Pose Features

Successful attempts at using human skeleton features
for activity recognition. [10, 17, 20], fall prediction [7, 14]
and action localization [11] provides encouragement to use
them for our task as well. However human skeleton fea-
tures alone would not be enough as it does not capture the
surrounding environment information which the RGB fea-
tures do. Hence we concatenate both the RGB features and
skeleton features to use as our backbone features.

In order to test this hypothesis, for each video we extract
2D keypoint coordinates of human(s) from each observed
frame using OpenPose [1]. Since OpenPose is able to cap-
ture multiple human(s) in a frame, we use DeepSort [18] to
cluster the keypoints of the same person across frames. We
denote the sequence of observed keypoints from the ith per-
son in the video as Ki = (ki

1,k
i
2, ...,k

i
t), where ki

j denotes
the keypoint coordinates of the ith person in frame j, with
t being the total number of frames. Example showed in 3

Using the COCO model of OpenPose, we obtain 18
keypoint coordinates for each observed person in a frame,
which include coordinates for the nose, neck, left and right
shoulders, hips, elbows, wrists, knees, ankles, eyes and ears,
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a) Goal-Directed Action Distribution b) Unintentional Action Distribution
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Figure 1. Top: Distribution over the goal-directed and unintentional actions (partially shown). Lower Left: Distribution over goal-directed
and unintentional segment lengths (normalized by the video length). Lower Right: Distribution over the entire video length.

i.e., each

ki
j = (xi

j,1, y
i
j,1, x

i
j,2, y

i
j,2, ..., x

i
j,18, y

i
j,18) (1)

Since these coordinates do not capture the correlation be-
tween different keypoints, we follow the process in [7]
to vectorize these coordinates to incorporate these correla-
tions. We ignore the face keypoints (eyes, ears and nose),
since we want to focus only on the body pose. We then
transform the remaining 13 coordinates into vectors con-
necting the adjacent keypoints as illustrated in Fig. The
shoulders are connected to the neck, elbows are connected
to the corresponding shoulders, wrists are connected to cor-
responding elbows, hips to the neck, knees to the corre-
sponding hips and finally the ankles to the corresponding
knees. Following this process as followed in [7], we ob-
tain 12 keypoint vectors from the 13 keypoint coordinates,
and normalize them to unit length. For the mth connection
pointing from the pth keypoint to the qth keypoint, the key-
point vector (xi

j,m, yij,m) for the ith person in frame j is
calculated as:

(xi
j,m, yij,m) =

(xi
j,q − xi

j,p, y
i
j,q − yij,p)√

(xi
j,q − xi

j,p)
2
+ (yij,q − yij,p)

2
(2)

We calculate this for each of the 12 connections, and con-
catenate them to get:

ki
j = (xi

j,1, y
i
j,1, x

i
j,2, y

i
j,2, ..., x

i
j,12, y

i
j,12) (3)

Videos involving action such as two people colliding
with another person, or a person carrying another person,

requires features of multiple people in order to understand
these actions. Hence we concatenate the keypoints of the
two most frequently occurring people l and r as detected
by DeepSort, and concatenate them to get the final feature
vector for frame j as kj = kl

j ⊕ kr
j .

Note, that there may be partially missing or completely
missing keypoint coordinates for a person in a certain frame.
In the case of partially missing keypoints we set a key-
point vector containing a connection to a missing keypoint
to (0,0). In the case of completely missing keypoints we set
all the keypoint vectors to (0,0) in the case the person had
not been detected yet, or else set all the keypoint vectors
to the corresponding last observed keypoint vectors of the
person.

RGB features are extracted by passing non-overlapping
chunks of 16 frames to a pretrained 3D CNN architecture.
Since the skeleton feature are extracted for each frame,
we concatenate skeleton features extracted from consecu-
tive and non-overlapping chunks of 16 frames. We convert
k = (k1,k2, ...,kt) to k̃ = (k̃1, k̃2, ..., k̃t/16), where k̃h

for the hth chunk is given by :

k̃h = k16(h−1)+1 ⊕ k16(h−1)+2 ⊕ ...⊕ k16(h) (4)

We finally concatenate the RGB features X and the
skeleton features k̃ to obtain Xcat = (X1 ⊕ k̃1, X2 ⊕
k̃2), ..., Xl ⊕ k̃l), where l is the total number of 16 frame
chunks (clips) in the video.

We then provide comparisons between using only the
RGB features and using the RGB features concatenated
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Figure 2. Entropy (in bits) of the unintentional actions conditioned on the goal-directed actions. We can see that the unintentional actions
are correlated to the goal-directed actions but are not completely predictable.

with the skeleton features in table 1 . We can see that
the performance decreases, from 35.0% to 34.7% for the
goal-directed mAP@IoU and from 26.0% to 24.6% for the
unintentional mAP@IoU. We conjecture that this perfor-
mance decrease is due to the noise introduced by the incor-
rect/missing keypoint coordinates at certain frames, as well
as due to some of the videos which involve an agent driving
a vehicle and hence the agent is partially or completely not
seen in the video

Feature Segment
mAP@IoU

0.3 0.5 0.9 Avg

RGB (I3D)
Goal 49.9 41.1 5.0 35.0
UnInt 36.4 30.0 2.8 26.0

RGB (I3D) + Skeleton
Goal 47.1 42.1 4.8 34.7
UnInt 34.4 27.4 2.1 24.6

Table 1. Analysis of the effect of skeleton features.

5. Analysis of Video Embedding Module
We now analyse the effectiveness of our video embed-

ding module, by removing the module and using only the
raw features from the frozen feature extractor. We also com-
pare our video embedding module which consists of a GRU
with a Transformer Encoder [16], a component of the orig-
inal Transformer architecture which has achieved state of

the art results on many vision [2, 5, 22–25] as well as NLP
[4, 9, 19, 21] tasks. As opposed to a GRU which learns fea-
ture representations at each time step in a sequential manner
by using the hidden state in the previous timestep, a trans-
former encoder uses multiheaded self attention to calculate
the dependency of each token in the sequence to encode the
token at the current timestep. As seen in table 2, we can see
that using static backbone features result in a very poor lo-
calization performance. Additionally it is also interesting to
observe that the GRU performs better than the transformer.

Embedding Module Segment
mAP@IoU

0.3 0.5 0.9 Avg(0.1:0.9)

None
Goal 30.2 16.5 1.3 18.7
UnInt 18.6 9.4 0.02 11.1

Transformer Encoder
Goal 49.1 41.5 2.7 34.9
UnInt 31.7 17.9 0.7 22.7

GRU
Goal 49.9 41.1 5.0 35.0
UnInt 36.4 30.0 2.8 26.0

Table 2. Ablation study of the contribution of the video embedding
module.

6. Analysis of Weight Tradeoff Parameter λ

λ is the scalar parameter used to control the tradeoff be-
tween the Multiple Instance Learning Loss (MIL) and the
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Figure 3. An example of extracting body keypoint coordinates of multiple agents in videos using Openpose [1], followed by Deepsort [18]
to cluster the keypoints of the same person across the frames.

Overlap Regularization. We study the effects of changing
this parameter in the range of [0,1], where λ=0 corresponds
to purely MIL Loss and λ=1 corresponds to purely Over-
lap Regularization. As seen in Fig. 4, we notice that for
0.3 ≤ λ ≤ 0.8, the average mAP@IoU for the goal-directed
and unintentional action remains almost constant, but on
close observation we see that λ = 0.8 performs the best
for the goal-directed as well as unintentional action.

7. Feature Extraction Details

This section provides detailed explanation about the fea-
ture extraction process. We follow previous work [6] and
down-sample all raw videos at 25 FPS. We then create
chunks of 16 consecutive and non-overlapping frames. In
order the extract the I3D and R(2+1)D features, we pass
these chunks to the respective backbone networks and ob-

tain the features as the output of their global pooling layers.
We use the following libraries to extract R(2+1)D1 and I3D2

features from the videos.
I3D: For the I3D [3] features, we re-scale all frame pixels
between -1 and 1, after which we resize the frames pre-
serving aspect ratio such that the smallest dimension is 256
pixels. We then apply center crop to obtain 224 × 224
frames. Chunks of 16 non-overlapping frames are then
passed through the RGB stream of a I3D [3] backbone
pretrained on the Kinetics dataset [8] to obtain features
Xi ∈ IR1024×li from the global pooling layer.
R(2+1)D: For the R(2+1)D [15] network, we re-scale frame
pixels between 0 and 1, after which we resize all frames
to 128 × 171. We then normalize these frames and fi-

1https://pytorch.org/vision/0.8/models.html
2https://github.com/deepmind/kinetics-i3d
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Figure 4. Analysis of the effect of lambda which is a scalar pa-
rameter for controlling the tradeoff between the MIL Loss and
Overlap Regularization.

nally apply center crop to obtain 112 × 112 frames. We
the chunk the frames in the same way and pass it through
the R(2+1)D [15] backbone pretrained on Kinetics to obtain
features Xi ∈ IR512×li from the global pooling layer.

8. Annotation Tool for Label Evaluation and
Correction

The annotation tool used for the human evaluation and
correction process is shown in Fig.5. We provide a video to
the evaluator along with the actions extracted from the an-
notations. The evaluator can then view the videos and mark
the goal-directed actions as well as unintentional action as
either ‘Good’ (G) or ‘Poor’ (P), with reference to the video.
‘Good’ is given to an action which is entailed in the video
and ‘Poor’ otherwise. In case the evaluator marks an action
as ‘Poor’, they can then choose another action from the al-
ready present list of total actions, or else add a new action
if not contained in the list. The evaluator also has an option
to not keep the video in the case the goal of the agent in
the video was ambiguous. Once this process is complete,
evaluators can hit ’Submit’, which would then load the next
video.

9. Qualitative Results of Goal-directed and Un-
intent. Action Localization

In this section, we provide additional qualitative results
of our model, along with previous weakly supervised ac-
tion localization (WSAL) models, namley WTALC [13] and
STPN [12]. We have provided examples of videos contain-
ing diverse actions, in order to show our model’s generaliz-
ability. From Fig. 6, Fig. 7 and Fig. 8, we notice that our
model is able to focus on distinct regions in order to in-
fer the goal-directed and unintentional actions, whereas the
previous WSAL models focus on overlapping regions, and
in many cases have very sparse attention weights. We con-
jecture this is due to the nature of task these models were

Figure 5. Interface for W-Oops annotations, where we ask the
annotators to rate the semi-automatically extracted goal-directed
and unintentional actions as ‘Good’ or ‘Poor’. If ‘Poor’, they can
choose from a fixed list of already present actions or input their
own. They also have an option to indicate whether or not to keep
the video in the case the goal in the video is ambiguous.

originally built for, i.e., segmenting atomic actions from
untrimmed videos. Additionally, we can see that the Over-
lap Regularization is able to enforce our model to maintain
the temporal ordering of the goal-directed/unintentional ac-
tion.



10. Qualitative Results for Video Captioning
This section provides qualitative results of the video cap-

tioning experiment. We report the ground-truth captions an-
notated by humans, captions generated without using our
localization module, as well as captions generated using
our localization module. Fig. 9 shows that leveraging our
localization module helps generate more descriptive and se-
mantically correct captions, being able to describe the video
better and hence assisting in the teleological understanding.
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Figure 6. Qualitative results of our model’s outputs. We provide attention weights outputted from STPN trained on our dataset, as well as
the ground truth segments for comparison.
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Figure 7. Qualitative results of our model’s outputs. We provide attention weights outputted from STPN trained on our dataset, as well as
the ground truth segments for comparison.
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Figure 8. Qualitative results of our model’s outputs. We provide attention weights outputted from STPN trained on our dataset, as well as
the ground truth segments for comparison.



GT: Man try to perform skateboard trick but he ended up face planting on to the ground
Without Loc: A man try to do a flip on a flip but he fall off the ground and fall on the ground 
With Loc: A man is trying to jump on a skateboard but he fell off the board and fall on the ground

GT: Man attempted to walk on a balance beam over a pool but man lost his balance and fell into the pool
Without Loc: A man is trying to jump on a pool but he fall into the pool and fall into the water
With Loc: A man is trying to jump off a pool but the man loses his balance and fall into the water 

GT: The kid wants to jump off the table but the kid lost his balance fall on the floor and cry
Without Loc: A man is trying to jump a backflip but he fall off the ground and fall on the ground
With Loc: A man is trying to jump on a <unk> but he hit his head and he fell on his face

GT: a full family was attempting to jump on a trampoline but the father jumped hard into the trampoline and it ripped below them
Without Loc: a man is trying to jump on a bar but the man fall on the bar and fall on the ground
With Loc: A man is trying to jump on a trampoline but the man slipped and fall on the ground

Goal-Directed Description Unintentional Description

Figure 9. Qualitative results for the video captioning experiment. We provide ground truth captions from a human annotator, captions
generated without as well as with our localization module. We observe that the captions generated leveraging our localization module tend
to be more descriptive and semantically correct.
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