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Figure 8. Effect of using Amodal Regressor: Reduction in missing
boxes corresponding to rider occlusions.

significantly improves the F-score by 30.83% compared to
Chairat et al. [4] leading to precision, recall, and F-score of
99.01%, 95.23% and 97.08% as shown in the last two rows
of Tab. 2.

Qualitative results are shown in Fig. 6, Fig. 7, Fig. 1
(c) and Fig. 3 (g). Fig. 6 shows violations identified by
our model in complex scenarios at different scales and ori-
entations. The scenarios include triple-riding and helmet
violations with (a) rider occlusions and (b) head occlusions.
Fig. 1 (c) and (d) also present qualitative results on both
types of violations in the low light scenes. While analyzing
the failure cases, we observe that our model sometimes fails
in instances where (i) riders have non-distinguishable back-
ground as shown in Fig. 7 (a), (b) and (d), and (ii) heads
with caps and non-distinguishable backgrounds, as shown
in Fig. 7 (b) (c) and (e). We present more results in the
demo video available on the github page.

5.2. Ablation Studies

Data Pre-processing: As discussed in Sec. 3, we pre-
process the IDD subset we use for training our model to in-
clude occlusions. More precisely, we introduced an amodal
regressor that predicts a bounding box for an occluded
rider using annotated helmet/no-helmet box (for the rider)
as input. As shown in Fig. 8, the percentage of missing
rider boxes is significantly reduced by using the proposed
methodology. It is important to note that i) the amodal re-
gressor detects only one rider box for each helmet box, and
ii) we keep the threshold for IOU between predicted and la-
beled rider boxes low and avoid all the false positives. We
also analyze the effect of our pre-processing on the triple-
riding violations task in Fig. 9. We use a generic YOLOv4
model and trapezium boxes to associate the motorcycle with
its riders for the analysis. Correcting the rider boxes has led
to an increase in precision. False negatives or missing rid-
ers due to occlusion are also reduced, leading to improved
recall. Overall, as shown in Fig. 9, we obtain 7% and 10%
gains in mAP and F-scores respectively due to the proposed
data pre-processing techniques.

Curriculum Learning: We utilize Curriculum Learning
(CL) for training our object detector as discussed in Sec. 4.1
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Figure 9. Detection Results: Effect of using proposed data pre-
processing and curriculum learning.

and experiment with the class orders mentioned in the x-
axis of Fig. 9. We find that training first on the motorcy-
cle and then on the rider class (M+R) provides us the best
results. A significant gain in recall compared to non-CL
methods demonstrates the capability of the CL-based ap-
proach to robustly handle false negatives which arise due to
overlapping predictions of the motorcycle and rider boxes.

6. Conclusion

This paper proposed a novel architecture capable of de-
tecting, tracking, and counting triple-riding and helmet vi-
olations on crowded Asian streets using a camera mounted
on a vehicle. Our approach jointly tackles both the viola-
tions. The proposed framework outperforms existing viola-
tion approaches because of its capability to handle rider oc-
clusions, false negatives, and false-positive rides from other
motorcycles in crowded scenarios. We demonstrate the ef-
fectiveness of using curriculum learning for motorcycle vi-
olations and trapezium bounding boxes instead of conven-
tional rectangular boxes. Our work lays the foundation for
utilizing such systems for increased road safety. It can be
used for surveillance in any corner of the city without any
considerable cost of a static camera network. In the future,
we wish to explore the possibility of deploying our system
to a distributed GPU setup for city-wide surveillance.
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