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Abstract

Offline signature forgery detection has attracted many
researchers in recent years. In real situations, signatures
should be detected from the signed documents and verified
by the forgery detection system. There are many challenges
in the pipeline. First, some signatures have low resolutions
and are difficult to be detected. Second, the cropped sig-
natures may contain irrelevant background context of the
document, making the signature hard to be verified. Third,
some forgery signatures are very similar to genuine ones,
increasing the challenge of verification. In addition, most
existing datasets do not cover all the pipeline tasks. More-
over, publicly available Chinese-based signature datasets
are rare for research purposes. In this paper, we construct
a novel Chinese document offline signature forgery detec-
tion benchmark, namely ChiSig, which includes all pipeline
tasks, i.e., signature detection, restoration, and verification.
Besides, we extensively compare different deep learning-
based approaches in these three tasks. The results show
that our proposed dataset can effectively provide solutions
for constructing pipeline systems for Chinese document sig-
nature forgery detection.

1. Introduction
The handwritten signature is a common way of authen-

tication. It is widely used in the legitimacy verification of
documents such as contracts, forms, and bills. However, the
widespread use of signatures has a risk of signature forgery,
and more and more scenarios require the identification and
authentication of handwritten signatures in scanned docu-
ments [12]. As a result, the development of a pipeline sys-
tem for forgery detection is necessary.

Depending on the signature acquisition, the signature
forgery detection systems can be divided into two cate-
gories [11], offline and online. The signature in the offline
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system is a two-dimensional static digital image mostly cap-
tured by document scanning. On the contrary, in the online
system, the sample signature is described by position, ve-
locity, pen direction, pressure sequence etc., which is ob-
tained through a special acquisition device. Online signa-
tures have more distinct features than offline signatures and
can be modeled in temporal space and achieve better re-
sults [20]. However, the data for online signatures are ex-
pensive to capture and do not cover all signature verification
scenarios. Contrarily, the data of offline signature is easy to
obtain but difficult to verify due to a lack of temporal in-
formation [20], a limited amount of features [11], and the
noisy background [6].

Most studies [5, 11, 36] for offline signature verification
focus on verifying existing clean, noise-free signature im-
ages on a public dataset, which do not fit the actual appli-
cation scenario. It is not easy to get a clean signature in
the real document image. The location of the signature is
not fixed, and there is an interference with the signature
from free objects like logos, stamps, and text in the doc-
ument. The actual signature obtained will have noise and
background texture, leading to a difficult verification task.
Therefore, developing a practical signature forgery detec-
tion pipeline system should deal with the challenges of sig-
nature detection, signature restoration, and signature verifi-
cation.

In this paper, we construct a novel Chinese document
signature forgery detection benchmark for offline signature
verification, namely ChiSig, which includes all signature
forgery detection pipeline tasks, i.e., signature detection,
restoration and verification. This rich dataset consists of
102 classes of signatures and has been carefully collected
and organized to consider the influencing factors present in
the signature process. Different baseline methods are also
evaluated and compared, thus helping researchers to pro-
pose or improve algorithms. The dataset can be accessed at
https://github.com/dskezju/Chisig.

The main contributions are summarized as follows. 1)
We introduce a novel public available benchmark dataset
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for Chinese signature forgery detection. 2) The introduced
dataset includes all tasks for the full pipeline of the signa-
ture forgery detection system, which is more realistic than
most existing datasets. 3) Several baseline methods are
evaluated on the dataset, facilitating researchers for future
works.

2. Related Work
2.1. Signature Detection

Detecting the location of signatures on complex scanned
documents and cropping the region of interest (ROI) is
the primary goal of signature detection. Existing meth-
ods for signature detection can be divided into two cate-
gories. One is to propose a specialized system to extract
features to detect signatures. The other is to model the sig-
nature detection task as a standard object detection task and
use deep learning-based methods for the task. Specifically,
Sharma [28] uses YOLOv2 [24] and Faster R-CNN [8]
for signature detection. Hauri [12] studies different ob-
ject detection methods on signature detection, including
YOLOv5 [9], Faster R-CNN [8], and RetinaNet [18], where
YOLOv5 outperforms the other models. On account of that,
we evaluate the performance of different deep learning-
based object detection methods on our proposed dataset.

2.2. Signature Restoration

Signatures on real-world documents often interfere with
background contents, such as seals, stamps, handwritten
text, printed lines, and printed text, which increase the dif-
ficulty of signature verification and influence the signature
verification effect. Removing noisy background can be seen
as reconstructing an image from a noisy image to a clean
one. Therefore, image-to-image translation methods can be
well utilized in the task. Some methods assume paired data,
i.e., the noisy and clean versions of the same signature im-
age, are available in training. For example, DE-GAN [30]
utilizes the log loss between paired enhanced image and
ground-truth image to optimize discriminator and genera-
tor. Some methods can be trained on unpaired data, which
is more realistic. For instance, DualGAN [44] builds the
loss through two generators to solve the problem of un-
paired data. This paper evaluates several deep learning-
based methods for signature restoration on our proposed
dataset.

2.3. Signature Verification

In biometrics and document forensics, offline signa-
ture verification is challenging to determine whether a
given pair of signatures are genuine or forged. There
are two different types of methods for signature verifica-
tion [11]: writer-dependent and writer-independent. Writer-
dependent method lacks the flexibility to verify the new

user, while the writer-independent method is more robust
and naturally becomes the research focus. Nowadays, us-
ing deep learning methods to tackle those signature ver-
ification problems has become more popular. SigNet [5]
uses Siamese convolutional networks as a feature extractor
to learn signature embeddings. Inverse Discriminative Net-
work [36] introduces inverse supervision and a multi-path
attention mechanism to resolve the sparse information of
signatures. However, due to the lack of public datasets in
Chinese, most signature verification systems mainly focus
on English, which hinders research on Chinese signature
verification. Thus, based on our public dataset, we validate
performance for different models and provide benchmark
results.

2.4. Offline Signature Datasets

The most commonly used dataset for signature detection
is Tobacco800. However, this dataset is in English and is
only composed of 1290 document images. To the best of
our knowledge, there are no public datasets on signature
restoration. Most of the related studies [6] use the method
of data synthesis to build datasets.

Extensive datasets exist for signature verification, such
as GPDS, CEDAR and BHSig260. Tab. 1 gives more in-
formation about the offline signature datasets. However,
most of the mentioned datasets are in English characters,
and there are not many public Chinese datasets. The lack of
public Chinese datasets hinders research on Chinese signa-
ture verification. In addition, Chinese characters are more
diverse than English, and the writing forms are diverse,
which is more difficult for Chinese offline signature verifi-
cation. Some researchers [14, 36] have studied the verifica-
tion of Chinese signatures, but the datasets they used are not
publicly available. Currently, a Chinese signature dataset
that can be obtained is ICDAR 2011 (SigComp2011) [20].
However, the dataset has limited data, with only 1177 sig-
nature images and 20 different names for offline signature
verification. Unlike existing datasets, ours has 10,242 sig-
nature images with 500 different signed names.

2.5. Sketch-oriented deep learning

From another perspective, hand-written characters share
similarities with the free-hand sketch, which has been suc-
cessfully modeled using RNNs [10, 39]. Free-hand sketch
has a time-sequence nature [38]. It is a dynamic and tempo-
rally extended process. In the sketch classification and mod-
eling task, SketchMate [39], and Multi-graph transformer
[41] are designed as a two-branch CNN-RNN network and
a transformer to capture both geometric and temporal infor-
mation. A deep embedding model [40] encodes the static
and temporal pattern of sketch stroke to extract semantic
vectors as semantic knowledge for sketch retrieval and zero-
shot learning. In the multi-modal application, the sketch
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Figure 1. (a) Preparation of our data set. (b) The pipeline system of signature verification.

Table 1. Comparison of offline signature datasets.

Dataset Access Script IDs Samples Verification Restoration Detection

Tobacco800 [17] Public Western - 1,290 - - ✓
CEDAR [31] Public Western 55 2,624 ✓ - -
GPDS [7] Public Western 4,000 216,000 ✓ - -
BHSig260 [23] Public Bengali, Hindi 260 14,040 ✓ - -
SigComp2011 [20] Public Chinese 10 1177 ✓ - -
CSD [14] Exclusive Chinese 300 5,400 ✓ - -
Dataset in [36] Exclusive Chinese 749 29,000 ✓ - -
Ours Public Chinese 102 10,242 ✓ ✓ ✓

is demonstrated on video retrieval with zero-shot learning
[42].

The stroke information for handwriting recognition
shares similarities with a free-hand sketch. Multivariate
time series classification is applied in online handwriting
recognition. Joint online handwriting classification [22]
employs the cross-entropy loss in combination with dis-
tance and similarity losses to learning handwriting style and
stroke order information. Sketch2Vec [1] proposes a cross-
modal translation between image and vector space using
encoder-decoder architectures, which provides a powerful
representation for sketch and handwriting data.

3. The Dataset

We introduce the signature forgery detection dataset for
three tasks, including detection, restoration and verifica-
tion. The dataset consists of clean handwritten signatures,
synthesized noisy handwritten signatures, and synthesized
documents with handwritten signatures. More details are
demonstrated in the following subsections and Fig. 1.

Table 2. Statistic of signature detection task, including background
images (BG images), signatures (Sigs), documents (Docs), signa-
tures per document (Sigs / Doc).

Split BG Images Sigs Docs Sigs / Doc

Train set 1,412 6,593 8,472 14
Test set 354 1,648 2,124 15

Table 3. Statistic of signature restoration task.

Split Synthetic signature image

Train set 8,000
Test set 2,000

Our dataset is more valuable and useful. First, our
dataset is in Chinese and has a large amount of data. Fur-
thermore, our dataset provides a different setting that ad-
dresses different stages of developing practical signature
verification pipeline systems, including signature detection,
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Table 4. Statistic of signature verification task. The testing set
includes forged (f) and genuine (g) samples.

Split Number

Train set 1,480
Test set 8,120 (f) + 5,760 (g)

restoration, and verification. We also provide benchmark
experiments for the constructed dataset. Tab. 2, Tab. 3 and
Tab. 4 provide the descriptions of our dataset in different
tasks.

3.1. Data Acquisition

Signature acquisition. First, we use name generation soft-
ware to randomly generate and obtain 500 Chinese names.
To have a diverse distribution of names, we take into ac-
count the gender of the name, the distribution of the num-
ber of words and the probability of occurrence of the last
name. Then, to collect the volunteers’ signatures, we create
a form with 20 rows and 6 columns, with the first column
filling the generated printed names to guide the volunteers,
as shown on the top left of Fig. 1. Each form has a unique
file id and includes 100 cells that can be signed. We have
prepared a total of 83 forms. The names appear randomly
in all forms, and each name appears 4 times in all prepared
forms. Each form is distinct from the others, i.e., each name
is signed by 4 different volunteers, which increases the di-
versity of obtained signatures. After that, we create another
20 forms for skilled forgery. Suppose selected forms with
file id equal to id1, and we construct skilled forged signa-
tures by having volunteers forge the signatures on these 20
forms and set the file id of these forged forms as id1 + 100.
A total of 103 forms with a sample of 10,300 signatures are
collected. After excluding invalid signatures, we get 10,242
signatures. Finally, the signatures in the cells are cropped
into individual signature images and form a clean signature
dataset.

The obtained signature image is named in the following
format name-id-number.jpg, where “name” represents the
name signed by volunteer, “id” represents the file id, and
“number” represents the number of signatures. For exam-
ple, if the name ‘A’ is signed by four people, and then each
person will sign five times to get a total of 20 samples. If
we consider the name ‘A’ signed by each person as a class,
We obtained at least four different classes with five sam-
ples each class. If a signature image is named with a file
id greater than 100, e.g. id1 > 100, it means it is a skilled
forged one of the signature with file id id1 − 100.

We have collected two different forms of signatures
through the above work: random forgery and skilled
forgery. These two categories are shown in Fig. 1 and de-
fined as follows.

• Random Forgery. A pair of signatures, with the
same name with different ids, e.g., name-id1-# and
name-id2-# (as shown in Fig. 1).

• Skilled Forgery. A pair of signatures, with the same
name. And the difference between ids is 100, e.g.,
name-id1-# and name-(id1 + 100)-# (as shown in
Fig. 1).

We split obtained signatures into training and test sets to
be used later in the signature verification benchmark. The
train set and the test set are divided in different ways and
we ensure that the volunteers in the training and test sets
are disjointed, i.e., the volunteers who signed the test set
do not appear in the training set. For the training set, one
name is signed by different volunteers. We consider the
name signed by each person as a class. Each class has five
samples. Recall that every signature had been named in the
format of name-id-number.jpg. Thus, the class label is de-
fined by the name-id of each signature image. For the test
set, each sample consists of a pair of signatures with the
same name and a class label that shows whether they are
forged. We select signatures with 29 different file ids to
make a test set so that random forgeries and skilled forg-
eries are included in the set. We generate signature pairs
for the test set by combining all signatures and assign class
labels. The rest of the signatures are used to construct the
train set. The task of signature verification is to train the
feature extractor on the training set and evaluate the model
performance on the test set for given pairs of signatures.

Background document acquisition. We collect various
document background images to blend the signature into
the document background. We obtain background docu-
ment images from the XFUND dataset [43]. The XFUND
dataset is a multilingual form understanding dataset con-
taining 199 scanned pages, which can increase the diversity
of our dataset. We do not consider using those background
images with resolutions lower than 300dpi to improve the
robustness of the model and adapt to more complex docu-
ment environments. We use the images from the XFUND
dataset as a part of the background images. In addition, the
availability of scanned documents, such as public patents
and Chinese national industry standards, also provides an-
other important source of background document images.
Finally, we collect 1,766 background images to synthesize
the signature dataset with the noise and signature detection
dataset.

3.2. Data Synthesis

The signed documents are synthesized by blending the
collected background documents and clean signatures. The
synthesized data can be used for signature detection and
restoration tasks. First, the signature is cut out from the
collected form. Then, image enhancement technology is
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used for the cropped signature image. After that, Otsu’s
method, a binarization method, is applied to the signature
image to obtain the signature mask. Finally, some signa-
tures are placed completely randomly in the background to
simulate real signature scenarios and improve the robust-
ness of the model.

The location and number of signature placement and
background repetitions are considered, as shown in Fig. 1.
We randomly select 10 to 20 signatures and place them in
random locations of the background images. Each back-
ground image is used six times to increase the dataset size.
Experiments show that entirely random placement of signa-
tures in the background image achieves better results than
interfering with the placement position. We believe that this
is beneficial for the model robustness of the signature detec-
tion model.

Several image enhancements are adopted before com-
bining signatures with background images to improve the
authenticity of synthetic data. We scale signatures to ran-
dom sizes within specific ranges and rotate signatures to
mimic the uncertainty of signature size and angle. The sig-
nature size is set to 3% − 15% of the background image
size, and the signature is rotated left and right within 12◦.
The randomness of data augmentation operations such as
random scaling and random rotation obeys normal distribu-
tion. Moreover, we also perform color and brightness ad-
justments on the signature images and darken the signature
color. After adding the signatures with the backgrounds, the
synthetic document images with multiple signatures will be
used for signature detection. We crop the signatures that
do not overlap with other signatures from the document im-
ages, as shown in Fig. 1. Signatures without noise added
are not considered for signature restoration. We construct
pairs of signature images with and without the background
contents for the signature restoration benchmark.

4. Benchmark
The dataset includes three benchmarks, detection,

restoration, and verification. The selected evaluation meth-
ods are all strong baselines and representative methods in
the related fields. In addition, the stability and robustness
of the selected methods have been verified. Details for each
task are provided in the following subsections.

4.1. Detection

To illustrate the effect of our constructed dataset on
the signature detection task, we provide benchmark ex-
periments for signature detection. We follow the MS
COCO [19] dataset format for evaluation. We build the
benchmark of our dataset using the Open MMLab detection
toolbox [3], a unifying framework for object detection.

Evaluation metrics. We use the same evaluation metrics as

MS COCO Dataset, including average precision (AP) and
average recall (AR). We report AP with the IoU from 0.5 to
0.95. The APs at IoU = 0.50 and IoU = 0.75 are denoted
as AP50 and AP75, respectively. Considering the object
size, the APs for median objects (322 < area < 962) and
large objects (area > 962) are denoted as APmedian and
APlarge, respectively. Accordingly, we report AR with the
IoU from 0.5 to 0.95 and denote AR for median and large
objects as ARmedian and ARlarge.

Evaluated methods. Three representative methods of sig-
nature detection are used for evaluation, including Faster
R-CNN [26], YOLOv3 [25] and DETR [2], they repre-
sent the two-stage detector, one-stage detector, transformer-
based detector, respectively. Specifically, Faster R-CNN in-
troduces Region Proposal Network (RPN) to generate re-
gion proposals and uses Fast R-CNN [8] framework for de-
tection. Faster R-CNN merges RPN and Fast R-CNN by
sharing their convolutional features to generate region pro-
posals. YOLOv3 updates to YOLOv2 [24] by using fea-
ture pyramid networks for detecting objects across scales.
YOLOv3 also introduces Darknet-53 for feature extraction.
DETR treats object detection as a direct set prediction prob-
lem, which can be trained end-to-end with a set loss func-
tion that performs bipartite matching between predicted and
ground-truth objects. The architecture of DETR includes a
CNN backbone to extract features and a transformer [33]
architecture to make the final prediction.

Benchmark results. The detection results are reported in
Tab. 5. And two sample results for signature detection using
DETR are shown in Fig. 2 and Fig. 3. Comparing these
three models, Faster R-CNN outperforms other models be-
cause two-stage detectors usually outperform one-stage de-
tectors as two-stages allow the model to learn flexible region
proposals. As for DETR, transformer-based models usually
require more data to achieve better results, and our dataset
is limited considering the complexity of DETR. Despite dif-
ferent approaches, all these three models can achieve a pre-
cision of 0.990 when we set IoU=0.50, and the average re-
calls are all in a narrow range of 0.814 to 0.857, suggesting
that signature detection can be successfully done with the
state-of-the-art object detection methods.

4.2. Restoration

Evaluation metrics. We use four metrics, including Peak
signal-to-noise ratio (PSNR), Structural Similarity Index
(SSIM), Fréchet Inception Distance (FID), and Learned
Perceptual Image Patch Similarity (LPIPS) for signature
restoration evaluation.

PSNR provides an evaluation at the pixel level and is
based on the error between corresponding pixels. PSNR
measures the similarity between the original image and the
processed image. The larger the PSNR value, the less dis-
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Table 5. Results for signature detection.

Method AP AP50 AP75 APmedian APlarge AR ARmedian ARlarge

Faster R-CNN 0.819 0.990 0.954 0.720 0.823 0.857 0.756 0.860
YOLOv3 0.784 0.990 0.947 0.688 0.801 0.847 0.747 0.849
DETR 0.765 0.990 0.930 0.612 0.768 0.814 0.686 0.818

Figure 2. A tabular form sample for synthetic signature detection.

tortion and the higher the resemblance of the two images.
Following is the definition of PSNR. We use MAX to de-
note the maximum image color value. If the size of the
evaluation image is M × N , PSNR would be computed as
follow:

PSNR = 10 log

(
MAX2

MSE

)
, (1)

where

MSE =

∑M
x=1

∑N
y=1(I(x, y)−G(x, y))2

MN
, (2)

where I is the ground-truth image and G is the generated
image.

SSIM [35] is used to measure the closeness of two im-
ages and estimate image quality degradation. To calculate
SSIM, we need a reference image and an image processed

Figure 3. A technology patent sample for synthetic signature de-
tection.

by the corresponding image. SSIM uses three contrast mod-
ules to evaluate the images: brightness, contrast, and struc-
ture. Specifically, the mean is used to estimate brightness,
the standard deviation as an estimate of contrast, and the
covariance as a measure of structural similarity.

FID [13] is also a measure of similarity between two im-
ages. By loading the pre-trained Inception network and us-
ing the activation function output value of the last pooling
layer as the feature vector, the distance between the ground-
truth image and the generated image at the feature level can
be calculated as FID. A lower FID means that the two dis-
tributions are close.

LPIPS [45] is used to estimate the difference between
two images. LPIPS also requires a pre-trained network to
extract features and a linear layer on top of the classification
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Table 6. Results for signature restoration.

Method PSNR SSIM FID LPIPS

Autoencoder 22.70 0.9011 151.82 0.1018
Pix2pix 34.47 0.9765 5.68 0.0344
CycleGAN 31.95 0.9820 5.25 0.0259

network. The distance between features is calculated by
learning the reverse mapping of the generated image to the
ground-truth image. The lower the value of LPIPS, the more
similar the two images are.

Evaluated methods. We evaluate the following representa-
tive signature restoration methods, including Denoising au-
toencoder [34], Pix2pix [16], and CycleGAN [46]. Specif-
ically, the Denoising autoencoder introduces a straightfor-
ward training principle on top of the autoencoder, which is
based on the goal of revoking a corruption process. Pix2pix
takes conditional adversarial networks [21] as the approach
for image-to-image translation problems, which can learn
the mapping from input to output. CycleGAN can achieve
style transfer from the source domain to the target domain
without establishing a one-to-one mapping between train-
ing data, employing the cycle-consistency loss for regular-
ization.

Benchmark results. The results of the enumerated meth-
ods mentioned above are given in Tab. 6. It could be ob-
served that CycleGAN and Pix2pix get better performance
than the Denoising autoencoder. The reason is that Cy-
cleGAN and Pix2pix utilize the mechanism of adversarial
neural networks. Pix2pix achieves better performance in
PSNR but worse in SSIM, FID and LPIPS, suggesting that
Pix2pix’s goal is to get closer to the target image, but it
ignores human vision to a certain extent. Some sample re-
sults for signature restoration are shown in Fig. 4, which
are generated to assess qualitative performance. We ob-
serve that the three models have obtained relatively good
results. In particular, Pix2pix and CycleGAN have success-
fully removed the background noise artifact in the generated
images.

4.3. Verification

In this section, we use four embedding methods for sig-
nature verification on our dataset. After getting the embed-
dings of two signatures, we compare two signatures by cal-
culating the cosine similarity of two embeddings to estimate
whether the signatures are signed by the same person.

Evaluation metrics. We use three metrics for evaluation,
including the Accuracy (Acc), Equal Error Rate (EER), and
True Acceptance Rate (TAR) when the False Acceptance
Rate (FAR) is equal to 1e−3. These metrics are defined as

follows.

FAR =
Number of false accepted

Number of forged
(3)

FPR =
Number of false rejected

Number of genuine
(4)

TAR = 1− FPR (5)

Evaluated methods. We evaluate ResNet50-IR-SE [4], In-
ceptionResNet [32], ResNeXt50 [37] and VGG16 [29] for
embedding networks. Specifically, ResNet50-IR-SE is in-
troduced in the Arcface [4], which is based on the orig-
inal ResNet50 with improved residual block and squeeze
and excitation block [15]. InceptionResNet [32] combines
Inception module and residual blocks and it is used for
face verification in [27]. ResNeXt50 is a modularized net-
work architecture for image classification presented by Xie
et al. [37]. It aggregates a set of transformations with the
same topology, which improves performance by maintain-
ing the same complexity as the original ResNet50. VGG16
is a widespread and classic network for extracting image
features, consisting of 13 convolutional layers and 3 fully
connected layers, showing the benefits of deep networks.

Training loss functions. We adopt two commonly used
loss functions, i.e., Softmax loss and ArcFace loss, for
learning the embedding networks. Specifically, the Softmax
loss is defined as follows,

L = − 1

N

N∑
i

log
exi∑
j e

xj
(6)

where xi stands for the predicted logits with index i. Ar-
cFace Loss is an additive angular margin loss, defined as
follows,

L = − 1

N

N∑
i

log
es(cos(m1θyi+m2−m3))

es(cos(m1θyi+m2
−m3)) +

∑n
j=1,j ̸=yi

escosθj

(7)
where m1,m2,m3, s are hyper-parameters, and cosθi
stands for the predicted logits with index i.

Benchmark results. In this experiment, we employ the
test set in Section 3.1. We vary the threshold and record
FAR, FRR and Accuracy every turn. The results are shown
in Tab. 7. ResNet50-IR-SE recalibrates channel-wise fea-
ture responses by explicitly modeling interdependencies
between channels and achieves the best TAR. Combining
the Inception architecture with residual connections, Incep-
tionResnet shows the best performance on EER and ACC.
ResNeXt50 uses group convolution and performs better
than VGG16. ResNet50-IR-SE outperforms other models
on TAR When FAR is equal to 1e−3, no matter that the

5169



Pix2pix CycleGANAutoencoderGround-truthInput

(a)

(b)

(c)

Pix2pix CycleGANAutoencoderGround-truthInput

(d)

(e)

(f)

Figure 4. Samples of signature restoration.

Table 7. Results for signature verification

Networks Loss EER TAR ACC

ResNet50-IR-SE Softmax 0.092 0.304 0.909
InceptionResnet Softmax 0.066 0.281 0.936
ResNeXt50 Softmax 0.152 0.043 0.855
VGG16 Softmax 0.245 0.029 0.763

ResNet50-IR-SE ArcFace 0.089 0.328 0.914
InceptionResnet ArcFace 0.071 0.169 0.931
ResNeXt50 ArcFace 0.117 0.081 0.884
VGG16 ArcFace 0.275 0.019 0.732
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Figure 5. ROC curves of four methods with Softmax loss function.

Softmax loss function or ArcFace loss function is used.
However, InceptionResnet has the lowest EER and accu-
racy with the Softmax loss function. Generally, ResNet50-
IR-SE with ArcFace loss outperforms others among all five
backbones, and VGG16 performs poorly on all settings. In-
ceptionResnet is almost up to the performance of ResNet50-
IR-SE. ResNeXt50 gains good performance on the test set.

From Figs. 5 and 6, we see clearly ResNet50-IR-SE as
backbone outperforms other backbones with ArcFace loss
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Figure 6. ROC curves of four methods with ArcFace loss function.

function. However, with the Softmax loss function, the In-
ceptionResnet backbone achieves better performance than
ResNet50-IR-SE. When the figure’s x-axis is scaled by log,
we know all four backbone networks get low TAR when
the FAR is low. Until the FAR reaches 1% the TAR re-
mains at a low level. ResNet50-IR-SE, InceptionResnet
and ResNeXt50’s performance is optimized after using the
ArcFace loss function, but VGG16 performs worse on Ar-
caFace loss.

5. Discussion

In this paper, we present a novel Chinese document sig-
nature forgery detection dataset with three tasks, including
signature detection, restoration and verification. We state
the dataset construction and compare the proposed dataset
with the existing signature verification datasets. We eval-
uate several strong baseline methods on the dataset for the
three tasks, showing the capability of these representative
methods. We hope the proposed new benchmark can facili-
tate future research on Chinese signature forgery detection.
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