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Abstract

The subtask of Human Action Recognition (AR) in the
dark is gaining a lot of traction nowadays, which takes a
significant place in the field of computer vision. The imple-
mentation of its application includes self-driving at night,
human-pose estimation, night surveillance, etc. Currently,
solutions such as DLN for AR have emerged. However,
due to the poor accuracy even when leveraging on large
amounts of datasets and complex architectures, the devel-
opment of AR in the dark has been slow to progress. In
this paper, we propose a novel and straightforward method:
Z-Domain Entropy Adaptable Flex. This constructs a neu-
ral network architecture R(2+1)D, including (i) a self-
attention mechanism, which combines and extracts corre-
sponding and complementary features from the dual path-
ways; (ii) Zero-DCE low light image enhancement, which
improves enhanced quality; and (iii) FlexMatch method,
which can generates the pseudo-labels flexibly. With the
help of pseudo-labels from FlexMatch, our proposed Z-
DEAF method facilitates the process of gaining desired
classification boundaries. This works by repeating Expand-
ing Entropy and Shrinking Entropy. It aims to solve the
problem of unclear classification boundaries between the
categories. Our model obtains superior performance in ex-
periments, and achieves state-of-the-art results on ARID.

1. Introduction

Action Recognition under dark conditions has gained
widespread attention and more practical applications in real
life such as self-driving in dim environment [4]. Neverthe-
less, there is still a lack of relevant and effective methods

for Semi-Supervised Action Recognition in the dark (SS-
ARID), because it requires efficiency and high accuracy.
There are two main reasons for this: (i) inadequately labeled
datasets in the dark which can be costly if it needs manual
annotation; (ii) improper and unreasonable enhancement
methods which could likely cause corruption of the datasets.
Due to the reasons above, Semi-Supervised AR in the dark
has gradually taken a place in solving the model degrada-
tion caused by the adverse visual condition [16, 27, 34].

As mentioned, the main question is how do we use a
small amount of labeled data, plus a large amount of un-
labeled data for our training. The strategy for combining
two types of data becomes the key to solving the problem.
Since the two types of data perform disharmony of features
in domain, we can take the task as unsupervised. In unsu-
pervised learning, the lack of category information leads to
poor features, that is, poor extraction performance. Thanks
to the R(2+1)D method [32] in the 3D-CNN model, we suc-
ceeded in extracting and getting abundant features to ensure
the final classification.

Recently, the Semi-supervised Domain Adaptation via
Minimax Entropy [8,9,23] (MME). It has been proposed to
adversely optimize an adaptive few-shot model [2, 3]. The
adaptation is achieved by alternately maximizing the con-
ditional entropy of unlabeled target data with respect to the
classifier and minimizing it with respect to the feature ex-
tractor.

Based on the MME [23] method, we proposed a novel
and straightforward method, named Z-Domain Entropy
Adaptable Flex for SS-ARID (Fig.1). It combines the con-
cept of the K-means clustering architecture [21]. This
model utilizes normalization to screen out the significant
features from the feature extractor so that we can focus on

14259



Figure 1. The architecture of Z-Domain Entropy Adaptable Flex method. The input is a sequence of dark frames (a). By applying Zero-
DCE low light image enhancement method, we gain another input for the domain adaptation section (b). Then through multiple trainings
and iterations that repeating the process of Expanding Entropy and Shrinking Entropy yields desired classification boundaries for the task
(c).

enhancing the suitable feature information. Meanwhile, this
can further reduce divergence of the data so that the subse-
quent entropy process can distinguish the boundaries be-
tween different classes.

To sum up, our main work here is to (i) extend the MME
[23] method from general datasets to dark datasets; and (ii)
solve the problem that MME [23] does not perform well un-
der semi-supervised conditions. On one hand, we combine
the FlexMatch [39] method with the traditional MME [23]
method to generate pseudo-labels in order to improve the
domain adaptable performance. On the other hand, we also
use the Zero-DCE enhancement [11] method to replace tra-
ditional enhancement methods [12,30,38,40] to better pro-
tect dark data from too much damage. From the results
of our ablation experiments, we found that Z-DEAF has
proved to improve the performance which has reflected in
the accuracy of the classification.

2. Related Works
R(2+1)D Based 3D ConvNet Architecture 3D ConvNet
[13] is developed from 2D ConvNet by rising dimension.
2D convolution applied on an image will output an image,
2D convolution applied on multiple images also results in
an image. Hence, 2D ConvNets lose temporal information
of the input signal right after every convolution operation.
Only 3D convolution preserves the temporal information of
the input signals resulting in an output volume.

Since the task is based on video action recognition which
touch on temporal dimension, we believe that 3D ConvNet

is well-suited for spatiotemporal feature extraction. In 3D
convolution, filters are designed in a 3D fashion, where
channels and temporal information are represented in dif-
ferent dimensions. Compared to 2D ConvNet, 3D ConvNet
has the ability to model temporal information better owing
to 3D convolution and 3D pooling operations. They are per-
formed spatio-temporally while in 2D ConvNets they are
done only spatially [31].

To cut down complexity of the network and gain a bet-
ter accuracy on feature extraction, a ResNet version of 3D
convolution, the R(2+1)D convolutional neural network is
introduced in [32]. It is a network for action recognition
that employs R(2+1)D convolutions in a ResNet inspired
architecture. The use of these convolutions over regular 3D
Convolutions reduces computational complexity, prevents
overfitting, and introduces more non-linearities that allow
for a better functional relationship to be modeled [31].

Domain Adaptation Concept Deep convolutional neu-
ral networks have significantly improved image classifica-
tion accuracy with the help of large quantities of labeled
training data, but often generalize poorly to new domains.
Recent transfer learning method [1, 17, 29], in which do-
main adaptation (DA) methods [10, 18, 19, 24, 33, 35, 36]
improve generalization on unlabeled target data by aligning
distributions. And it has been applied to various applica-
tions such as image classification [22], semantic segmen-
tation [26], and object detection [7, 25]. However, it fails
to learn discriminative class boundaries on target domains.
We show that in the Semi-Supervised Domain Adaptation
(SSDA) setting where a few target labels are available, such
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methods often do not improve performance relative to just
training on labeled source and target examples and can even
make it worse [10, 19, 24].

We propose a novel approach for SSDA that overcomes
the limitations of previous methods and significantly im-
proves the accuracy of deep classifiers on novel domains
with only a few labels per class.

3. Method

Our method is based on K-means clustering algorithm
[21] and inspired by the essence of concept of entropy. By
optimizing standard cross-entropy loss for training feature
extractor and classifier for classification, reduces the dis-
tribution gap while learning classification boundaries for
the task. The classifier (top layer) predicts a K-way class
probability vector by computing cosine similarity between
K class-specific weight vectors and the output of a feature
extractor (lower layers), followed by a softmax. Each class
weight vector is defined as the “base point”, that can be re-
garded as a representative point of that class. Through mul-
tiple trainings and iterations that repeating the process of
Expanding Entropy and Shrinking Entropy yields desired
classification boundaries for the task.

3.1. K-means clustering architecture

K-means algorithm is an unsupervised clustering algo-
rithm. It is widely used due to good clustering effect and
easy to implement. If the category of the data is not known
before classification, like the unlabeled data in this task, we
can use K-means to classify the data. The idea of k-means
algorithm is intuitive. For a given sample set, it is divided
into K clusters according to the distance between samples.
Make the base points in the cluster as close together as pos-
sible. Meanwhile make the gap between clusters as large
as possible. Through numerous iterations and training, it
can effectively classify different types of data. If the gap
between clusters is larger, the classification boundary be-
tween the categories will be clearer and the classification
will be more accurate.

If expressed by mathematical expression, suppose the
cluster (C) is divided into C = {C1, C2, . . . Ck}, the in-
put is the sample set: D = {x1, x2, . . . xm}, our goal is to
minimize the squared error (E), which can be expressed as:

E =

k∑
i=1

∑
x∈Ci

∥x− µi∥22 (1)

Where µi is the mean vector of cluster Ci , also called
the mass center, can be expressed as:

Figure 2. Notation Sample

Figure 3. Initial Data Set Figure 4. Initial Mass Center

Figure 5. Update Category Figure 6. Update Mass Center

µi =
1

|Ci|
∑
x∈Ci

x (2)

Since it is not easy to directly calculate the minimum
value of the above formula, we can consider using heuristic
iterative method. The heuristic method adopted by K-means
is very simple, which can be vividly described by the follow
group of figures.

Fig.3 shows the initial data set, assuming k=2. In Fig.4,
we randomly chose 2 mass centers correspond to the cat-
egory, the red cross and blue cross in this picture. And
then respectively measure the distance between each of the
points in the sample and the mass centers. Then the cat-
egory of the mass center with the smallest distance to the
sample is used as the category of this sample, as shown in
Fig.5. After calculating the distance between the samples
and red cross and blue cross, we obtain the categories of all
sample points after the first iteration. At this point, we re-
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calculate 2 new mass centers of the points currently marked
red and blue respectively. The positions of the new red cross
and blue cross have changed. Then repeat the process that
we did in Fig.5, that is, marking the category of all points
as the nearest cross and finding the new mass center. Iterate
until the result of this step is the same as that of the previous
step. The two categories we end up with are shown in Fig.6.

3.2. Expanding Entropy

In semi-supervised domain adaptation, we are given
source images and the corresponding labels in the source
domain Dl =

{(
xl
i, y

l
i

)}ml

i=1
. We also given a number

of unlabeled target images in the target domainz Du =
{(xu

i )}
mu

i=1. By training the model on Dl, we can evaluate
the model on Du.

We apply a R(2+1)D method of 3D convolutional neural
network and perform ℓ2 normalization on the output of the
network, which is the extracted feature. And then the nor-
malized feature vector is used as an input to the classifier,
which consists of weight vectors W = [w1, w2, . . . , wK ],
where K represents the number of classes. F (x)

∥F (x)∥ serve

as the input of classifier and outputs 1
T

WTF (x)
∥F (x)∥ . Then the

output is read into a softmax layer to attain the probabilis-
tic output P ∈ Rn, which can be expressed as: P (x) =

S
(

1
T

WTF (x)
∥F (x)∥

)
, where S indicates a softmax function. In

order to classify examples accurately, the direction of a
weight vector should be representative to the normalized
features of the corresponding class. In this respect, the
weight vectors can be regarded as the representative “base
points” for each class, likewise the mass centers purposed
in the K-mean clustering algorithm for each class.

Figure 7. Graphic Sample

Figure 8. Established Base Point

Figure 9. Expanding Entropy

The “base points” are parameterized by the weight vector
of the last linear layer. As Fig.8 shows, the first “base point”
will be near source distributions because source labels are
dominant. Then, we propose to estimate the position of
next “base point” by moving each wi toward target features
using unlabeled data in the target domain. By operating
entropy expanding with respect to the “base point” estab-
lished by the previous iteration, and implementing multiple
iterations until we generate a relatively stable and invariant
“base point” for each class. This step we call it Expanding
Entropy, and it can be graphically described as “base point”
moves from near source domain to target domain (Fig.9),
that is, from order to disorder, which is the essence of en-
tropy. To achieve this, we increase the entropy measured
by the similarity between W and unlabeled target features.
Entropy is calculated as follows,

H = −E(x,y)∈Du

K∑
i=1

p(y = i | x) log2 p(y = i | x) (3)

Where K is the number of classes and p(y = i | x)
represents the probability of prediction to class i, namely i

th dimension of P (x) = S
(

1
T

WTF (x)
∥F (x)∥

)
. To have higher

entropy, that is, to have uniform output probability, each wi

should be similar to all target features. Hence, expanding
the entropy advance the model to generate the next “base
point” for each class.

3.3. Shrinking Entropy

In order to obtain discernible and clear classification
boundaries, we need to cluster unlabeled target features
around the “base points”. We propose to decrease the en-
tropy on unlabeled target examples by the feature extractor.
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Figure 10. Shrinking Entropy

Figure 11. Desire Classification Boundary

As Fig.10 shows, this step is like the reverse of the Ex-
panding Entropy, we call it Shrinking Entropy. We train fea-
ture extractor and classifier to classify labeled source cor-
rectly and perform a Shrinking Entropy process to cluster
unlabeled features into the source domain, that is, aggre-
gating unlabeled features from a divergent state into a more
orderly state, with a closer distance to the source domain,
and they should be assigned to one of the “base point” to
decrease the entropy, resulting in the desired category clas-
sification. We use a standard cross-entropy loss Lce to train
feature extractor and classifier for classification:

L = E(x,y)∈Dl
Lce

[
S
(
1

T

WTF (x)

∥F (x)∥

)
, y

]
(4)

Through multiple trainings and iterations that repeat-
ing the process of Expanding Entropy and Shrinking En-
tropy yields desired classification boundaries for the task
(Fig.11).

3.4. FlexMatch

However, due to the lack of sufficient labeled data for
this task, the direct training effect of the above method is
not ideal, which would affect the shift of “base point” and
the final position it will get to. And it would be great if there
goes an effective method that could increase the number of
the labeled data, to be more specific, by this method, we
can convert our trained unlabeled data into trained pseudo-
labeled data and consider pseudo-labeled data as labeled
data, thus we adopt the method named FlexMatch which
is based on FixMatch improvement [39].

The proposed FlexMatch introduced a concept named
Curriculum Pseudo Labeling (CPL) [6] and it has been im-
proved that it can be easily adapted to some of the SSL al-
gorithms and remarkably improve their performances [39].
To be more specific, the method includes two main ideas,
(i) Lower the threshold value of the classes with low classi-
fication accuracy and give these classes more opportunities
to be learnt for improving their value of Highest-Confident.
(ii) Maintain threshold for classes that already rank high ac-
curate to ensure high accuracy.

To this end, calculating evaluation accuracies for each
class and use them to scale the threshold, as:

Tt(c) = at(c) · τ (5)

Where Tt (c) is the flexible threshold for class c at time
step t and at (c) is the corresponding evaluation accuracy.
When the threshold is high, the number of samples whose
predictions fall into this class and above the threshold can
reflect the learning effect of a class. Namely, the class with
fewer samples having their prediction confidence reach the
threshold is considered to have a greater learning difficulty
or a worse learning status, formulated as:

Lu,t =
1

µB

µB∑
b=1

1 (max (qb) >

Tt (argmax (qb)H (q̂b,Pm (y | Ω (ub)))
(6)

Where σt (c) reflects the learning effect of class c at time
step t. Pm,t (y|un) is the model’s prediction for unlabeled
data un at time step t, and N is the total number of unla-
beled data. When the unlabeled dataset is balanced, larger
σt (c) indicates a better estimated learning effect. By apply-
ing the following normalization to σt (c) to make its range
between 0 to 1, it can then be used to scale the fixed thresh-
old τ :

βt(c) =
σt(c)

maxc σt
(7)

Tc(c) = βt(c) · τ (8)

The best-learned class has its βt (c) equal to 1, causing
its flexible threshold equal to τ . As learning proceeds, the
threshold of a well-learned class is raised higher to selec-
tively pick up higher-quality samples. Eventually, when all
classes have reached reliable accuracies, the thresholds will
all approach τ . This new threshold is used for calculating
the unsupervised loss in FlexMatch, which can be formu-
lated as:

4263



Lu,t =
1

µB

µB∑
b=1

1 (max (qb >

Tt (argmax (qb H (q̂b,Pm (y | Ω (ub)))

(9)

Where qb = Pm (y | ω (ub)). The flexible thresholds
are updated at each iteration. Finally, we can formulate the
loss in FlexMatch as the weighted combination (by λ) of
supervised and unsupervised loss:

Lt = Ls + λLu,t (10)

Where Ls is the supervised loss on labeled data:

Ls =
1

B

B∑
b=1

H (yb,Pm (y | ω (ub))) (11)

Practically, every time the prediction confidence of an
unlabeled data un is above the fixed threshold τ , the data,
and its predicted class are marked and will be used for cal-
culating βt (c) at the next time step. So far, we have suc-
cessfully converted our unlabeled data into trained pseudo-
labeled data and consider pseudo-labeled data as labeled
data.

4. Experiments
4.1. Experimental Details

In this section, we conduct experiments on ARID
datasets which ranks the first benchmark datasets for Action
Recognition in the dark [37]. To be more specific, we take
the ARID datasets as unlabeled target domain, while we
takes the HMDB51 [15], UCF101 [28], Kinetics-600 [5,14]
and Moments in Time datasets [20] as labeled source do-
main. As a comparison, the former contains 3088 dark
videos and the latter contains 2625 clear videos. All the
videos are divided into 11 categories: drink, jump, pick,
pour, push, run, sit, stand, turn, walk and wave. (The goal
of dataset is to achieve satisfactory accuracy on a set of 330
dark videos.) The goal of our experiment is to improve the
accuracy on a set of 330 dark videos. Meanwhile, our strat-
egy is using the FixMatch method to generate pseudo-labels
by a certain value of step, in order to change the distribu-
tion of data over a domain. As an improvement strategy, in
changing the way of generating the pseudo-labels, we take
FlexMatch method for better adaptable domain, and create
the pseudo-labels with the same way and the same value of
step. We make comparison for top-1 results of various situa-
tions through ablation experiments, and take 0.6 for thresh-
old as the optimal scheme under FlexMarch strategy. It is
well noted that the unlabeled samples from our target source
do not contain our test dataset.

Method Convert Ratio Top-1
FixMatch 30% 41.21%
FlexMatch 30% 45.75%
FlexMatch 60% 47.27%
FixMatch 90% 46.67%
FlexMatch 90% 49.39%

Table 1. The Convert Ratio and Top-1 accuracy results of a few
competitive models and ours

4.2 Results and Comparisons

As a result of different scales between videos, we first
zoom out the video in the fomat of (-1,256). Extract 32
frames respectively from each video. Then we clip and
normalize these frames uniformly. After preprocessing, we
process the video into a series of frames of size 3 × 32 × 112
× 112. As for the feature extractor, we adopt R(2+1)D-34
which has pretrained on IG65M to accelerate our training.
In the stage of feature extraction, we would obtain the out-
put feature of size 512 × 4 × 7 × 7. Noted that we classify
the feature into unlabel strong and unlabel weak, and we
enhance the unlabel strong by the method of Zero-DCE
while we do nothing to unlabel weak.

The backbone of classification network is based on our
proposed Z-DEAF method for its training, which takes used
of linear network as our classifier. From Table.1, it is worth
noting that our ablation experiment is to adjust the number
of the pseudo-labels by the setting of the threshold value in
the method of FlexMatch, referring to the accuracy of about
50% when we set the threshold to 0.9 with FixMatch.

Our model is optimized by AdamW optimizer, letting
learning rate be 1 × 10−3. The number of training epochs
are 300 to make sure well-train as possible. To improve
the model generality, a parameter α = 1 × 10−3 is set in
weight-decay. For efficiency, the batch size of labeled and
unlabeled is 64 and 75 for each considering the actual situ-
ation.

5. Conclude
In conclusion, we propose a new method for Semi-

Supervised Action Recognition in the Dark, named Z-
DEAF. It aims to solve the problem of lacking labeled
datasets in dimmed environments, and improve adaptable
problem of domain adaptation. In order to achieve these
goals, it well takes advantage of semi-supervised learning
by integrating methods such as Zero-DCE enhancement,
MME method and FlexMatch method. The method will
result in avoiding any unnecessary extra work, as well as
gain better accuracy on the ARID dataset. Especially, we
also add self-attention mechanism into the feature extractor
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in order to percept the required information of features. We
have conducted ablation experiments on the ARID dataset,
and the experiments indicate our proposed method is feasi-
ble and powerful.
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