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Abstract

In many Asian countries with unconstrained road traf-
fic conditions, driving violations such as not wearing hel-
mets and triple-riding are a significant source of fatalities
involving motorcycles. Identifying and penalizing such rid-
ers is vital in curbing road accidents and improving citi-
zens’ safety. With this motivation, we propose an approach
for detecting, tracking, and counting motorcycle riding vi-
olations in videos taken from a vehicle-mounted dashboard
camera. We employ a curriculum learning-based object de-
tector to better tackle challenging scenarios such as oc-
clusions. We introduce a novel trapezium-shaped object
boundary representation to increase robustness and tackle
the rider-motorcycle association. We also introduce an
amodal regressor that generates bounding boxes for the oc-
cluded riders. Experimental results on a large-scale uncon-
strained driving dataset demonstrate the superiority of our
approach compared to existing approaches and other abla-
tive variants.

1. Introduction

Automated road surveillance has become increasingly
crucial as road crashes have become the 8th leading cause
of death worldwide. A World Health Organization study on
road safety [18, 25] claims that violations lead to 1.35 mil-
lion fatalities and affect 50 million people yearly. Another
recent report by World Bank [2] mentions that more than
50% of road fatalities involve two-wheeler vehicles, also
showing that ‘no helmet’ and triple-riding (more than two
riders) violations are common causes. Studies carried out
in Asian countries also account for two-wheeler vehicles
among the significant share for road fatalities [19, 25, 31].
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Figure 1. (a) Frame level rider and motorcycle predictions from
our curriculum learning-based detector, (b) Outputs from violation
detection and counting module, (c) Violation detections and counts
overlaid on the frame; triple-riding and helmet violations in orange
trapezium (note rider/head occlusions) and red boxes. Refer Fig. 2
for remaining color schemes.

Often, static cameras may not be present on the majority of
the streets. Installing cameras everywhere may not be an
economically viable and sustainable solution. Therefore,
we adopt an approach that operates on videos from a dash-
board camera mounted within a police vehicle.

Existing methods for triple-riding violations [15, 21] in-
volve heuristic rules applied to outputs of rider detectors
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and show qualitative results for a few samples. In addition,
these methods are not robust to occlusions and crowded
scenes. In contrast, we propose a novel trapezium repre-
sentation for identifying triple riding violations. The repre-
sentation largely reduces false positives and is robust as it
does not require any heuristic rules. For helmet violations,
a majority of the existing works [4, 6, 11, 22, 23] perform
classification over upper portions of predicted riders. Due
to the unavailability of context in the Regions Of Interest
(ROIs), such works are not robust in crowded road scenar-
ios. Our proposed technique performs well even in crowded
scenarios, as we use the ROIs of motorcycle-driving in-
stances containing sufficient context for helmet/no-helmet
detector to provide accurate results. As an integral part of
our pipeline, we use a curriculum learning-based detector
to predict motorcycle and rider boxes to overcome inter-
class confusion due to overlapping regions among the two
classes. Recent methods in curriculum learning mainly fo-
cus on object classification [9, 16, 29] with very few works
on detection [24, 28] which involve handling intra-class
scale variations or weakly and semi-supervised training.

To the best of our knowledge, no existing solution jointly
tackles helmet and triple-riding violations for crowded
scenes and provides robustness in occluded rider scenarios.
Fig. 1 shows outputs of various components of the proposed
architecture wherein we train a curriculum learning-based
model to predict motorcycles and riders over the video
frame followed by a violation detection and counting mod-
ule. Our contributions in this paper are:

1. A novel dataset pre-processing pipeline involving an
amodal regressor to generate boundary representations
even for occluded riders.

2. An innovative trapezium-shaped box regressor for as-
sociating a motorcycle with its corresponding riders.

3. A curriculum learning-based architecture to jointly de-
tect, track and count triple-riding and helmet violations
on unconstrained road scenes.

2. Related Works
Triple-riding Violations: There are very few existing
methods in the space of triple-riding violations. The method
proposed by [15] detects violation on the lower portion of
the motorcycle, is not robust to false positives as no count-
ing algorithm is involved, and all the images used for quali-
tative analysis have similar camera angles and lighting con-
ditions. The work by [21] focuses on using an association
algorithm based on Euclidean distance after detecting mo-
torcycle and rider boxes to count the number of riders on a
motorcycle. It fails in fairly crowded road scenarios and
lacks qualitative analysis on a large-scale dataset. How-
ever, our proposed approach based on data pre-processing

to handle occlusions and trapezium-shaped bounding boxes
can robustly detect and track triple-riding violations in each
video frame.
Helmet Violations: Existing works on helmet violations
by [4, 6, 11, 22, 23] classify the ROIs generated from the
upper portion of the detected riders. Such approaches are
not robust to false negatives and false positives in the form
of truncated heads in the cropped ROIs and riders of other
motorcycles, respectively. The work by [27] uses conven-
tional techniques utilizing hand-engineered features such
as scale-invariant feature transform, histogram of gradients
etc. [5, 7, 8, 14] do not perform well on large-scale uncon-
strained and crowded road scenarios. Works of [12] focus
on detecting helmet violations directly from complete scene
images. Such an approach leads to more false negatives
and cannot detect violations for riders farther away from
the camera. Apart from this, work by [32] requires fore-
ground segmentation as a step before detecting helmets/no-
helmets. We obtain robust performance by involving ROIs
containing motorcycles and corresponding riders. Though
works such as [4, 10, 13, 20], robustly detect helmet viola-
tions, they do not possess a triple-riding detection module.
On the contrary, our proposed approach can jointly detect,
track, and count triple-riding and helmet violations.

Curriculum Learning: The researchers have widely
focused on applying curriculum learning-based techniques
to object classification [9, 16, 29]. Existing curriculum-
learning-based detection works [24, 28] either concentrate
on improving the performance by handling intra-class scale
variations or involve weakly and semi-supervised training.
Our method utilizes the curriculum learning-based object
detector to obtain robust detections of motorcycles and rid-
ers and avoid inter-class confusion due to high overlap be-
tween the bounding boxes of the two classes. The object
detector further helps in robustly predicting triple riding and
helmet violations.

3. Dataset
We train various models for identifying motorcycle vio-

lations. We use a subset of India Driving Dataset (IDD) [26]
extracted by selecting images with motorcycles and riders
followed by filtering out small bounding boxes based on
an area threshold of 900 squared pixels, as low-resolution
boxes add noisy samples to the training data. We annotate
helmet class, no-helmet class, and trapezium-shaped driv-
ing instance class (see Fig. 2 b-d, i-k). We use conventional
rectangular boxes for helmet violations and propose trapez-
ium bounding boxes to detect triple-riding violations. We
now discuss how we pre-process the dataset.

Data Pre-Processing: We note two crucial issues in the
existing IDD dataset annotations, which pose a problem in
accurately detecting the riders and subsequent triple-riding
and helmet violations. i) Some IDD samples had multiple
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Figure 2. (a) Existing annotations of rider/motorcycle in IDD dataset, (b) helmet/no-helmet annotations additionally annotated by us, (c)
Conventional rider-motorcycle instance representation. (d) Novel trapezium box representation for the rider-motorcycle instance in contrast
to (c); reduces false-positives from nearby riders, (e) Rider box annotation present in IDD dataset, (f) Manually corrected rider boxes, (g)
Annotated helmet box on an occluded rider, (h) Generating boxes for occluded riders with amodal regressor using helmet boxes (refer
Sec. 3), (i) Sample frame with final labels & its crops (j), (k). [color scheme: red-helmet violation, green-helmet, orange-triple-riding
violation, yellow-driving instance, purple-motorcycle, blue-rider]

riders in a single bounding box (due to inclusion of riders’
legs), as shown in Fig. 2 (e). ii) There were frequent rider
occlusions, to the extent that only the head portion is visible,
as shown in Fig. 2 (g). We overcome such issues by:

(i) Processing the Rider Boxes: Rider bounding boxes
are manually processed such that each bounding box con-
tains only one rider. Fig. 2 (f) shows the output of such
processing for a rider in Fig. 2 (e).

(ii) Generating Boxes for Rider Occlusions with Amodal
Regressor: To obtain full bounding boxes for occluded rid-
ers, we train a two-layered deep network with fully con-
nected layers, which we refer to as amodal regressor. With
helmet/no-helmet bounding box as input and corresponding
rider bounding box as output, the amodal regressor has 16
and 64 nodes in the respective hidden layers. We train it
on non-occluded riders in our data with relu activation and
learning rate of 0.001. We use the trained model to gener-
ate boxes for occluded riders in our data. Fig. 2 (h) depicts
the example of a bounding box generated for an occluded
rider.

4. The Pipeline

This section discusses the proposed pipeline, shown in
Fig. 3, for identifying triple-riding and helmet violations.
The videos from a camera mounted on a moving vehicle
are input to a Curriculum Learning (CL) based object de-
tection module, predicting riders and motorcycles (refer to
Fig. 3 a). Thereafter, we send each motorcycle prediction
and riders’ predictions intersecting with it to the next stage

(see Fig. 3 b-c). A novel trapezium box regressor, shown in
Fig. 3 (d), then generates bounding boxes over each driving
instance. Next, a triple-riding detection module calculates
the number of riders within each trapezium box to identify
the possibility of a triple-riding violation. A helmet viola-
tion detector also operates parallelly (see Fig. 3 d), which
works on the Regions Of Interest (ROIs) extracted from
the previous detector’s predictions (motorcycle and riders
boxes). Finally, we modify the predictions from Deep-
SORT [30] to jointly track the rectangular helmet/no-helmet
boxes and trapezium instance boxes as shown in Fig. 3 (f-
g). We now elaborate on each step of the proposed pipeline.

4.1. Curriculum Learning-based Detector

A generic two-class rider-motorcycle detector performs
poorly due to overlapping regions between a motorcycle
and its riders. The overlapping regions lead to inter-class
confusion and, in turn, lead to false negatives due to lower
confidence of one or more overlapping predictions and Non-
Maximum Suppression (NMS). As shown in Fig. 3 (a),
we propose a CL based detector to avoid such issues. The
model is first trained on only motorcycle instances and then
retrained after adding rider instances. As we will see in
Sec. 5, the recall improves significantly compared to the
generic model, as an outcome of a reduction in false pos-
itives.
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Figure 3. Our pipeline: (a) Video frames are input to Curriculum Learning-based rider/motorcycle detector, (b) The intersecting motorcy-
cles and riders are matched based on IOUs, (c) Each Rider-Motorcycle instance is shown in a different color, (d) Trapezium boxes from
a regressor are passed to Triple-riding violation module, (e) Extracted ROIs are passed to a helmet/no-helmet detector, (f) Violations are
tracked and counted over the video, (g) Violations/counts are shown in red and orange colors.

(a) (b) (c)

Figure 4. Different IOU-based correlation approaches to associate
riders to their motorcycle. Note: (a) demonstrates the use of mo-
torcycle boxes (purple) for IOU based association with rider boxes
(blue), but the former have low IOU with all the latter, (b) demon-
strates the use of instance boxes (yellow), but the box closer to
the camera has high IOU with all the three riders, (c) [Proposed]
approach uses a trapezium-shaped instance box (yellow) has high
IOU with it’s two true riders and low IOU with the rider from an-
other motorcycle.

4.2. Identifying Triple-riding Violations

This section discusses the trapezium box regressor (see
Fig. 3 d) and the rider counting step for identifying triple-

riding violations in a video frame. Each predicted motor-
cycle box and rider bounding boxes that intersect with it
form the input to the trapezium regressor. The regressor
detects driving instances for counting the rider boxes hav-
ing the highest IOU with the obtained trapeziums; to iden-
tify the triple-riding violations. The resulting reduction in
false-positive rider correspondences also leads to a massive
55.44% precision gain for triple-riding violations in Tab. 2.

Trapezium Bounding Box Regressor: Our data contains
highly unstructured and crowded scenarios. Thus, as is il-
lustrated in Fig. 4 (a), relying on derived IOU-based corre-
lations between riders and their motorcycles become erro-
neous for accurate identification of triple-riding violations.
Similarly, drawing rectangular boxes over such correlated
riders and motorcycles also becomes an issue, as in many
cases, a significant portion of such boxes cover the back-
ground area and intersect with riders of other motorcycles,
as shown in Fig. 4 (b). Hence, we utilize novel trapez-
ium bounding boxes which circumscribe the correlated rid-
ers and motorcycles more tightly than rectangles, as shown
in Fig. 4 (c). We train a two-layered deep network (see
Fig. 5 b) having 512 and 256 nodes in the respective hidden
layers and use tanh activation with learning rate of 0.001.
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Figure 5. Input (a) and output (c) of the trapezium box regressor (b). Refer to Sec. 4.2 for additional details.

Mean squared error [1] was used as loss function in regres-
sion.

Input: As shown in Fig. 5 (a), corresponding motorcy-
cle and riders’ boxes are concatenated to form the input of
the trapezium regressor. The number of inputs is fixed to
24; the first four values correspond to the motorcycle box
and the rest to its riders. If the number of riders is lower
than 5 (maximum number of rider space in input as also ad-
vocated by [13]), then we initialize the remaining values to
0.

Output: The center of gravity [17] of the trapezium is
taken as its central position (X, Y), the perpendicular dis-
tance between the parallel sides (vertical in our case) is
taken as its width (W). For slopes of non-parallel sides, we
take the offset of each corner of a trapezium from its cor-
responding motorcycle box corner as illustrated in Fig. 5
(c).

Equation of Trapezium’s Center: Trapezium’s cen-
tre, (X,Y ) which is defined by its n (= 4) vertices
(x0, y0), (x1, y1), ...(xn−1, yn−1) can be calculated by us-
ing the following equations. The vertices should be pro-
vided as input in clockwise or anti-clockwise order and the
polygon should be closed such that the vertex (x0, y0) is the
same as the vertex (xn, yn).:

X = [

n−1∑
i=0

(xi + xi+1)(xiyi+1 − xi+1yi)]/6A (1)

Y = [

n−1∑
i=0

(yi + yi+1)(xiyi+1 − xi+1yi)]/6A (2)

Where A is a polygon’s signed area:

A = [

n−1∑
i=0

(xiyi+1 − xi+1yi)]/2 (3)

Counting Riders: Counting the riders with boxes hav-
ing the highest IOU with each trapezium bounding box are
considered to be riding the motorcycle and therefore help
identify violations.

One of the advantages of the trapezium-shaped boxes is
that they are generic and can represent many other objects
such as lane-markings and railway tracks recorded from a
front view camera on a vehicle or train. It can benefit from
the speed of detection methods and the accuracy of seg-
mentation methods. We note that rider and motorcycle pre-
dictions obtained using semantic information are sufficient
for the trapezium regressor. The trapeziums are robust and
avoid bounding box area and region-based rules [15,21] for
different conditions across images.

4.3. Identifying Helmet Violations

As an input to the helmet violation model, the width of
the predicted motorcycle and maximum height of predicted
rider boxes of a particular motorcycle driving instance are
used to extract the relevant ROIs. The cropped ROIs are
extended by 10% and then passed to the trained detector to
predict the violations at the inference stage. Unlike motor-
cycle and rider classes, helmet and no-helmet classes have
much lesser overlapping due to which a two-class YOLOv4
detector is trained (refer Fig. 3 e and Fig. 2 b).

For all detectors mentioned above, we use binary cross
entropy and CIoU (Complete Intersection over Union) for
classification and regression, respectively [3].
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Table 1. Evaluation of Triple-riding Violation Detection (rider and motorcycle) & Identification (counting riders on a bike). Note: CL based
YOLOv4 (v4) model performs better than the conventional two-class (non-CL) v4 & YOLOv3 (v3) models due to high IOU of riders with
motorcycles. Trapezium-shaped boxes further boost the F-score.

S. No. Method Rider-Motorcycle Detection Rider-Motorcycle Association Violation Identification Scores
Base Model mAP Approach Precision Recall F-score

1 Saumya et al. [21] v3 non-CL 70.13% Euclidean Distance 29.00% 50.00% 36.70.%
2

Ours v4 non-CL 73.62%

Euclidean Distance 30.47% 51.26% 38.22%
3 Rider-Motorcycle Box 33.73% 53.84% 41.47%
4 Rectangular-shaped Instance Box 41.66% 57.69% 48.38%
5 Trapezium-shaped Instance Box 73.80% 59.61% 65.95%
6 Proposed v4 CL 82.61% Trapezium-shaped Instance Box 84.44% 73.07% 78.34%

Table 2. Helmet Violation Detection and Identification Performance at Rider-level (rows 1-5) and Instance-level (rows 6-7). Note: CL

based YOLOv4 (v4) model trained on helmet/no-helmet classes performs poorer than the conventional two-class (non-CL) v4 model due
to low IOU between helmets and no-helmets. Refer Tab. 1 caption and detection performance for acronyms and rider-motorcycle mAP
scores. N/A: Not Applicable.

S. No. Method Helmet/No-Helmet Detection ROI Extraction Violation Identification Scores
Base Model mAP Approach Precision Recall F-score

1 Rithish et al. [20]
v4 non-CL 90.00%

Rider Instance Crop 53.21% 81.02% 64.23%
2 Ours Upper Half Instance Crop 49.9% 76.40% 60.36%
3 Ours Full Resolution Image 71.36% 90.13% 79.65%
4 Ours v4 CL 83.5% Rider-Motorcycle Instance Crop 68.56% 83.25% 75.19%
5 Proposed v4 non-CL 90.00% Rider-Motorcycle Instance Crop 77.86% 92.23% 84.43%
6 Chairat et al. [4] v3 GoogleNet N/A Upper Half Instance Crop 84.61% 54.45% 66.25%
7 Proposed v4 non-CL 90.00% Rider-Motorcycle Instance Crop 99.01% 95.23% 97.08%

4.4. Tracking

As shown in Fig. 3 (f-g), we modify DeepSORT [30]
predictions to jointly track helmet/no-helmet boxes and
trapezium boxes in traffic videos. DeepSORT tracks only
rectangular-shaped boxes, so the trapezium box is tracked
via its corresponding motorcycle bounding box.

5. Experiments and Results

We use a dataset of 1281 images containing 907 riders
without helmets and 98 instances of triple-riding violations
amongst 3313 riders and 4573 motorcycles. We use 70:30
as a train:test split for our data. Our test set consists of
310 images, where 260 are from the filtered IDD dataset
(refer to Sec. 3), and 50 are randomly chosen images
from web search to enrich the testing for rare triple-riding
violations. It has 234 riders with helmet violations and
42 instances of triple-riding violations among 758 riders
and 685 motorcycles. For the curriculum learning-based
model, the initial learning rate is set to 0.001 every time a
class is added with a decay of 10. For the helmet violation
detector as well, the learning rate is initialized with 0.001
with the decay of 10. We now present the results of our
models on triple-riding and helmet violations, along with
the previous works trained and tested on our data. We also
present ablation studies, which show the performance boost
by utilizing the proposed pre-processing and curriculum

learning-based object detector.

5.1. Comparison with Existing Methods

Triple-riding Violations: As shown in the first four
columns of Tab. 1, the mAP for the motorcycle and rider
detections by the proposed curriculum learning (CL) based
YOLOv4 model (see Sec. 4.1) is over 8.9% higher than the
(non-CL) YOLOv4 model as well as Saumya et al. [21].

We now discuss the results on identifying triple-riding
violations shown in the last four columns of Tab. 1. The
Euclidean distance-based rider-motorcycle association by
Saumya et al. [21], and the IOU-based approaches in Fig. 4
(a) and (b) of Sec. 4.2, are not robust to false-positive rid-
ers from other motorcycles. Hence, all these approaches
have precision and F-Score lower than 50 (rows 1-4 of
Tab. 1). However, using the proposed trapezium-shaped in-
stance boxes as shown in Fig. 4 (c) improves the F-score
by 17.57% as shown in Tab. 1 (row 5). Using the CL-
based base model on our proposed violation identification
approach further improves the F-score by 12.39%, lead-
ing to the highest precision, recall, and F-score of 84.44%,
73.07% and 78.34%.

Helmet Violations: Prior works identify helmet viola-
tions in two ways; i) Rider-level violations, which includes
counting riders without a helmet, ii) Instance-level viola-
tions for motorcycles with at least one of their riders without
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(c)
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(d) 
Figure 6. Qualitative results in complex scenarios: (a) Triple-riding violation with rider occlusions, (b) Helmet violations with head occlu-
sions, (c) Triple-riding violation in a low light scene, (d) Helmet violation in a low light scene (top-left: crop enhanced for visualization).

(a) (b) (c) (d) (e)
Figure 7. Failure cases. (a), (b), & (d): riders with non-distinguishable backgrounds leading to missed triple-riding violations, (b), (c) &
(e): heads with caps and non-distinguishable backgrounds are sometimes falsely detected as helmets (green).

a helmet. We outperform previous works at both levels.
Unlike the rider and motorcycle boxes, the helmet and

no-helmet boxes have comparatively lower IOU with each
other. Thus, using a CL based detector to learn helmet
and then no-helmet classes reduces the mAP from 90.00%
to 83.5%, as shown in columns 1-4, rows 1-4 of Tab. 2.
Therefore, as shown in rows 5 and 7, we propose to use the
generic (non-CL) YOLOv4 to detect helmet violations.

As mentioned in Sec. 2, there are many ways to pro-
vide the ROIs to the violation detection model. The back-

ground context present in the ROI has a pronounced ef-
fect on the detection performance. As shown in the last
four columns of Tab. 2, ROIs having complete rider-
motorcycle instance (rows 5 and 7) provides enough back-
ground context when compared to rider-crops [20], upper
body crops [4, 6, 11, 22, 23], or the full resolution images.
We use ROIs obtained from predictions of the v4 CL model
in Tab. 1. The proposed rider-motorcycle ROIs achieve the
highest precision, recall, and F-score of 77.86%, 92.23%
and 84.43%. For instance-level violations, our approach
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Figure 8. Effect of using Amodal Regressor: Reduction in missing
boxes corresponding to rider occlusions.

significantly improves the F-score by 30.83% compared to
Chairat et al. [4] leading to precision, recall, and F-score of
99.01%, 95.23% and 97.08% as shown in the last two rows
of Tab. 2.

Qualitative results are shown in Fig. 6, Fig. 7, Fig. 1
(c) and Fig. 3 (g). Fig. 6 shows violations identified by
our model in complex scenarios at different scales and ori-
entations. The scenarios include triple-riding and helmet
violations with (a) rider occlusions and (b) head occlusions.
Fig. 1 (c) and (d) also present qualitative results on both
types of violations in the low light scenes. While analyzing
the failure cases, we observe that our model sometimes fails
in instances where (i) riders have non-distinguishable back-
ground as shown in Fig. 7 (a), (b) and (d), and (ii) heads
with caps and non-distinguishable backgrounds, as shown
in Fig. 7 (b) (c) and (e). We present more results in the
demo video available on the github page.

5.2. Ablation Studies

Data Pre-processing: As discussed in Sec. 3, we pre-
process the IDD subset we use for training our model to in-
clude occlusions. More precisely, we introduced an amodal
regressor that predicts a bounding box for an occluded
rider using annotated helmet/no-helmet box (for the rider)
as input. As shown in Fig. 8, the percentage of missing
rider boxes is significantly reduced by using the proposed
methodology. It is important to note that i) the amodal re-
gressor detects only one rider box for each helmet box, and
ii) we keep the threshold for IOU between predicted and la-
beled rider boxes low and avoid all the false positives. We
also analyze the effect of our pre-processing on the triple-
riding violations task in Fig. 9. We use a generic YOLOv4
model and trapezium boxes to associate the motorcycle with
its riders for the analysis. Correcting the rider boxes has led
to an increase in precision. False negatives or missing rid-
ers due to occlusion are also reduced, leading to improved
recall. Overall, as shown in Fig. 9, we obtain 7% and 10%
gains in mAP and F-scores respectively due to the proposed
data pre-processing techniques.

Curriculum Learning: We utilize Curriculum Learning
(CL) for training our object detector as discussed in Sec. 4.1

Figure 9. Detection Results: Effect of using proposed data pre-
processing and curriculum learning.

and experiment with the class orders mentioned in the x-
axis of Fig. 9. We find that training first on the motorcy-
cle and then on the rider class (M+R) provides us the best
results. A significant gain in recall compared to non-CL
methods demonstrates the capability of the CL-based ap-
proach to robustly handle false negatives which arise due to
overlapping predictions of the motorcycle and rider boxes.

6. Conclusion
This paper proposed a novel architecture capable of de-

tecting, tracking, and counting triple-riding and helmet vi-
olations on crowded Asian streets using a camera mounted
on a vehicle. Our approach jointly tackles both the viola-
tions. The proposed framework outperforms existing viola-
tion approaches because of its capability to handle rider oc-
clusions, false negatives, and false-positive rides from other
motorcycles in crowded scenarios. We demonstrate the ef-
fectiveness of using curriculum learning for motorcycle vi-
olations and trapezium bounding boxes instead of conven-
tional rectangular boxes. Our work lays the foundation for
utilizing such systems for increased road safety. It can be
used for surveillance in any corner of the city without any
considerable cost of a static camera network. In the future,
we wish to explore the possibility of deploying our system
to a distributed GPU setup for city-wide surveillance.

Acknowledgments: We thank iHubData, the Technol-
ogy Innovation Hub (TIH) at IIIT-Hyderabad for supporting
this project.
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