
SSR-GNNs: Stroke-based Sketch Representation with Graph Neural Networks

Sheng Cheng
scheng53@asu.edu

Yi Ren
yiren@asu.edu

Yezhou Yang
yz.yang@asu.edu

Abstract

This paper follows cognitive studies to investigate a
graph representation for sketches, where the information of
strokes, i.e., parts of a sketch, are encoded on vertices and
information of inter-stroke on edges. The resultant graph
representation facilitates the training of a Graph Neural
Networks for classification tasks, and achieves accuracy
and robustness comparable to the state-of-the-art against
translation and rotation attacks, as well as stronger attacks
on graph vertices and topologies, i.e., modifications and ad-
dition of strokes, all without resorting to adversarial train-
ing. Prior studies on sketches, e.g., graph transformers,
encode control points of stroke on vertices, which are not
invariant to spatial transformations. In contrary, we en-
code vertices and edges using pairwise distances among
control points to achieve invariance. Compared with exist-
ing generative sketch model for one-shot classification [26],
our method does not rely on run-time statistical inference.
Lastly, the proposed representation enables generation of
novel sketches that are structurally similar to while separa-
ble from the existing dataset.

1. Introduction

Unlike the human vision system, it is well acknowledged
that end-to-end deep learning methods lack intermediate
representations that enable innate invariance to spatial trans-
lation and rotation [1, 7, 16, 17, 30, 36, 37, 45].

While such transformation invarianace can potentially be
achieved through expensive robust (adversarial) training, it
is believed that invariance (1) should be an innate property
rather than an external model constraint, and (2) should not
trade off recognition accuracy significantly. This motivates
us to revisit the canonical computer vision perspective (such
as object representation by components [3], and local visual
representation design [34]) towards an explicit representa-
tion design for possessing innate properties.

A commonly sought-after solution is to identify a part-
whole structure [17], following the insights of how the hu-
man vision system [3,16] parses scenes into atomic parts for
recognition and generation, while both parts and the topolo-

gies of parts are invariant to spatial transformations. The
part-whole structure is also supported by the Gestalt princi-
ples [9] and cognitive science [25–27].

Building on top of existing work and within the con-
text of computer vision for sketch recognition, we present a
part-whole representation where strokes, as parts, are con-
nected as a graph to form a sketch. The focus on sketches
draws inspiration from studies in biology and cognitive sci-
ence [14, 24, 29, 41]. For example, [29, 41] show that hu-
man vision relies more on shapes than on textures or colors.
Studies also show that successful CNNs learn shape repre-
sentations from natural images [12, 18, 23, 24].

Fig. 1 shows an example of the proposed representation:
From an input image of “R”, we adopt unsupervised im-
age processing [26] to first identify fork points that separate
strokes, and estimate control points of these strokes to form
an undirected graph representation where each vertex con-
tains stroke information, and edges specify interactions be-
tween strokes. Specifically, to innately equip our represen-
tation with spatial invariance, each vertex encodes pairwise
spatial distances between each pair of control points for the
corresponding stroke (see v3 in Fig. 1), yielding an n × n
matrix. If two strokes (each with n control points) are con-
nected, we then form an edge in the resulting graph. The
edge encodes the pair-wise distance between each control
point from one stroke to each of the other stroke (see e1,3
in Fig. 1). The distances between control points are invari-
ant to spatial transformations, therefore our graph design is
innately spatially-invariant.

To validate this representation, we take sketch-based
classification/robust feature learning, and novel pattern gen-
eration as the testing tasks. To leverage the graph represen-
tation for classification, we train a Graph Neural Network
(GNN) [43], which allows variable input graph topologies
and preserves spatial invariance.

We claim the following contributions:

• Through extensive experiments on MNIST and two
subsets of the Quickdraw dataset [14], we show that
the proposed models are innately robust to rotations
and translations, while maintaining acceptable classi-
fication accuracy.

• In addition, we show that the proposed models are ro-

5131



𝑥 𝑠 𝑔
𝑠!

𝑠"

𝑠# 𝑠$

𝑧

GNN

𝑐"# 𝑐"! 𝑐"" 𝑐"$ 𝑐"%𝑐#%

𝑐#$

𝑐#"

𝑐#!

𝑐##

𝜙(𝑐"!, 𝑐"$)

𝜙(𝑐##, 𝑐"%)

𝑣" = [… ,𝜙(𝑐"!, 𝑐"$), … ]
𝑒#," = [… ,𝜙(𝑐##, 𝑐"%), … ]

𝑣!

𝑣#

𝑣"

𝑒#,! 𝑒!,$𝑒!,"

𝑒#," 𝑒",$ 𝑣$

Figure 1. An overview of SSR-GNNs. We take “R” for example. The image “R” is composed of 4 strokes S(x) = [s1, s2, s3, s4]. Each
stroke is composed of 5 control points. s3 = [c13, c

2
3, c

3
3, c

4
3, c

5
3]. The 4 strokes are associates with 4 vertices V = [v1, v2, v3, v4] in graph

g(x). The value of vertex is the pairwise distance between control points. v3 = [ϕ(cp3, x
q
3)]

p=5,q=5
p=1,q=1. The value of edge is the pairwise

distance between two connecting control point. e1,3 = [ϕ(cp1, c
q
3)]

p=5,q=5
p=1,q=1. After passing to a learnable graph neural network(GNN), the z

is the high level representation of the image x. Dash arrow indicates the order of control point in a stroke from start point to end point.

bust to parametric and topological attacks without ro-
bust training, which suggests that stroke-based graphs
are robust features for perception.

• Lastly, we show that the proposed models can be
used to generate novel sketchs distinguishable from the
training set. E.g., by learning to classify decimal dig-
its, the model can then be used to generate hypothetical
“A”s to “F”s for a hexadecimal system. This shows that
models have strongly structured expression capability.

2. Related work
Part-whole representations: Studies in cognitive sci-

ence suggest the human vision system parse visual inputs
into part-whole, which are invariant to spatial transforma-
tions and change of viewpoints [17, 42, 44]. For example,
structural description models [3,19,22,49] combine the de-
scription of the part components. Along the same vein,
sketches have been considered as a composition of strokes
which are parts and sub-parts representation [26]. Such
part-whole representations have been shown to play a crit-
ical role in enabling learning with small data. [26] shows
that one-shot classification/generation can be achieved on
labeled graphs through iterative inference based on statis-
tics of sampled graphs.

Graph neural network: In graph neural networks
(GNNs) [4,10], vertex and edge information evolve through
neighborhood aggregation. By sharing pairwise aggrega-
tion models, such as in message passing neural networks
(MPNNs) [13, 31], GNNs are often shown to be general-
izable to input graphs with arbitrary sizes. They are widely
used in the area of sketches [60], handwriting [39] and math
formula recognition [35]. In this work, we adopt an MPNNs
architecture to handle sketches with variable number of
strokes and topologies. Graph-based representation [6, 51]
or graph neural network [13,31] are also invariant to permu-

tation. In this work, the high level representations are inputs
transformation invariant because both stroke representation
and graph neural network are invariant to transformation.

Sketch-based learning: Sketch is an abstract visual in-
put without the information of texture and color [53]. Cog-
nitive science research shows that human beings are able
to grasp the major semantic meaning from an image di-
rectly from its sketch form [23]. Current studies typi-
cally primarily investigate sketch classification using exist-
ing deep neural networks. CNNs based methods [46, 61]
are applied on raster sketch image. RNNs based meth-
ods [14, 15, 21, 54, 55], as well as textual convolution net-
work (TCN) [53], transformer (Sketchformer) [40], model
sketch as sequence of control points or strokes. Graph
based methods [56,58–60] explore the topological informa-
tion for sketch. Graph transformer [56] encodes the con-
trol point as vertex and 1-hop, 2-hop, global hop connec-
tion as edge. SketchAA [58] learns the abstraction and
hierarchy of the grid blocks of sketch image by encoding
them as graph. SketchGNN [59] learns the semantic seg-
mentation of sketch. The vertex of SketchGNN is the sin-
gle point on sketch and the edge is the single stroke that
connecting two adjacent points. Furthermore, current stud-
ies of sketch are extended to multimodality, such as sketch
with video [8, 57], sketch with word, text, cartoon and nat-
ural image [52]. In this work, unlike the previous works
which only focus on improving the classification accuracy
only, we take sketch based classification as a testing task
to validate that the newly proposed representation design is
spatially robust. Especially in adversarial cases, our sketch
classification maintains a high level of performance.

3. Methods
Our method contains the following elements: (1) A pre-

process step where an input image x is converted to a set
of strokes S(x). (2) The strokes and their connections are

5132



then encoded as a graph g(x). Node and edge features are
designed to achieve rotation and translation invariance. (3)
A GNN is learned based on a labeled dataset {(g(x), y)}.
Fig. 1 summarizes the learning pipeline. Details are ex-
plained as follows.

3.1. Acquiring Strokes from an Image

We decompose an input image x ∈ Rdx into a set of
strokes, denoted by S(x), where |S(x)| varies by image.
We follow the preprocess procedures of [26], which include
thinning the image [28], detecting fork points [33], and
finally merging the noisy and redundant fork points by the
maximum circle criterion [32]. The ordering of the strokes,
i.e., the definition of the start and end points of strokes, is
then derived from a walk throughout the fork points which
follows the rules moving from left to right and from top to
bottom. Fig. 1 demonstrates the procedure for “R”.

Building upon [26], each stroke is first approximated as a
uniform cubic b-spline parameterized by the control points,
the offset, and the scaling factor. We then sample n con-
trol points on stroke by re-fitting the uniform cubic b-spline.
The number of control points are set to be the same for all
strokes and tuned for each experiment. Unlike [26] which
takes a set of uniform cubic b-spline control points, we
set aside the offset for enforcing boundary constraints, and
the scale factor for accurately computing the pairwise dis-
tances. We represent a stroke si using its n control points:
si = [cpi ]

n
p=1.

3.2. Stroke-based Graph Representation

We further convert the set of strokes into a graph g(x) =
(V, E), where each vertex vi ∈ V corresponds to a stroke
si ∈ S(x), and an edge ei,j ∈ E exists when the start (end)
point of si is the end (start) point of sj . To achieve rotation
and translation invariance, we assign each vertex vi the set
of pairwise Euclidean distances between all sample points
from si. In particular, vi = [ϕ(cpi , c

q
i )]

p=n,q=n
p=1,q=1 where cpi

is the pth control point of the ith stroke and ϕ(·, ·) is the
Euclidean distance. Similarly, we assign each edge ei,j the
set of pairwise Euclidean distances from all control points
from si to those from sj : ei,j = [ϕ(cpi , c

q
j)]

p=n,q=n
p=1,q=1 . We

note that the ordering of elements in vi and ei,j is defined
based on the start and end points of si and sj , i.e., switching
the start and end points of si will change vi and ei,j .

3.3. GNN architecture

We adopt MPNNs to handle the variable graph sizes en-
countered in MNIST and QuickDraw datasets. The MPNN
contains three components: (M) message passing, (U) up-

date, and (R) readout [2], which are defined as:

(M) m(t+1)
vi =

∑
si,sjare connected

Mt(v
(t)
i , v

(t)
j , e

(t)
i,j ),

(U) v
(t+1)
i = Ut(v

(t)
i ,m(t+1)

vi ),

(R) z = R(v
(T )
i |v

(T )
i ∈ v).

The message passing and update phase execute T times.
The message at phase t + 1, m(t+1)

vi , is encoded by ver-
tex v(t)i , adjacent vertices v(t)j s and edges e(t)i,j at step t. The

new vertex v(t+1)
i is updated by current vertex v(t)i and mes-

sage m(t+1)
vi . After T steps, the feature z is computed from

a readout function. Mt(·, ·, ·), Ut(·, ·), R(·) are learnable
components. z is input to a linear classifier with softmax
outputs. To simplify the notation, we define the MPNN as
f(·) and linear classifier as fθ(·).

3.4. Learning Objectives

Here we introduce the formulations of the learning prob-
lems for the two experiments to be discussed in Sec. 4.

Classification We use a standard cross-entropy loss for
learning a classifier fθ ◦ f . Given a dataset D := {(x, y)},
the loss is:

min
f,fθ

E(x,y)∼D [ψ(y, fθ ◦ f(g(x)))] , (1)

where ψ(·, ·) is the cross-entropy.

Sketch modification and generation In experiments, we
will demonstrate the robustness of the classifier f ◦ fθ
against targeted attacks via vertex-wise and topology-wise
perturbations. For topology-wise attacks, we specifically
consider adding a stroke s to an existing sketch. In both
cases, we let the target label be a one-hot vector y, the set of
control points of the stroke of interest be C and the resultant
graph be g(C). The attacks solve:

min
C

ψ(y, fθ ◦ f(g(C))) + L(g(C)), (2)

where L(·), as explained below, constrains the control
points to be structurally similar to the training data. In addi-
tion, we also incorporate boundary constraints on C to limit
the generated sketches within the boundaries of the image.

Penalty on sketch structure: We consider two types of
penalties on a generated graph g = (V, E) to regulate its
structure. First, the generated sketches should have pair-
wise distances between control points similar to those from
the training data. Second, the angles between neighbour-
ing pairs of control points, denoted by r ∈ R, should also

5133



(a) MNIST (b) Quickdraw(Shape) (c) Quickdraw(Body)

Figure 2. Spatial transformation on MNIST, Quickdraw(shape), Quickdraw(body). The grid of each row is the rotation of −θ, 0, θ.
The grid of each column is the translation of (−δx,−δy), (0, 0), (δx, δy). For MNIST, θ = 30◦, δx = δy = 3px. For Quickdraw,
θ = 30◦, δx = δy = 10px.

be similar to those from the data. We incorporate these re-
quirements through the following penalty:

L(g) = E(v,e,r)∈(V,E,R)

[−λ1 log p(v;D)− λ2 log p(e;D)− λ3 log p(r;D)] ,
(3)

where p(v;D) and p(e;D) are the empirical distributions of
the pairwise distances among control points within a stroke
and between strokes from the dataset, respectively, and,
p(r;D) is that of the angles between neighbouring pairs of
control points. λ1 = λ2 = 10−5 and λ3 = 0.1 are tuned to
allow the attack loss to dominate.

We will also demonstrate the utility of the proposed
model at generating new sketches that are structurally simi-
lar to the training data, yet semantically different. To do so,
we first train a one-class classifier f1(·) so that all training
data belongs to the same group, i.e., f1(f(g(x))) > 0 for
all x ∈ D. Given a sketch g(C) parameterized by the set of
control points to be tuned, we solve the following problem

min
C

{max{0, 1 + f1(f(g(C)))}+ L(g(C))}, (4)

The hinge loss used here aims to push the generated sketch
out of the training set.

4. Experiments
We conduct two sets of experiments. First, we empiri-

cally show that the proposed model is robust to rotation and
translation on classification tasks for MNIST and a subset
for QuickDraw, while maintaining accuracy comparable to
the SOTA, all without adversarial training. We also evalu-
ate model robustness against vertex-wise and topology-wise
attacks specific to graph inputs. Second, we show that our
model is capable of generating novel sketches that are se-
mantically different from the training set. Specifically, we
demonstrate the generation of hypothetical digits that are
separable from MNIST digits in the feature space.

4.1. Classification and Robustness

Dataset and pre-processing We use two standard
datasets: MNIST and Google Quickdraw [14]. MNIST

is a hand-written digit dataset containing numerical dig-
its from 0-9. Google Quickdraw is a human hand-drawn
sketch dataset with 345 different categories, ranging from
The Great Wall, airplane, to hands, squares, and dogs. For
both datasets, we consider each sketch as an image, shifted
to the top-left corner and normalized to 224 × 224 pixels.
It should be noted that the Quickdraw dataset also stores
key points of simplified strokes in temporal order [54, 56],
computed by the Ramer-Douglas-Peucker algorithm [38].
This format has been used by existing graph-based classi-
fiers [56] and recurrent neural networks [54]. However, this
format represents sketches as graphs with a large variance of
sizes, e.g., some sketches have multiple strokes with negli-
gible lengths. To this end, we preprocess the data by extract-
ing strokes from the pixelated sketches using the method in-
troduced in Sec. 3.1, while preserving the information about
the start and end points of the extracted strokes. During this
process, we delete strokes with negligible lengths less than
5 pixels.

We also note that due to the abstract nature of sketches in
some categories of Quickdraw, we only adopt two subsets
of the dataset for our experiments. The first subset con-
tains all shape categories including circle, hexagon, line,
octagon, square, triangle, zigzag (see Fig. 2(b)), and the
second contains all body categories including arm, ear, el-
bow, face, finger, foot, hand, nose, toe, tooth (see Fig. 2(c)).
For both subsets, we select 1000, 100, 100 samples per cat-
egory for training, validation and testing, respectively. To
avoid strokes being moved out of the image through trans-
formations during robustness evaluation, we zero-pad the
image with 40 pixels on each side. Since the strokes in the
sketch image are mostly short ones, we set the number of
control points on each stroke to n = 10 for all experiments.
We also notice the existence of complicated fork points, i.e.,
a small cluster of connected strokes in place of a single fork
point, due to the use of the maximum circle criterion. To
this end, we dilate the sketch with 4 pixels which addresses
this issue.

Network architecture and training details We adopt
MPNN from Sec. 3.3 following the same architecture as the

5134



Method Evaluation MNIST Quickdraw (Shape) Quickdraw (Body)

CNNs [11, 56]
Accuracy 99.31% 87.14% 80.10%

Spatial Robustness 26.02% 21.90% 31.10%
Parameter Size 600,810 25,315,474 25,315,474

RNNs [56]
Accuracy - 75.43% 68.30%

Spatial Robustness - 0.00% 0.00%
Parameter Size - 5,724,249 5,724,249

Graph Transformer [56]
Accuracy - 80.71% 75.4%

Spatial Robustness - 0.10% 6.57%
Parameter Size - 39,984,729 39,984,729

Ours
Accuracy 93.01% 73.00% 64.20%

Spatial Robustness 93.01% 73.00% 64.20%
Parameter Size 546,634 8,707,868 8,707,868

Table 1. The accuracy and spatial robustness on three dataset (MNIST, Quickdraw (Shape), Quickdraw (Body)). We compare our
method with CNNs (Inception-V3 for Quickdraw), RNNs, and graph transformer. Our evaluation metrics are accuracy, spatial robustness
and the parameter size.

gated graph neural networks (GG-NNs) [31]. The message
passing function is

Mt(v
(t)
i , v

(t)
j , e

(t)
i,j ) = Φ1(e

(t)
i,j ) · v

(t)
j . (5)

The update function is a Gated recurrent unit [5], where
Ut = GRU(v

(t)
i ,m

(t+1)
vi ). The readout function is

R =
∑

v
(T )
i ∈v

σ(Φ2(v
(T )
i , v

(0)
i ))⊙ (Φ3(v

(T )
i )). (6)

For MNIST, Φ1,Φ2,Φ3 each is a linear four-layer fully-
connected network, with the intermediate feature sizes as
128, 256, and 128. The message passing iterations T is set
to 1 and the final feature vector size is set to 10. We use
the batch size 128, with an initial learning rate = 1e−4. To
handle the complex images in Quickdraw, we increase the
depth of our architecture to 8 linear layers and the dimen-
sions of the intermediate features are 128, 256, 512, 2048,
521, 256, 128. The message passing iterations is set to 3
and the dimension of the final feature vector is 1024. We
set the the batch size as eight with an initial learning rate
2e−4 using the SGD optimizer. The objective function fol-
lows Eq. 1.

Baselines Convolutional Neural Networks (CNNs): On
MNIST, we train a CNN with two convolutional layers and
two linear layers maintaining comparable learnable param-
eters to our model for fair comparisons. On Quickdraw, we
choose the Inception network [47] as the baseline.

Recurrent neural networks (RNNs) [14] encodes a
sketch as a sequence of key points and flag bits, indicating
the start or end of the strokes. SketchMate [54] fuses the
CNN encoding with the RNN encoding. In our experiment,
We use a bi-directional GRU as a baseline.

Graph based networks [56], including graph convolu-
tion network (GCN), graph attention network (GAT) and

graph transformer, encode a sketch as graph. We choose
graph transformer as our baseline since it shows better per-
formance than GCN and GAT. This method is different from
ours: Each vertex is a key point of a stroke, represented
by the corresponding coordinates. Therefore, this represen-
tation is not invariant to spatial transformations. In addi-
tion, Graph Transformer based methods need information
about the start or end points of the strokes as inputs. In our
method, we extract this information from fork point detec-
tion.

Evaluation To evaluate the spatial robustness of the
model, we apply rotation θ and translation (δx, δy) attacks
on the input images following [11]:[

cos θ − sin θ
sin θ cos θ

]
·
[
x
y

]
+

[
δx
δy

]
=

[
x′

y′

]
, (7)

for pixel coordinates (x, y). For MNIST, we rotate within
±30◦ and translate within ±3 pixels. For Quickdraw, since
the image size increases, we increase the maximum transla-
tion to 10 pixels. To generate the transformed images, we
discretize the parameters to grids of rotations and transla-
tions (as shown in Fig. 2). We sample 5 values per trans-
lation direction and 31 values for rotations. Together, the
procedure yields 775 transformed samples per image. If
one of the transformed images has incorrect predicted label
through fθ◦f , the model is not considered robust against the
transformation with respect to that particular image [11].

Classification and spatial robustness results Table 1
summarizes the experimental results. (1) For accuracy,
CNNs achieve the best results. Our method achieves com-
parable accuracy on MNIST and slightly inferior ones on
Quickdraw subsets. The accuracy gaps between ours and
other baselines, i.e., RNNs and graph transformers, are

5135



Step 0 Step 0 Step 100 Step 1000 Last step Last step
Image 1(0.9928) 7(0.9862) 7(0.9907) 7(0.9963) Image

(a)

X4 X4 X4

Step 0 Step 0 Step 100 Step 1000 Last step Last step
Image 6(0.9789) 9(0.4573) 0(0.9640) 0(0.9952) Image

(d)

1(0.9964) 1(0.7139) 7(0.6389) 7(0.9788)

(b)

X4 X4 X4
6(0.9773) 6(0.8451) 0(0.8163) 0(0.9946)

(e)

7(0.9999) 7(0.5978) 2(0.8600) 2(0.9655)

(c)

7(0.9995) 7(0.6192) 1(0.9312) 1(0.9911)

(f)

Figure 3. Exploring the robust feature by altering the graph topology and modifying the control points. (a)(b)(c) The robust feature
by altering the graph topology. The first image is the original image. The last step image is the image after adding one stroke. The middle
ones are intermediate steps. (a)(b) from a single-stroke digit 1 to a two-strokes digit 7. (c) from a single-stroke 7 to a two-strokes 2. In
(a)(b), the red block on the step 0 image indicates the ZOOM in windows. (d)(e)(f) show the robust feature by modifying the control points.
(c)(d) from a single-stroke 6 to a single-stroke 0. (f) from a single-stroke 7 to a single-stroke 1.

−180◦
6:0.908
9:0.085

−150◦
6:0.918
9:0.002

−120◦
6:0.988
9:0.000

−90◦
6:0.000
9:1.000

−60◦
6:0.000
9:0.997

−30◦
6:0.001
9:0.998

0◦

6:0.000
9:1.000

30◦

6:0.000
9:0.999

60◦

6:0.997
9:0.000

90◦

6:0.970
9:0.024

120◦

6:0.973
9:0.019

150◦

6:1.000
9:0.000

Figure 4. The samples of rotation of digit “9”. On the right of
image, we show the confidence score for rotated image predicted
as 6 or 9. The prediction with higher confidence is marked in red.

smaller on Quickdraw subsets. Note that these models do
not work directly on MNIST as they require temporal in-
formation of the strokes. (2) Our stroke representation is
invariant to rotations and translations, and therefore its ro-
bustness stays the same as its accuracy. We highlight that
our model outperforms baselines on spatial robustness by
a large margin. The robustness of CNNs drops to 26.02%,
21.90%, 31.10% on the three experiments. And the robust-
ness of RNNs and graph transformers are less than 10%
on Quickdraw subsets. (3) Our models are also efficient
parameter-wise, using only 34% and 21% of parameters of
Inception-V3 and Graph Transformers, respectively.

Robustness against graph attacks Previous studies have
explored the connection between model robustness and the
learning of robust features, i.e., features that are invariant
to attacks [20, 48]. The above experiments show that our
model is robust to attacks in the form of global transfor-
mations. In addition, the procedure of stroke extraction is
robust to conventional pixel-wise attacks due to its thinning

and merging steps. Here, we further investigate the robust-
ness of our model under graph-specific attacks. If success-
ful, our study provides evidence that the proposed graph
representation contains robust features that enable model
robustness without adversarial training.

Altering the graph topology: In this experiment, we
consider adding/deleting vertices to alter the graph topol-
ogy. We conduct the experiment by adding one stroke, de-
noted by s2, on digit “1”s with a single stroke s1. We opti-
mize s2 using Eq. (2) by targeting the resultant graph to be
classified as digit “7”. Since our representation is spatially
invariant, the start point of s2 is fixed and connected to ei-
ther side of s1 and all other trainable n−1 control points of
s2 are initialized with the same values as the start point. The
procedure to get s2 follows the setting described in Sec. 3.4:
We apply penalties on angles and pairwise distances, where
D in Eq. 3 denotes the set of two-stroke “7”s.

We visualize in Fig. 3(a) the evolution of the added
stroke during the optimization of Eq. (2). Part of the new
stroke evolves towards being flat at step 100, while the con-
verged stroke becomes flat. Similar experiments are shown
in Fig. 3(b,c) on modifying “1” to “7”, and “7” to “2”. Con-
sidering that our model is rotation (and mirror) invariant, the
results suggest that the graph representation is robust in that
when the attacks are successful, the contents of the images
have to be changed semantically towards the target labels.

It should also be noted that while a rotated “7”, as in
Fig. 3(b), should not be considered as a “7” from human
perspective, this only happens because the added stroke is
considered to move from right to left (as the first stroke of
the connected two). The stroke extraction procedure de-
scribed in Sec. 3.1 considers strokes to move from left to
right and top to down, and therefore will avoid classify-

5136



Algorithm 1 The generation of new digits

Initial: Function: f, fθ, Existing sets: D, mean (parameterized with 10 control points): t and variance: σ, Hyper-
parameters: α, γ, λ1, λ2, λ3;
Output: t, σ;
while not converged do
T ∼ N (t, σ2)
while not converged do
L = −Ex∼D [log(fθ ◦ f(g(x)))]− Ex∼T [log(1− fθ ◦ f(g(x)))] ;
θ ← θ − γ ∂L

∂θ ;
end while
while not converged do
T ∼ N (t, σ2)
L = −Ex∼T [log(1− fθ ◦ f(g(x)))] + E(v,e,r)∈(V,E,R) [−λ1 log p(v;D)− λ2 log p(e;D)− λ3 log p(r;D)];
t← t− α∂L

∂t ; σ ← σ − α∂L
∂σ ;

end while
end while

ing the outcome of Fig. 3(b) as “7” (since the added stroke
will be considered as the second stroke of the sequence and
moves from left to right). This also explains why our model
can correctly classify “6” and “9” even with its invariance
property in Fig. 4: We set the strokes of the two to have
different start and end control points.

Lastly, the results in Fig. 3(a) reveals that our model is
in fact invariant to mirroring (here the added stroke will be
considered as moving from right to left through the stroke
extraction procedure, and thus its graph representation is
equivalent to its mirrored version). While this invariance is
undesirable, it is in fact commonly observed as a property
of human vision system during its early phase (e.g., among
children). For example, when start learning to write, chil-
dren may consider “b” and “d”, “p” and “q”, “J” and “L” the
same, as well as writing mirrored digits 1. Removing the
mirror invariance property through representation design or
learning, will be deferred to a future study.

Modifying control points In addition to robustness
against changes in graph topologies, we show that our
model is also robust against changes to control points of
strokes (and therefore the graph representation). To this
end, we tune the coordinates of the control points of a “6”
towards label “0” using Eq. (2). D in the attack loss is set
to the set of all “0”s with a single stroke. Fig. 3(d) shows
evolution of the sketch during the attack. At step 0, the
image is recognized as “6” with a high confidence. While
altering the control points at step 100, it is recognized as
“9” with a confidence score 0.4573 (while “0” and “6” re-
ceive scores of only 0.2552 and 0.2710. For the final step,
the model recognizes the altered image as “0”, with a high
confidence. We show experimental results on other input
samples in Fig. 3(e,f). Again, results suggest that the graph

1This is observed from one of the authors’ 5yr old, and confirmed by
her teacher.

representation is robust as successful attacks need to alter
the semantic meaning of the sketches.

4.2. New digits generation

Here we demonstrate that the graph representation en-
ables generation of novel sketches that are separable in
the feature space from the training data, while maintain-
ing structural similarity. The underlying rationale is that if
our stroke-based graph representation is with strongly struc-
tured expression capability, the underlying feature space af-
ter supervised training on existing categories could guide
a generation process to come up with new categorical pat-
terns.

The formulation of the generation problem follows Eq. 4.
To initialize a solution, we draw the control points of a new
digit from a normal distribution T ∼ N (t, σ2), where the
mean t is randomly sampled in a uniform distribution rang-
ing from 4 to 24, and σ is initially set to 4. We consider
cases where the graph topology is fixed. Alg. 1 explains the
procedure for solving Eq. 4, with two alternating steps. In
the first step, we focus on separating the new set T from the
existing dataset D. Fixing the feature extractor MPNN f ,
the binary classification objective function is given as:

min
fθ

− Ex∼D [log(fθ ◦ f(g(x)))]

− Ex∼T [log(1− fθ ◦ f(g(x)))] .
(8)

In the second step, we update the distribution of T through
t and σ following Eq. 4. The dataset D here in the loss
function is the entire MNIST training set.

In our experiment, we generate a sequence of novel dig-
its with a single stroke that are separable from the MNIST
digits in the feature space, as illustrated in Fig. 5(a). It is
worth noting that the newly generated digits share a simi-
lar visual style to MNIST hand-written digits (although a

5137



A B C

D E F
(a) Generated 6 new digits (b) The generated image’s high level distribution

Figure 5. The generation of new sketch images. (a) The new generated digits replacing A-F in hexadecimal system. (b) Projecting each
digit’s distribution to a 2-dimensional space for visualization by t-SNE [50].

blueberry broom

paintbrush toaster

Figure 6. The samples that our model struggles to handle.
We list 4 samples from 4 categories(blueberry, broom, paintbrush,
toaster) that our method is not able to predict correctly. For each
pair of the failure example, the left image is the input sketch im-
age with a dilation of 4 pixels, and the right image illustrates the
strokes (green lines) and fork points (red dots).

quantitative analysis will require a Turing test [26]), and at
the same time visually distinguishable from them. Fig. 5(b)
further confirms our claim, as we can see that on the space
formed by the final MPNN network, all novel digits are
separable from each other, and are distinguishable from the
original set. The new digits generation experiment validates
that our model has a strong structured expression capability.

5. Limitations
End-to-end stroke extraction The major limitation in
our method is in the preprocessing step. As shown in
Fig. 6, many data points from the Quickdraw dataset con-
tain strokes that form detailed parts of a whole or textures
of parts, some of which can be quite abstract (see “blue-
berry” for example). Our stroke extraction procedure cur-
rently cannot correctly infer the stroke sequences of such
sketches or produce abstraction of clustered strokes, e.g.,
those that represent a part with texture. To achieve this, we
hypothesize that it is necessary to express the stroke extrac-
tion procedure as a differentiable program, so that it can
be learned in an end-to-end fashion along with the GNN.
Even so, it would still be questionable whether such strong
extraction capabilities can be learned through static images.

One idea that under our current investigate is to consider the
ability of the extracted graph at predicting visual changes in
dynamical environments during the learning of the stroke
extraction program.
Explainability of GNN Apart from stroke extraction, we
suspect that the observed limitation in accuracy (and thus
robustness) is also due to the design of the mapping between
the graph representation and its label. Specifically, there is
a lack of connection between existing message passing ar-
chitectures and the first-principal methods for classification
through inference [26].
Graph representations The last source that accounts to the
limited accuracy could be the graph representation. In this
paper, we tested pairwise distances, which are invariant to
rotation, translation, mirroring, and scaling (if all inputs are
normalized). We are currently testing other potential repre-
sentations with the same invariance properties, e.g., stroke
curvature, and their combinations. However, a more sys-
tematic understanding of why some of these representations
could work better is still missing.

6. Conclusion and future work
We present a stroke-based sketch representation with

graph neural networks. We show that the proposed model
is spatially robust (through robust classification and ro-
bust feature exploration experiments on MNIST and Quick-
Draw) with a strongly structured expression capability
(through novel digits generation experiments).

The promising properties of the model pave the way for
a series of exciting future research, including but not lim-
ited to 1) stroke-based representation learning in an unsu-
pervised manner; 2) augmenting the model’s generalization
capability by forming analogies between the graph repre-
sentations. 3) forming representation of a complicated vi-
sual pattern with hierarchical graphs, further enhancing the
structured expression capability of the model.

Acknowledgement This work was supported by the NSF
DMR#2020277 and the DARPA GAILA ADAM project.

5138



References
[1] Kate Baggaley. There are two kinds of AI, and the difference

is important: Most of today’s AI is designed to solve specific
problems. Popular Science, 2017. 1

[2] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Al-
varo Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Ma-
linowski, Andrea Tacchetti, David Raposo, Adam Santoro,
Ryan Faulkner, et al. Relational inductive biases, deep learn-
ing, and graph networks. arXiv preprint arXiv:1806.01261,
2018. 3

[3] Irving Biederman. Recognition-by-components: a the-
ory of human image understanding. Psychological review,
94(2):115, 1987. 1, 2

[4] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Le-
Cun. Spectral networks and locally connected networks on
graphs. arXiv preprint arXiv:1312.6203, 2013. 2

[5] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau,
and Yoshua Bengio. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014. 5

[6] Minsu Cho, Karteek Alahari, and Jean Ponce. Learning
graphs to match. In Proceedings of the IEEE International
Conference on Computer Vision, pages 25–32, 2013. 2

[7] Peter Clark. Elementary school science and math tests as a
driver for AI: take the ARISTO challenge. In AAAI, pages
4019–4021, 2015. 1

[8] John P Collomosse, Graham McNeill, and Yu Qian. Story-
board sketches for content based video retrieval. In 2009
IEEE 12th International Conference on Computer Vision,
pages 245–252. IEEE, 2009. 2

[9] Agnes Desolneux, Lionel Moisan, and Jean-Michel Morel.
From gestalt theory to image analysis: a probabilistic ap-
proach, volume 34. Springer Science & Business Media,
2007. 1

[10] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-
Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel,
Alán Aspuru-Guzik, and Ryan P Adams. Convolutional net-
works on graphs for learning molecular fingerprints. arXiv
preprint arXiv:1509.09292, 2015. 2

[11] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig
Schmidt, and Aleksander Madry. Exploring the landscape of
spatial robustness. In International Conference on Machine
Learning, pages 1802–1811. PMLR, 2019. 5

[12] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A. Wichmann, and Wieland Brendel.
Imagenet-trained CNNs are biased towards texture; increas-
ing shape bias improves accuracy and robustness. In Inter-
national Conference on Learning Representations, 2019. 1

[13] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol
Vinyals, and George E Dahl. Neural message passing for
quantum chemistry. In International conference on machine
learning, pages 1263–1272. PMLR, 2017. 2

[14] David Ha and Douglas Eck. A neural representation of
sketch drawings. arXiv preprint arXiv:1704.03477, 2017.
1, 2, 4, 5

[15] Jun-Yan He, Xiao Wu, Yu-Gang Jiang, Bo Zhao, and Qiang
Peng. Sketch recognition with deep visual-sequential fusion

model. In Proceedings of the 25th ACM international con-
ference on Multimedia, pages 448–456, 2017. 2

[16] Geoffrey Hinton. Some demonstrations of the effects of
structural descriptions in mental imagery. Cognitive Science,
3(3):231–250, 1979. 1

[17] Geoffrey Hinton. How to represent part-whole hierarchies in
a neural network. arXiv preprint arXiv:2102.12627, 2021. 1,
2

[18] Hossein Hosseini, Baicen Xiao, Mayoore Jaiswal, and Radha
Poovendran. Assessing shape bias property of convolutional
neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages
1923–1931, 2018. 1

[19] John E Hummel and Irving Biederman. Dynamic binding
in a neural network for shape recognition. Psychological re-
view, 99(3):480, 1992. 2

[20] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan
Engstrom, Brandon Tran, and Aleksander Madry. Adversar-
ial examples are not bugs, they are features. In Advances in
Neural Information Processing Systems, volume 32, 2019. 6

[21] Qi Jia, Meiyu Yu, Xin Fan, and Haojie Li. Sequential dual
deep learning with shape and texture features for sketch
recognition. arXiv preprint arXiv:1708.02716, 2017. 2

[22] Yves Kodratoff et al. Learning complex structural descrip-
tions from examples. Computer vision, graphics, and image
processing, 27(3):266–290, 1984. 2

[23] Nikolaus Kriegeskorte. Deep neural networks: a new frame-
work for modeling biological vision and brain information
processing. Annual review of vision science, 1:417–446,
2015. 1, 2

[24] Jonas Kubilius, Stefania Bracci, and Hans P Op de
Beeck. Deep neural networks as a computational model
for human shape sensitivity. PLoS computational biology,
12(4):e1004896, 2016. 1

[25] Brenden Lake, Ruslan Salakhutdinov, and Joshua Tenen-
baum. Concept learning as motor program induction: A
large-scale empirical study. In Proceedings of the Annual
Meeting of the Cognitive Science Society, volume 34, 2012.
1

[26] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B
Tenenbaum. Human-level concept learning through proba-
bilistic program induction. Science, 350(6266):1332–1338,
2015. 1, 2, 3, 8

[27] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum,
and Samuel J Gershman. Building machines that learn and
think like people. Behavioral and brain sciences, 40, 2017.
1

[28] Louisa Lam, Seong-Whan Lee, Ching Y Suen, et al.
Thinning methodologies-a comprehensive survey. IEEE
Transactions on pattern analysis and machine intelligence,
14(9):869–885, 1992. 3

[29] Barbara Landau, Linda B Smith, and Susan S Jones. The
importance of shape in early lexical learning. Cognitive de-
velopment, 3(3):299–321, 1988. 1

[30] Hector J Levesque, Ernest Davis, and Leora Morgenstern.
The winograd schema challenge. In AAAI Spring Sympo-
sium: Logical Formalizations of Commonsense Reasoning,
2011. 1

5139



[31] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard
Zemel. Gated graph sequence neural networks. arXiv
preprint arXiv:1511.05493, 2015. 2, 5

[32] Chia-Wei Liao and Jun S Huang. Stroke segmentation
by bernstein-bezier curve fitting. Pattern Recognition,
23(5):475–484, 1990. 3

[33] Ke Liu, Yea S. Huang, and Ching Y. Suen. Identification
of fork points on the skeletons of handwritten chinese char-
acters. IEEE transactions on pattern analysis and machine
intelligence, 21(10):1095–1100, 1999. 3

[34] David G Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vi-
sion, 60(2):91–110, 2004. 1

[35] Mahshad Mahdavi and Richard Zanibbi. Visual parsing with
query-driven global graph attention (qd-gga): preliminary re-
sults for handwritten math formula recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pages 570–571, 2020. 2

[36] Gary Marcus. Why Can’t my computer understand me. The
New Yorker, 2013. 1

[37] Gary Marcus. Artificial Intelligence Is Stuck. Here’s How to
Move It Forward. New York Times, 2017. 1

[38] Urs Ramer. An iterative procedure for the polygonal approx-
imation of plane curves. Computer graphics and image pro-
cessing, 1(3):244–256, 1972. 4

[39] Pau Riba, Josep Lladãs, and Alicia Fornés. Handwritten
word spotting by inexact matching of grapheme graphs. In
2015 13th International Conference on Document Analysis
and Recognition (ICDAR), pages 781–785. IEEE, 2015. 2

[40] Leo Sampaio Ferraz Ribeiro, Tu Bui, John Collomosse, and
Moacir Ponti. Sketchformer: Transformer-based representa-
tion for sketched structure. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 14153–14162, 2020. 2

[41] Samuel Ritter, David GT Barrett, Adam Santoro, and Matt M
Botvinick. Cognitive psychology for deep neural networks:
A shape bias case study. In International conference on ma-
chine learning, pages 2940–2949. PMLR, 2017. 1

[42] Sara Sabour, Nicholas Frosst, and Geoffrey Hinton. Matrix
capsules with em routing. In 6th international conference on
learning representations, ICLR, volume 115, 2018. 2

[43] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Ha-
genbuchner, and Gabriele Monfardini. The graph neural
network model. IEEE transactions on neural networks,
20(1):61–80, 2008. 1

[44] Manish Singh and Donald D Hoffman. Part-based represen-
tations of visual shape and implications for visual cognition.
In Advances in psychology, volume 130, pages 401–459. El-
sevier, 2001. 2

[45] Sam Snead. Facebook’s AI boss: ‘In terms of general intelli-
gence, we’re not even close to a rat’. Business Insider, 2017.
1

[46] Jifei Song, Qian Yu, Yi-Zhe Song, Tao Xiang, and Timo-
thy M Hospedales. Deep spatial-semantic attention for fine-
grained sketch-based image retrieval. In Proceedings of the
IEEE international conference on computer vision, pages
5551–5560, 2017. 2

[47] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.
5

[48] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom,
Alexander Turner, and Aleksander Madry. Robustness may
be at odds with accuracy. In International Conference on
Learning Representations, 2019. 6

[49] Anton van den Hengel, Chris Russell, Anthony Dick, John
Bastian, Daniel Pooley, Lachlan Fleming, and Lourdes
Agapito. Part-based modelling of compound scenes from
images. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 878–886, 2015.
2

[50] Laurens Van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(11), 2008. 8

[51] Qi Wu, Hongping Cai, and Peter Hall. Learning graphs to
model visual objects across different depictive styles. In
European Conference on Computer Vision, pages 313–328.
Springer, 2014. 2

[52] Yao Xie, Peng Xu, and Zhanyu Ma. Deep zero-shot learning
for scene sketch. In 2019 IEEE International Conference on
Image Processing (ICIP), pages 3661–3665. IEEE, 2019. 2

[53] Peng Xu, Timothy M Hospedales, Qiyue Yin, Yi-Zhe Song,
Tao Xiang, and Liang Wang. Deep learning for free-
hand sketch: A survey and a toolbox. arXiv preprint
arXiv:2001.02600, 2020. 2

[54] Peng Xu, Yongye Huang, Tongtong Yuan, Kaiyue Pang, Yi-
Zhe Song, Tao Xiang, Timothy M Hospedales, Zhanyu Ma,
and Jun Guo. Sketchmate: Deep hashing for million-scale
human sketch retrieval. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
8090–8098, 2018. 2, 4, 5

[55] Peng Xu, Yongye Huang, Tongtong Yuan, Tao Xiang, Tim-
othy M Hospedales, Yi-Zhe Song, and Liang Wang. On
learning semantic representations for large-scale abstract
sketches. IEEE Transactions on Circuits and Systems for
Video Technology, 31(9):3366–3379, 2020. 2

[56] Peng Xu, Chaitanya K Joshi, and Xavier Bresson. Multi-
graph transformer for free-hand sketch recognition. IEEE
Transactions on Neural Networks and Learning Systems,
2021. 2, 4, 5

[57] Peng Xu, Kun Liu, Tao Xiang, Timothy M Hospedales,
Zhanyu Ma, Jun Guo, and Yi-Zhe Song. Fine-grained
instance-level sketch-based video retrieval. IEEE Trans-
actions on Circuits and Systems for Video Technology,
31(5):1995–2007, 2020. 2

[58] Lan Yang, Kaiyue Pang, Honggang Zhang, and Yi-Zhe Song.
Sketchaa: Abstract representation for abstract sketches. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10097–10106, 2021. 2

[59] Lumin Yang, Jiajie Zhuang, Hongbo Fu, Xiangzhi Wei, Kun
Zhou, and Youyi Zheng. Sketchgnn: Semantic sketch seg-
mentation with graph neural networks. ACM Transactions
on Graphics (TOG), 40(3):1–13, 2021. 2

5140



[60] Lumin Yang, Jiajie Zhuang, Hongbo Fu, Kun Zhou, and
Youyi Zheng. Sketchgcn: Semantic sketch segmenta-
tion with graph convolutional networks. arXiv preprint
arXiv:2003.00678, 3, 2020. 2

[61] Qian Yu, Yongxin Yang, Feng Liu, Yi-Zhe Song, Tao Xiang,
and Timothy M Hospedales. Sketch-a-net: A deep neural
network that beats humans. International journal of com-
puter vision, 122(3):411–425, 2017. 2

5141


