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Abstract

Under complex viewing conditions, human perception
relies on generating hypotheses and revising them in an it-
erative fashion. We developed novel visual stimuli to study
such iterative inference in humans and AI. In these stimuli,
called “constellations”, all local information about the ob-
ject has been removed and it can only be recognized when
taking into account the global pattern. We here describe
the dataset and demonstrate that humans indeed use an it-
erative process of generating hypotheses and refining them
to solve these images. We also provide code that allows
researchers to create their own constellation images. The
constellation dataset allows researchers to develop sketch-
ing algorithms for guessing the hidden object. As such al-
gorithms used by humans appear to be iterative in nature,
this dataset will facilitate the study of iterative inference in
minds and machines.

1. Introduction
In the past decade, artificial neural networks (ANNs),

particularly convolutional neural networks (CNNs) have
made major advances in reaching human level performance
in certain visual recognition tasks. However, it is still clear
that human visual capabilities go beyond these object detec-
tion and classification tasks where the ANN models excel.

Consider looking at the night sky to find star constella-
tions while being an amateur at it. In this case, one cannot
immediately see objects formed from stars, but can never-
theless generate many original hypotheses about what could
be there (“a coffee machine”, “a baby dolphin”). One is
also able to test whether these hypotheses explain patterns
of stars in the night sky or not in an iterative fashion. Even-
tually, one might discover a warrior (Orion) or the great bear
(Ursa Major) as a solution. This process of going back and
forth, revising the hypotheses until finding a solution has
been called ‘iterative inference’ [64].

While traditional ANN solutions model relationships in

the scene [18, 32, 55, 58], they do so in a single pass over
the image, relying on a deep stack of convolution layers to
model relationships between the image components. Such a
bias prevents generating a rich understanding of the image
as it does not allow for an iterative refinement of hypotheses
about its content and meaning.

On the other hand, in human vision, understanding a
scene has been shown to involve a much more recursive
evaluation of the visual input [10,35,37,53,64] as different
possible hypotheses or interpretations are considered. Such
a process makes human vision more robust to noise, context
changes and helps adapt to new scenarios [16, 53].

To investigate the full scope of iterative inference, tasks
are required where the participant has the possibility to gen-
erate many hypotheses that are refined in an iterative fash-
ion.

Here we develop a minimal experimental setting that
would help us study iterative inference. We were inspired
by the example brought above about the identification of
constellations in the night sky. For finding constellations
humans cannot directly identify the object but have to con-
sider in their mind different ways in which the stars can
be connected and evaluate which one of them relates to
a familiar concept. This process has a generative compo-
nent, imagining potential solutions and iteratively refining
or changing the solutions according to the given constella-
tion image. When it comes to ANNs we can think of these
potential solutions as sketches of objects made by connect-
ing the dots or just passing through the relevant dots in the
image.

We synthetically generated a dataset of images with
common objects hidden as constellations to promote the
probing of iterative inference while controlling for vari-
ous factors. This dataset complements the already exist-
ing datasets like Imagenet [9], COCO [46], Things Dataset
[28], and Ecoset [52] as these previous datasets were not
developed for this particular goal of studying the iterative
process of inference. (However, in principle one could gen-
erate constellation images from any image dataset with the
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Figure 1. Six examples of the constellation objects. Depicted are the original image, the dotted outline and the constellation image with
low local signal. The constellation dataset allows researchers to train and evaluate sketching or other generative solutions for inferring the
object hidden in dots.

code we provide). The images are made compatible for use
in experiments for psychology, neuroscience, and AI. We
illustrate how one can use this task to better understand the
process of iterative inference in humans.

Our contributions are the following:

• we present a new dataset that allows one to study iter-
ative inference of perceptual input

• we show data of how humans perform iterative infer-
ence on these constellation images

• we provide the code to generate the constellation im-
ages

• we show that the constellations can be used to study
sketching in humans and machine vision algorithms

2. Background and related works
In this section, we will discuss the current state of Deep

Learning architectures for vision and the motivation for de-
veloping this dataset.

2.1. Role of datasets in advancing computer vision

Methods and models for computer vision have evolved
over time from hand-engineered algorithms and signal pro-
cessing methods that extract useful features to the neu-
ral networks approach, with feed-forward neural networks
achieving the state of the art in many tasks [39,43]. Datasets
such as Imagenet played a huge role in the development and
evaluation of various state-of-the-art ANNs like Alexnet
[39], VGG [58] and ResNet [26] that pushed the bound-
aries of computer vision on the object recognition task. Go-

ing beyond image categorisation, datasets like COCO [46]
proved to be highly influential in the generation of solutions
for tasks like image segmentation, captioning, and scene de-
scription. Architectures like Mask R-CNN [25], Yolo [55],
and DenseCap [32] are the results of this exploration.

2.2. Inspiration from natural vision

Deep Learning (DL) based vision solutions often fail to
perform well on a few instances that are typically consid-
ered easy for humans [27]. One of the features of human
vision that makes it robust against such failures is its ability
to process the inputs in a recurrent manner [17, 56]. Re-
search has also shown that recurrence is necessary for neu-
ral networks to account for the activation patterns in data
recorded from human visual cortex [35, 37]. More impor-
tantly, recurrence added to these DL networks explains the
trade-off between accuracy and speed as seen in human vi-
sion [59]. Due to these, it makes sense to make the archi-
tectures recurrent and in general add iterative processing to
DL algorithms for certain vision tasks.

2.3. Iterative and recurrent processing in DL

Many attempts have been made to include the iterative
capabilities of natural computations in DL architectures for
vision. Recurrent capability was added to CNNs by adding
a recurrent connection within each CNN layer [45]. Cornet-
R [40] added local recurrent connections to the existing
feedforward pipelines for object recognition by implement-
ing biologically plausible unrolling.

Methods used in image restoration have increasingly
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been using the principles of recurrent modelling to iden-
tify self-dependencies between different regions. Recur-
rent processing especially helps to model long-range self-
dependencies [49] in images that the convolutions cannot
easily model. Whereas architectures for Image denois-
ing mainly make use of CNN-based networks [36, 50],
recurrent connections are increasingly being added espe-
cially when dealing with more difficult real and blind noise
[19, 61, 73]. DL architectures for super-resolution also fol-
low the trend of using recurrent networks [60, 67]. For in-
stance, a step forward from cascading upsampling based so-
lutions [41,42,66], iterative upsampling [23,24,30] has be-
come an important framework in the field.

Applications requiring inference between different parts
of the image are increasingly developing using an iterative
method. For object detection, [7] makes initial labels using
CNN based methods, but models the interaction between
the object labels using graph neural networks while itera-
tively correcting the labels. Fields like scene representa-
tion or scene decomposition increasingly make use of it-
erative DL methods. For example, MONet [3] is a model
where the scene is recurrently decomposed into its con-
stituent parts by learning to attend to the constituents object-
wise while regenerating the scene. IODINE [20] makes par-
allel individual interacting cascading passes to model the
constituent objects but refines the representation iteratively.
Genesis [12] models the iteration explicitly between the
constituents during the generative process of the scene re-
composition. [51] introduces slot attention to model object-
based representations in scene. This is an iterative method
to bind CNN-based perceptual representations of objects in
the scene to a fixed number of learnt representation vari-
ables called slots.

2.4. Datasets for visual reasoning

There are various other tasks intended to test the visual
understanding capabilities of ANNs which may indirectly
promote the use of iterative inference in DL. Corresponding
datasets like visual question answering datasets [1,29] make
the system answer questions based on the image given. The
complexity of relations that the visual system may be chal-
lenged to model in such datasets can be dependent on the
complexity of the questions. Other datasets like the Multi-
object dataset [34] with sets like CLEVR with stripes (based
on [31]), or Multi-3d stripes, promote scene modelling tasks
requiring multi-object modelling and masked generation of
each object in the image. Such generation often requires
both iterative and generative capabilities as many objects in
the scene are hidden or overlapping [3, 20].

There are several other datasets such as the Pathfinder
[48] and the cluttered ABC [38] for studying visual infer-
ence where the task cannot rely on local information. [38]
shows that increasing the complexity of the vision task hin-

ders learning in ANNs relying solely on low level informa-
tion. [48] also introduces a task requiring networks to learn
long range dependencies and introduce a horizontal gated
recurrent units, that help in modelling such dependencies.

2.5. Sketching for visual reasoning

In a recent trend, the use of AI for creating sketches has
gained momentum [13, 14, 57]. Even in earlier papers on
drawing, DRAW [21] used iterative attention based mod-
elling of images, using each iteration to refine and gen-
erate part of the image. Sketch RNN [22], introduced an
RNN model to learn stroke based neural representations for
sketches of common objects and could produce conditioned
or unconditioned sketches. However, here the iterative use
of networks is used to efficiently construct images. Iteration
is now also used to iterate over while navigating a concep-
tual space to find a correct match for a conceptual descrip-
tion. Sketching solutions [14, 57] based on searching the
possible space of solutions under the guidance of CLIP [54],
a large image-text pre-trained model, have been very effec-
tive for guiding description based image generation. Other
solutions [13] in the same category iteratively model a hier-
archy of commands in the form of a sketch stroke to draw
based on an image description. Sketch-based modelling is
not limited to model a single object, as sketch-based repre-
sentations can be used to model a multi-parts scene [68] or
a scene with temporal dynamics in a video [8, 72].

Various methods also try to translate sketches into real-
istic images [6, 65]. A related visual inference problem is
sketch-based image retrieval, where user inputs based on
sketches are used to infer related original images. Many
current solutions in this field use methods that align sketch
and image representations through a CNN with various pro-
jections [15, 63]. Improvements are also being made on the
reverse problem of generating a sketch based on an origi-
nal image [44, 69]. The current solutions [2], however, are
still highly dependent on reading low level original image
features for the sketch generation.

3. Creating the constellation dataset

We used images of common objects from the Things
Dataset [28] to create the constellation dataset. The Things
dataset consists of 26,107 images of 1,854 objects, with
each object having 12 or more exemplars.

The steps to generate the constellation images are illus-
trated in Figure 2 and are the following: 1) Generating out-
lines for the object from the original image; 2) Manual se-
lection of best outline candidate, followed by manual edit-
ing in some cases; 3) Automated generation of dotted ver-
sion and then constellation version of the image using the
selected outline. In the next section, we discuss these steps
in detail.
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Figure 2. The image generation process with various automated and manual steps. The original image is first transformed into outlines using
a serial application of image segmentation and then canny edge detector operation. The best outline is manually selected. Some corrections
(additions or erasing some portions) are made manually to make sure the key feature of the object is visible in the outline. Finally, the
automated pipeline is run on the final outline to generate various versions of dotted and constellation images for the experiment.

3.1. Automated generation of an outline

We first used multiple ways (described below) to obtain
an outline for the object in the image.

First, we use Mask R-CNN [25] to identify the region
of the image containing the object. We obtain the binary
mask output from Mask R-CNN, indicating the pixels be-
longing to that object in the image. We multiply this bi-
nary mask with the original image to get the image with
only the detected object. In particular, we use Mask R-
CNN pre-trained on the COCO dataset [46], which contains
many categories overlapping with the objects in the Things
dataset. Still, the segmentation performance is sub-optimal
on the missing categories. It is impossible to train the net-
work on the Things dataset due to the non-availability of
ground-truth object masks.

Second, to compensate for inconsistency from Mask R-
CNN outputs, we repeated step 1 with multiple mask set-
tings to obtain multiple masked images. We generated mul-
tiple masked versions by 1) capturing only the principal ob-
ject, 2) capturing the first two prominent objects, 3) an un-
masked full image. Having these multiple versions allows
for a simple manual selection later, making the final outputs
more appropriate.

Finally, we use the Canny edge detector [5] to obtain the
outlines from these images. We use the canny edge detector
with a threshold of (100,200) for all masked images. For
the unmasked images, an additional blurring mask with a
radius of 5 pixels is used. The image obtained after these

steps can be seen in step 2 of Figure 2.

3.2. Manual selection and editing

We perform a round of manual selection to choose the
best outline image per original image. We may reject an
image exemplar here if the outline obtained does not rep-
resent the object very well. Many objects, such as liquids,
moss, and foam, are more represented by their texture and
colour than their shape. Hence they may not be fit to be rep-
resented with just an outline. Some manual editing of the
outline may be done at this point if the object can be made
perfectly visible by blackening some of the remaining out-
lines from background objects.

3.3. Generating constellation images from outlines

On the selected outlines, we run two algorithms to con-
vert them into constellation images. First, we convert the
outlines into dotted images. The objective of this step is to
generate an image representing the outlines with dispersed
dots. These dots are separated by a regular pixel distance
‘d’. This pixel distance ‘d’ is a parameter that we can con-
trol as an input to the function. We first traverse the image
pixel by pixel to find any white pixel on the outline image.
We draw a black circle around the found pixel with radius
‘d’, leaving the original (central) pixel as white. When a
traversal over the image with this procedure is complete,
we obtain an outline represented by dots at regular inter-
vals. Now we can increase the radius of these dots by doing
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(a)

(b)

Figure 3. Dotted and constellation images with different difficulty levels. A combination of ’d’ and ’p’ is chosen to get the optimal difficulty
level for images to be used in experiments. 3a: Dotted version with different distance ‘d’ between dots.3b The respective constellation
images with noise (p = 0.003).

another pass and making a white circle of the required ra-
dius ‘r’ at each point when you encounter a white pixel in
the image. The variations of image obtained after this step
can be seen in Figure 3a.

Second, we add noise to the generated dotted image. In
this step, the image is traversed again to randomly gener-
ate circles of radius ‘r’ with probability ‘p’ at each pixel,
generating the noisy version. Figure 3b shows the final con-
stellation images obtained after this step.

4. Dataset

The final dataset consists of 3533 image sets from a total
of 1215 objects. The dataset consists of common objects
of many types from the Things dataset, such as animals,
kitchenware, appliances, furniture, vehicles, tools, musical
instruments, food etc. Only the objects for which texture
is an important cue to recognition (e.g., grass, ice, sauce)
were removed as they are not suitable for the constellations
dataset. Mostly 2 or 3 exemplars for a given object are pro-
vided in this final set.

The images released in the dataset are of size 320 × 320
pixels and represent the object in 4 modes: original image,
outline image, dotted image, and final constellation image.
Along with these variations in modality, the dotted and con-
stellation images are also provided at different signal/noise
ratios. This offers the benefit of a wide range of stimuli
that can be chosen to fit different individual tasks. The sig-
nal/noise ratio is varied in one of two ways. First, it is pos-
sible to change the distance between two dots on the origi-
nal image which corresponds to a change in signal, i.e., the
farther the dots, the lower the signal. The other way is to

directly increase the amount of noise added in the last step.
Distances ranging from 4 to 17-pixel length with noise lev-
els of 0.002 to 0.003 are used. Other than the main dataset
used for various experiments we provide an additional con-
stellations dataset obtained from 20,000 sketch images as
drawn by humans covering 250 objects [11]. More gener-
ally, one can create more constellations images from other
large sketch datasets like Sketchy and Quick, Draw! [4, 33]

The positions of dots in the dotted (ground truth posi-
tions) and constellation images can be easily extracted us-
ing the script that we release with the code. Other than for
evaluating the sketches of the solutions, having the posi-
tions of the dots also allows one to effectively re-generate
the constellation images in other resolutions. In addition,
we release code for a set of tools that can be used to evalu-
ate the sketches made by AI algorithms on the constellation
images. This allows counting the numbers of dots belong-
ing to the original outline of the object that the sketch passes
through or nearby.

Finally, we also release a smaller set of 481 ”top” images
that have been hand-picked for using in experiments with
humans. These were selected based on criteria extracted
from pilot experiments that make constellation images more
likely to be solved by human subjects while allowing for
some alternative hypotheses, and that are not too easy or too
difficult to solve. These include objects with a distinctive
shape, presented in full and at an angle that is characteristic
to the object. We also excluded very generic shapes that
could belong to a large number of objects, objects that are
rarely encountered, or contours with very straight lines that
are likely to pop out immediately.

The code and link to the full dataset can be found

5146



Figure 4. Model accuracy for CLIP versions Vit B/32,Vit B/16,
Resnet 50X16, Resnet 50X4 models on different modalities of im-
ages in the constellation dataset. Dotted line shows the baseline
top 3 accuracy for random prediction.

here: https://github.com/tarunkhajuria42/
Constellations-Dataset

5. Evaluating pre-trained CLIP for Inference
CLIP is a joint image-text model that has been pre-

trained on large datasets and works on a wide variety of
text and images [54]. It has been used in many sketch-
ing solutions to guide the generation process [14, 57]. As
the model is very actively used in designing sketching solu-
tions, we evaluate its direct applicability to the constellation
dataset. Note that in our work we are not so much interested
in fine-tuning CLIP directly on constellation images, as hu-
man subjects in our experiments (see next section) are also
not trained on constellations.

We evaluate four variants of CLIP (Vit B/32, Vit B/16,
Resnet 50X16, Resnet 50X4) on various modalities of our
dataset images by setting up a classification task based
on the categories provided with the Things dataset [28]
(setup details in supplementary materials). We find that
the pre-trained model’s performance drops drastically from
the original image to the constellation image (see Figure 4).
The performance with constellation images is at near ran-
dom guess levels.

6. Human experiments show iterative inference
We conducted a study where participants were able to

view the constellation images for an unspecified amount
of time with the task to identify the object. They used a
touchscreen monitor and stylus to trace the outline of the
object. This process of sketching the outline of the object
was included to examine the various hypotheses the par-
ticipant may consider and allow them to specifically test
their fit with the dots. Furthermore, sketching the outline

Figure 5. Examples of sketches made by different human par-
ticipants on three constellation images. The top row (A) depicts
correct guesses for the constellation images of a seahorse, a dog,
and glasses. In the bottom row (B) participants have sketched al-
ternative object guesses (a face, an acorn, and a car) for the same
constellation images. The original images and dotted outlines of
these stimuli can be seen in Figure 1.

of the objects ensures that participants do not provide ran-
dom guesses without considering the evidence. Some ex-
amples from sketches made by human participants can be
seen in Figure 5. Once the participant had identified an
object, they had to write down their guess, as well as es-
timate how confident they were in their response on a 7
point scale. If the image was deemed too difficult, they
were able to see a slightly easier version of the image with
a reduced noise level. To gather more information about
the process of solving the image we also recorded the par-
ticipant’s voice as they were prompted to explain in detail
their thought process from forming a hypothesis to arriving
at a solution. From the transcripts of these recordings, we
were able to trace the iterative inference process in many
instances, as participants considered alternative hypotheses
before settling on a final answer. An illustration of a partic-
ipant solving a constellation image in an iterative fashion is
depicted in Figure 6.

Participants guessed the correct object on an average of
83.4% of the stimuli (SD=37.3%; range 68.6% - 94.3%),
and made valid guesses on 97.1% of the trials (SD=16.7%;
range between 94.3% and 100%).

The time it took participants to arrive at a solution varied
from only a few seconds to over two minutes (min=2.15 s,
max=143.8 s). The average time it took to arrive at a guess
was 24.38 s (SD=28.79 s). Shorter guess times were linked
to higher confidence ratings, as trials which were guessed
under the average 24.38 seconds were rated higher in confi-
dence (M=5.63, SD=1.22) than those which took longer to
guess (M=4.0, SD=1.45). In future experiments, it is possi-
ble to select constellation images with the suitable difficulty
level for a specific task based on the average reaction times
it takes to solve the image.
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Figure 6. Illustration of iterative inference of a participant when solving the constellation image of a hairdryer (a), as extracted from
the transcripts of the verbalized solving process. He first identifies a coherent pattern in the dots and proposes his initial object category
hypothesis (“an animal”). He then continues to iteratively refine the hypotheses (green arrows) and test them against the data (blue arrows),
until arriving at a solution that he deems the best match for the data at hand (b).

7. Discussion
Typical vision datasets like Imagenet [39], COCO [46],

Things Dataset [28], and Ecoset [52] cater to tasks such
as image recognition or object detection. However, un-
der more complex circumstances, the human brain does not
rely on a single pass of feature extraction from the image.
Rather, in a process of iterative inference [64] it may also re-
fine the feature extraction based on various hypotheses and
accumulate supporting and contradicting features from an
image before coming to a conclusion.

Here we have presented a dataset called constellations
to aid the investigation of iterative inference in humans and
AI algorithms. We have demonstrated in human subjects
that humans are indeed depending on iterative inference to
solve these images. We instructed the human participants
to sketch their solutions, thus showing that the constellation
images are also a tool for studying sketching under such
circumstances.

The dataset consists of 3533 image sets from a total of
1215 objects, thus making it possible to study a large variety
of concepts. For this particular dataset we used original im-
ages from the Things database [28], because these images
only contained one object. We generated an additional set
of 20,000 constellation image sets using sketches made by
humans in [11]. However, in principle the code we provide
can be applied to any image from any dataset, with sketch
datasets needing only the fully automated pipeline. In the
future, we will augment this dataset with more data from

human subjects, describing their performance and solution
process on these constellation images.

DL architectures have used recurrent connections and in-
teractive inference for many tasks, but exploiting its true po-
tential still faces problems in training [47]. We know from
tasks such as image restoration that convolution as an oper-
ator can be used in image denoising when the denoising can
be done using local information. Recurrent connections or
iterative processing help model long-range self-information
[49] relationships. In scene modeling tasks from the Multi-
object dataset [34], where the objects are occluded, the re-
lationship between the scene and the object is modeled by
passing the information using the iterative loop [3, 12, 20]
while the convolution pipeline models the objects locally.

Our dataset further promotes more iterative and gener-
ative solutions due to the lack of local information in the
scene. We remove the local information from the images
and add additional noise dots to further obscure local shape
information. As the constellation images have no local in-
formation to rely on, the inference process is forced to look
for information cues at various scales. Iterative hypothe-
sis testing becomes an important part of the search as the
solutions cannot rely on composition of bottom up (local
information) information to learn possible global shape so-
lutions as is done by most single-pass ANNs on images. For
example, we observed that the classification performance of
CLIP on these tasks is quite low (see Figure 4), so using
CLIP for direct inference of labels or providing meaning-
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ful initial conditioning of search on dotted or constellations
images will be very difficult. However, it remains possible
that some of this performance can be improved by training
or fine tuning on contours, dotted images or constellations.

One possible direction for solving constellations in-
cludes using a GAN trained on sketches or outlines and
then searching in the GAN’s latent space for a solution con-
tour that passes through the maximum number of dots in
the constellation image. A bottom-up approach could be to
model the search using primitives such as lines or curves
connecting the dots in the image while searching for a com-
bination giving a high concept score in a network like CLIP.
Many CLIP-guided visual search [14, 57] methods already
exist even combined with evolutionary search methods [62].
However, there are two important differences that make the
constellation images different from previous work. First,
the solution must be connected to the underlying constel-
lation image instead of being drawn on an empty canvas.
In other words, any solution needs to respect the dots on
the constellation image. Second, the search is not guided
by one, but by thousands of competing text prompts (as in
principle there could be anything hidden in the constella-
tion). Hence, the search space can be fairly large both in
terms of sketches drawn and potential object labels.

A sketch by itself represents a fairly dynamic process.
Hence, previous work to model sketches provides multiple
ways in which the solution of constellation images might
be approached. Works like [70] model sketches by not only
their visual features, but also capture the temporal dynamics
of sketch strokes using a RNN-based pipeline. Modelling
sketches as motor strokes as done in [22] provides another
way to align the representation of sketches to human rep-
resentations, where the sketching process represents natural
iterative inference by conditioning next generation steps on
drawn parts. In [71] the authors introduce a multi-graph
based representation of sketches and model them using
GNNs. [69] proposes a method to extract self-supervised
sketch specific representations, proposing transformations
that preserve the inherent identity in object sketches. All
these methods provide important building blocks to solve
constellation images. Stroke-based representations in par-
ticular inherit a natural element of iterative inference condi-
tioned on the already generated sketch. However, to solve
constellation images, the sketching process has to be further
conditioned on the underlying constellation image.

8. Limitations
The applicability of constellation images for problems is

limited in certain ways. Firstly, generating good constella-
tion images is dependent on obtaining a clear outline from
the original image, but if the Mask R-CNN output is sub-
optimal or the object contains complex texture, this causes
the edge detector to output a very unclear outline. Secondly,

the selection of an appropriate difficulty level of the con-
stellation images for experiments with humans or computer
vision algorithms is not trivial. A particular combination
of distance between dots ’d’ and noise probability ’p’ used
to generate constellation images may not produce the same
difficulty level on all objects as objects differ wildly in their
surface and conceptual features. Lastly, the scale of objects
in the image can vary: a circular shape could be a football or
a coin. This may pose a problem for objectively evaluating
the solution sketches. Automated evaluation is problematic
as single stimuli may have other valid object shapes that
pass through its points. Also, avoiding algorithms taking
shortcuts and converging to trivial solutions by sketching a
circle or a rectangle and labelling them as a clock or box re-
mains a challenge. Due to this, evaluating if such solutions
form a valid object sketch is still largely dependent on hu-
man evaluation. At first sight it might seem that the validity
of our CLIP experiments is limited to show the need for it-
erative inference, as we have not trained or fine-tuned CLIP
on the constellation images. However, note that humans
are also not trained directly on constellation images, but
rather naturally use iterative inference when first confronted
with these images. Nevertheless, we could in principle fine-
tune CLIP or other networks on constellation images, as we
can expand our dataset using outlines from multiple sketch
datasets [4, 11, 33]. This will allow us to properly bench-
mark the performance of the existing DL architectures on
this dataset.

9. Conclusion
With this novel dataset, the task to find an object in the

constellation images is a step towards more difficult image
recognition which requires hypothesis generation, analysis,
and synthesis before arriving at the final solution. This task
by itself provides the simplest setting to examine the al-
gorithms that humans use for iterative inference. We have
demonstrated that humans indeed require time and several
iterations before coming to the solution. Therefore, this
dataset provides a way to study and implement human-like
iterative inference in machine vision.
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