
7. Supplementary Material
7.1. Implementation

Our implementation as well as additional information is
available under https://github.com/simplexsigil/p-hlvc.

7.2. Datasets

Kinetics-400 Kinetics-400 is provided as a list of down-
loadable online videos. For these experiments, we were able
to download 208684 videos for the train set (94.1 % of a to-
tal of 221618 listed videos), 17168 videos for the val set
(94.3 % of a total of 18205 listed videos) and 33621 videos
for the test set (94.1 % of a total of 35727 listed videos).
The total downloaded dataset size is 260013 videos.

Kinetics-Skeleton Kinetics-Skeleton does not provide
body poses for all videos in Kinetics-400. We filter videos,
which do not contain paired skeleton sequences or do not
have a sufficient length. After filtering, we remain with
144085 videos (55.4%) which we use for training. The
poses of Kinetics-Skeleton use the COCO-18-Keypoints
pose format, extracted with OpenPose [9].

Sims4Action The Sims4Action dataset [58] was recently
published and consists of roughly ten hours of scripted
Sims4 gameplay. Ten action classes were specifically cho-
sen to correspond to a subset of the 31 action classes in the
Toyota Smarthome [17] dataset. While not every class does
have a one-to-one correspondence, [58] do publish a map-
ping scheme, which for example maps different cooking
action in Toyota Smarthome to the general action Cook in
Sims4Action. In order to perform multi-modal training on
Sims4Action, we extract body poses in COCO-18-Keypoint
format with Alphapose [23, 42, 69], this works well despite
the synthetic appearance of the action videos. Sims4Action
is a balanced dataset and provides the same amount of train-
ing data for each class.

Other synthetic action recognition datasets While
there are other synthetic datasets for action recognition,
Sims4Action is the only public dataset providing a domain
generalization benchmark, to the best of our knowledge.
Other synthetic datasets are used by combining the syn-
thetic data with real world data as a form of data aug-
mentation (for example [29]). The only exception would
be Kinetics-Gameplay [13], but this dataset is not publicly
available. The authors offer extracted ResNet-101 features
upon request, but not the source video material which would
be necessary to apply our approach.

Toyota Smarthome Toyota Smarthome [17] is a dataset
which provides unscripted recordings of 31 classes per-

formed by 18 different subjects. Different camera views and
sceneries within a single appartment are displayed. Since
the dataset consists of unscripted recordings, a strong class
imbalance exists whith some classes being present in signif-
icantly more training samples than others. Although Toy-
ota Smarthome does provide body poses, we extract them
a second time using Alphapose in order to have consistent
pose representations on all three pose datasets; Kinetics-
Skeleton, Sims4Action and Toyota Smarthome.

7.3. Model architecture

In Figure 11 and Listing 1, we provide a detailed
overview of our pre-training network. The S3D contains
a convolutional classification layer, we append two more
fully connected layers which maintain an intermediate hid-
den width (512 for all our experiments) and a final repre-
sentation dimensionality (256 for all our experiments). For
our SkeleMotion calculations, the first two fully connected
layers are both part of the backbone network, we append
another fully-connected layer to map to the representation
dimensionality. Note, that an additional set of parameters
is maintained for the prototypes (not displayed in Listing
1). For downstream action recognition, we append classifi-
cation layers after FC2, discarding the representation map-
ping and for action retrieval we use the features before FC2.
Unless noted otherwise, the downstream classification is
performed with a single linear layer, preceded by dropout
and a ReLU activation function. For multi-modal training,
we concatenate the feature vectors of the individual net-
work branches before adding the classification layer. Down-
stream training is optimized with the cross-entropy loss.

7.4. Working with body poses

It is a major advantage of our approach that we are ro-
bust against noisy data as is the case with Kinetics-Skeleton.
Since our contrastive learning technique operates on video
clips of roughly one second of length, we only need con-
sistent pose-track-IDs in that time frame. We do not rely on
person IDs which are consistent for the full 10 second video.
It is possible that a body pose disappears within a one sec-
ond clip, in that case we simply fill up that part of the data
with zero values. In training we calculate a loss on each
combination of augmented video clip and body pose tracks
per sample. This happens dynamically during training with
each batch sample possibly having a different number of
pose tracks.

7.5. SkeleMotion Data Conversion

SkeleMotion does not implement reading and process-
ing OpenPose data in its original form. Joint movement
directions and magnitudes are calculated between consec-
utive time steps. These value sequences per joint are then
arranged next to each other in a semantically meaningful

Figure 5. k-NN action retrieval accuracy with different spatial in-
put resolutions.

Figure 6. k-NN action retrieval accuracy under different clip
lengths and frame sampling policies.

way, so a CNN can interpret them by detecting patterns be-
tween semantically connected joints. The order in which the
joints are arranged is the chaining order and provided for
the NTURGBD dataset joint format which has a different
naming and a different total number of joints in comparison
to the OpenPose COCO format2. We manually defined a
chaining order for the OpenPose dataset which we deemed
to be the best approximation of the NTURGBD chaining
order.
Our OpenPose COCO Chaining order by joint id:
8, 1, 11, 1, 0, 1, 1, 5, 5, 6, 6, 7, 7, 5, 7, 1, 6, 1, 1, 2, 2, 3, 3,
4, 4, 2, 4, 1, 3, 1, 1, 11, 11, 12, 12, 13, 1, 8, 8, 9, 9, 10, 4, 0,
7, 4, 10, 13, 7

2OpenPose COCO format description

7.6. Training details

The R2D3D network was trained on 30-frame clips for
200 epochs with a batch size of 56 with Kv = 2 and Ks ≤
2. The S3D network was trained on 32 frame clips for 200
epochs with a batch size of 80, Kv = 1 and Ks ≤ 5. The
network was trained for another 30 epochs with addition-
ally using a continuously updated queue of 1000 represen-
tation vectors in order to force the Sinkhorn-Knopp algo-
rithm to distribute the representation vectors more broadly
on the unit sphere, leading to a small but noticeable increase
in performance. Both networks were trained on frames of
size 128× 128. For pre-training our networks on Kinetics-
400 we used the Adam Optimizer with weight decay 1e-
4. Learning rate at the beginning was 1e-6 which was in-
creased to 1e-4 during training. The cluster prototypes were
trained with 0.1 times the main learning rate. The proto-
types were frozen for 10,000 iterations, also we limited the
number of concurrent bodies per sample to one for the first
6,000 iterations (maximally five concurrent bodies after-
wards). For R2D3D we made use of two concurrent video
views, for S3D we only used one video view. Our best S3D
network started with 3,000 prototypes and had 10,000 pro-
totypes at the end of training. The Sinkhorn-Knopp epsilon
for P-HLVC was 0.012 in pre-training, but for our domain
calibration on Toyota Smarthome we used 0.05. The de-
fault augmentation settings are listed in table 6, for evalua-
tion on the ROSE Challenge, we additionally made use of
even stronger transformations such as motion blur, frame
shuffling or noise.

Dataset H S B MCA HFP
HMDB51 180◦ 100% 80% 5% 50%
UCF101 180◦ 50% 50% 10% 50%

H=±Hue, S=±Saturation, B=±Brightness,
MCA=Minimal Crop Area, HFP=Horizontal flip
probability. Random cropping chooses an area
between the minimal crop area and 1 uniformly at
random and creates a square crop with that area.

Table 6. Augmentation settings for transfer learning on HMDB51
and UCF101.

For the final evaluation, we sample 10 clips at random
temporal positions per video and scale them to 224 pixels
on the shorter side. Per clip we either take center crops of
size 130 x 130 with a probability of 40% or random sized
crops with a minimal area of 60%. Afterwards, all crops
are scaled to 128 x 128. Finally, the class of a video is de-
termined by averaging the clip predictions. As described
in 4.2.2, for action retrieval we average the clip representa-
tions in order to query the nearest neighbours, we use cosine
similarity for this query.

7.7. Representation Stability on Input Changes

Figure 5 shows the k-Nearest Neighbour performance
after generating representations with the S3D network for
differently scaled input clips, each having a length of 32
frames. Despite pre-training on clips with a resolution of
128× 128, the quality of representations is only slightly af-
fected down to a input resolution of 64× 64 which reduces
the computational resource usage by 75%.

Figure 7. Element-wise AXent loss function on assignment pre-
diction vectors p and target assignment vectors q.

Figure 8. Element-wise SwAV loss function on assignment pre-
diction vectors p and target assignment vectors q.

We analyse the stability of our produced action retrieval
representations under changes of the input resolution as
well as clip length and frame sampling strategy.

Similarly, Figure 6 presents the performance after
changes to the sampling policy on frames of size 128×128.
This figure varies the clip length between 16 and 64 frames
and shows the k-NN results on clips where either every
frame or only every second or every fourth frame is used.
Note, that our S3D implementation expects at least 16
frames. Again, reducing the resource requirements only

Figure 9. Simplified element-wise bidirectional SwAV loss under
the assumption q = p.

slightly affects the k-NN performance. [5] showed that the
task of detecting changes to video speed (which is similar
to downsampling) is also useful for self-supervised learn-
ing of representations. Our network is currently invariant
to such changes and combining P-HLVC with video speed
distinction is an interesting direction for further research.

Action classification. We fine-tune our pre-trained back-
bone networks on the target datasets UCF101 and HMDB51
and compare our results with existing methods which also
have been pre-trained on Kinetics-400. During transfer,
video clips were sampled the same way as in pre-training
and the same set of augmentations was applied plus ran-
dom horizontal flipping. For the final evaluation, we fol-
lowed the common protocol and sampled 10 clips per video
at random temporal positions, applied cropping and aver-
aged their predictions.

We group all competing methods in Table 7, first ac-
cording to the basic data modalities they use and then ac-
cording to the network architectures. With the R2D3D ar-
chitecture, our method is outperforming [25] and [26] on
HMDB51 by a large margin, despite using a smaller res-
olution. On the S3D architecture, our network performs
slightly worse than [27] on HMDB51. We want to note,
that we pre-trained for 230 epochs while [27] pre-trained
for a total of 400 epochs using frames of size 128 × 128.
The authors of CoCRL [27] make a similar statement re-
ferring to CVRL [55], which was trained with even more
epochs (800) even larger image sizes (224×224) and has al-
most four times more parameters. Interestingly, our perfor-
mance gains are always larger on HMDB51 transfers than
on UCF101 transfers. This indicates, that our person fo-
cused method is especially helpful for low quality videos
and badly visible backgrounds, since HMDB51 videos are
of lower quality. P-HLVC shows very good results while re-

Method Architecture Pretraining
Modalities

Transfer
Res.

Clip
Length

Transfer
Modality UCF HMDB

Self-Supervised Methods Requiring Video Only
3D-RotNet [33] R3D V (RGB) 112 64 V (RGB) 66.0 37.1
ST-Puzzle [35] R3D V (RGB) 112 16 V (RGB) 63.9 33.7
DPC [25] R-2D3D V (RGB) 224 40 V (RGB) 75.7 35.7
MemDPC [26]1 R-2D3D V (RGB + F) 224 40 V (RGB) 78.1 41.2
P-HLVC R-2D3D V (RGB + B) 128 40 V (RGB) 74.5 50.2
SpeedNet [5] S3D-G V (RGB) 224 64 V (RGB) 81.1 48.8
ViCC [63] S3D V (RGB) 128 32 V (RGB) 82.8 52.4
CoCLR [27]1 S3D V (RGB + F) 128 32 V (RGB) 87.9 54.6
P-HLVC S3D V (RGB + B) 128 32 V (RGB) 83.2 54.4
P-HLVC MVN A2 V (RGB + B) 128 32 V (RGB) 80.9 53.8
CoCon [56] R3D-32 V (RGB + F) 224 NA V (RGB) 79.1 48.5
CtP [66] R(2+1)D V (RGB) 112 16 V (RGB) 88.4 61.7
VCLR [39] R2D-50 V (RGB) 224 30 V (RGB) 85.6 54.1
CVRL [55] R3D-50 V (RGB) 224 16 V (RGB) 92.1 65.4

Self-Supervised Multi-Modal Methods
AVTS [38] I3D V (RGB + A) 224 25 V (RGB) 83.7 53.0
CPD [43] I3D V (RGB + A/T) 224 16 V (RGB) 88.7 57.7
XDC [1] R(2+1)D V (RGB + A) 224 32 V (RGB) 84.2 47.1
SeLaVi [2] R(2+1)D V (RGB + A) 112 32 V (RGB) 83.1 47.1
GDT [52] R(2+1)D V (RGB + A) 112 32 V (RGB) 89.3 60.0

V Video, F Optical flow, B Body poses, A Audio, T Generated text
1 [26, 27, 56] also publish results which make use of F on the transfer dataset, achieving higher performances.

Table 7. State of the art comparison for video-only transfer learning from Kinetics-400. For comparison we also list supervised methods.
Higher scores on HMDB and UCF101 have been achieved using (significantly) larger pre-training datasets, for example [21] (video only)
or [1, 38, 52, 53] (video and audio). For a detailed list covering multiple datasets see also table 2 in [27].

Number of Clusters HMDB51 Acc.
3000 49.3
5000 50.4

10000 54.4

Table 8. Comparison with varying numbers of clusters.

quiring significantly less computing power than other meth-
ods and while performing slightly worse, our results indi-
cate it to be more efficient than [27], at least for transfer
learning on difficult datasets like HMDB51.

7.8. Impact of Varying Cluster Counts.

We present an ablation of our cluster growing strategy,
which enables us to increase the number of clusters after
establishing a strong initial training signal in Table 8. In
order to show its impact at different number of clusters, we
trained our S3D model for 14 epochs and then either con-
tinued with the initial number of 3000 clusters or iteratively
increased this to 5000 or 10000 clusters. We then evaluated
the transfer performance on HMDB51.

Figure 10. Representation spaces before (left) and after clus-
ter splitting. Representations (orange) and cluster centers (blue/-
green) are distributed on the unit sphere.

7.9. The Agreement Accentuating Cross-Entropy
Loss

Figure 7 and 8 show the element-wise AXent loss and
the original element-wise SwAV loss in comparison. As
explained in Section 3.3, the AXent loss minimizes the loss
by enforcing an agreement on p and q, this is easily visible
in the figure. For the original SwAV loss, this is not so

obvious, since (p, q) = (1, 0) also minimizes the element-
wise loss. Yet, under the right conditions it performs similar
to AXent. This is the case, because both losses are applied
in both directions, from the video view to the body pose
view and from the body pose view to the video view. For a
single sample pair (video and body pose cluster assignment
predictions pv and ps and cluster target assignments qv and
qs), this is shown in Equations 4 and 5.

lS(pv, ps, qv, qs) =
X

k

q
(k)
s log p

(k)
v + q

(k)
v log p

(k)
s

2
(4)

lA(pv, ps, qv, qs) =
lAXent(ps, qv) + lAXent(pv, qs)

2
(5)

Equation 4 can not be plotted element-wise directly, but
for simplicity it can be approximated by assuming q = p.
The resulting plot ignores the influence of the sinkhorn al-
gorithm but provides an immediate intuition for the charac-
teristics of the loss function. It is shown in Figure 9. Similar
to AXent, the bidirectional SwAV loss also minimizes the
loss by enforcing an agreement between p and q as long as
q ∼ p, but it is unbalanced.

===
Layer K e rn e l Shape Outpu t Shape Param #
===

S3D : [1 6 , 512] 8 ,434 ,848

Vid −FC−2: [1 6 , 512]
BatchNorm1d : [5 1 2] [1 6 , 512] 1 ,024
ReLU : [1 6 , 512]
L i n e a r : [5 1 2 , 512] [1 6 , 512] 262 ,656

Vid −Rep−FC : [1 6 , 256]
ReLU : [1 6 , 512]
L i n e a r : [5 1 2 , 256] [1 6 , 256] 131 ,328

−−−−−−−−−

SkeleMot ionBackbone : [1 6 , 512] 1 ,351 ,152
Conv2d : [6 , 16 , 3 , 3] [1 6 , 16 , 30 , 47] 880
ReLU : [1 6 , 16 , 30 , 47]
Conv2d : [1 6 , 32 , 3 , 3] [1 6 , 32 , 28 , 45] 4 ,640
MaxPool2d : [1 6 , 32 , 26 , 43]
ReLU : [1 6 , 32 , 26 , 43]
Conv2d : [3 2 , 32 , 3 , 5] [1 6 , 32 , 24 , 39] 15 ,392
MaxPool2d : [1 6 , 32 , 11 , 19]
ReLU : [1 6 , 32 , 11 , 19]
Conv2d : [3 2 , 64 , 3 , 3] [1 6 , 64 , 9 , 17] 18 ,496
MaxPool2d : [1 6 , 64 , 4 , 8]
ReLU : [1 6 , 64 , 4 , 8]
F l a t t e n : [1 6 , 2048]
L i n e a r (FC1) : [2 0 4 8 , 512] [1 6 , 512] 1 ,049 ,088
ReLU : [1 6 , 512]
L i n e a r (FC2) : [5 1 2 , 512] [1 6 , 512] 262 ,656

Sk−Rep−FC : [1 6 , 256] 131 ,328
ReLU : [1 6 , 512]
L i n e a r : [5 1 2 , 256] [1 6 , 256] 131 ,328

===

Listing 1. Structure of our pre-training network. The output shapes are calculated on the assumption of video input of the shape
(16, 3, 32, 128, 128) with 16 being the batch-size. Likewise, the SkeleMotion input is assumed to be of shape (16, 6, 32, 49). The Structure
of S3D itself is ommited.

Input Clip xv

Generated
Poses xb

SkeleMotion
Representation xs

fΘ

gΘ

yv

ys

CΘ

zv

zs

so
ft
m
a
x

so
ft
m
a
x

si
n
k
h
o
rn

si
n
k
h
o
rn

qs

qv

pv

ps

l A
X
e
n
t

l A
X
e
n
t

Figure 11. P-HLVC makes use of paired body pose sequences xb encoded in a SkeleMotion representation xs. Using the input video clip
xv and xs, two different CNNs then generate representations yv and ys which are forwarded to our contrastive clustering network head.

