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Abstract

Images captured by outdoor vision systems can often be
affected by rain weather, resulting in severe degradation of
the visual quality of the captured images. Therefore, image
deraining has attracted attention as urgent and challeng-
ing research. Many current data-driven approaches achieve
better performance but are limited in recovering image de-
tails. This is because these methods do not fully mine the
correlation of scale-space, which are beneficial for rain re-
moval. In this paper, we design an end-to-end Deep Scale-
space Mining Network (DSM-Net) for single image derain-
ing to solve these problems. The proposed network with
multi-scale extraction, concurrent attention distillation, and
hierarchical information fusion accurately captures scale-
space features and learns richer information for better de-
raining. For better feature extraction, a Multi-scale Atten-
tion Block (MAB) is introduced to obtain multi-scale rain
streak features by different dilated convolutions. Besides,a
Concurrent Attention Distillation Block (CADB) is devel-
oped which combined channel attention and subspace at-
tention to calibrate the image features obtained from multi-
scale acquisition and hierarchical learning, then eliminate
redundant features. Importantly, the overall architecture of
DSM-Net is inspired by the HourglassNet and DenseNet,
which progressively explores and fuses local and global fea-
tures at different scales in a hierarchical manner instead of
direct concatenation. Extensive experiments on synthetic
and real datasets show that the proposed DSM-Net outper-
forms recent state-of-the-art deraining algorithms in terms
of both performance and preservation of image details.

1. Introduction
Rain streaks cause significant blurring and visual quality

degradation because they vary in size, direction, and den-
sity. In particular, the veil-like visual degradation formed
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by rain streaks superimposed on the background together
with raindrops in the air reduces the contrast and visibility
of the scene [5, 28, 37]. Therefore, single image deraining
has become a necessary pre-processing step in many practi-
cal application scenarios, such as scene analysis [15], recog-
nition [10], object tracking [24], intelligent security, and
road condition detection under autonomous driving. With
the extraordinary results of deep learning in image process-
ing, solving single image deraining has become a research
hot-spot [9,20,40,42]. Compared with video deraining, sin-
gle image deraining is more challenging because less corre-
lation information is available. Therefore, in recent years,
more researchers have focused on designing algorithms for
single image deraining, which has gradually transitioned
from model-driven to data-driven [19].

Traditional model-driven methods include filter-based
methods and priori-based methods: filter-based methods
use physical filtering to recover clean images [4], while
priori-based methods consider single image deraining as an
optimization problem, which typically includes sparse prior
[40], Gaussian Mixture Model (GMM) [20] and low-rank
representation [3]. However, the model-driven approach
based on the model can only filter out the noise that obeys a
specific distribution (such as Gaussian noise). The physical
model also has some limitations and does not sufficiently
cover some essential factors in real images with rain, such
as rain streaks of different sizes, directions, and densities.
Therefore the recovery effect is limited.

Compared with the model-driven-based methods, the
data-driven methods treat single image deraining as a pro-
cess of learning a nonlinear function [39]. In recent
years, driven by deep learning techniques, researchers have
started to use Convolutional Neural Networks (CNNs) [38],
Generative Adversarial Networks (GANs) [18, 41], and
semi/unsupervised learning methods to solve single image
deraining [34]. One of the CNN-based research methods
was first proposed by Yang et al. [38], which built a joint
rain detection and removal network (JORDER) focusing on
removing overlapping rain streaks under heavy rain. This
method achieved impressive results under heavy rain con-
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ditions. With the popularity of CNNs, more CNN-based
methods have been proposed [2,23,32,35]. GAN-based re-
search methods started later, which was introduced to cap-
ture some features in severe weather that cannot be mod-
eled and synthesized to reduce the gap between the gener-
ated results and real clean images. Recently, to further im-
prove the recovery performance on real images with rain,
semi-supervised and unsupervised learning methods have
been proposed, which learn features directly from real rain
data to improve generality and scalability. Although the
above methods have achieved good results in many applica-
tion scenarios, they still have many limitations. Due to the
difficulty of single image deraining, how to make full use
of the shallow and deep convolution features of the depth
model to explore the scale-space features is of great impor-
tance for deraining. In addition, many existing algorithms
make few attempts to eliminate redundant feature informa-
tion resulting in usually not better structure restoration and
detail preservation while their receptive fields are limited
and cannot deal with extremely rainy conditions. Therefore,
it is necessary to explore the scale-space feature correlation
from a global and local perspective.

We propose a Deep Scale-Space Mining Network (DSM-
Net) for single image deraining that combines multi-scale
feature extraction, concurrent attention feature distillation,
and hierarchical feature information fusion. Specifically,
the entire network first uses average pooling to achieve a
multi-scale hierarchical parallel structure, and then uses the
integrated densely connected Multi-scale Attention Blocks
(MAB) to extract rich detailed features. The proposed Con-
current Attention Distillation Block (CADB) is embedded
in the multi-scale attention block and the cross-layer fusion
to recalibrate the features obtained in and between layers
respectively. To maximize the use of multi-scale features
from different sources, intra-layer and inter-layer fusion are
achieved through dense connection and down sampling, re-
spectively.

In summary, our major contributions are as follows:

• We propose a DSM-Net to explore and aggregate
scale-space correlations for the specific image derain-
ing task, with a novel hierarchical mining architecture
to effectively learn richer feature representations.

• We propose a MAB and a CADB. The MAB uses di-
lated convolutions of different sizes to extract features
from different scales. The CADB combines channel
attention and subspace attention mechanisms to recal-
culate the rain streaks features map in order to reduce
useless features and retain space and background in-
formation.

• We perform experiments on both synthetic and real-
world rain datasets (4 synthetic and 2 real-world

datasets). In both visual and quantitative compar-
isons, our propose network surpasses state-of-the-art
approaches. In addition, ablation research is presented
to validate the rationale and necessity of the critical
modules included in our network.

2. Related Work

In this section, some image deraining methods are re-
viewed. At the moment, single image rain removal meth-
ods are classified into three types: filtering-based meth-
ods, priori-based methods, and deep learning-based meth-
ods. The model-based method is another name for the fil-
tering and prior method. Following is a brief overview of
the most relevant deraining technologies.

2.1. Model Based Methods

Xu et al. [16] proposed a single image rain removal al-
gorithm that includes a guided filtering kernel. In short, it
first uses the chromaticity characteristics of rain streaks to
produce a rain-free image with lower accuracy, and then fil-
ters the rain image to produce a rain-free image with higher
accuracy. Ding et al. [4] created a rain-free image using a
guided L0 smoothing filter to improve the performance of
a single image. In recent years, the Maximum A Posteri-
ori (MAP) [8, 21] method of removing rain from a single
image has been widely used, which can be mathematically
described as:

max
B,R∈Ω

p( B,R | O) ∝ p(O | B,R) · p( B |) · (R), (1)

where O ∈ Rh×w,B ∈ Rh×w, and R ∈ Rh×w de-
note the observed rainy image, rain free image, and rain
streaks, respectively. p( B,R | O) is the posterior prob-
ability and p(O | B,R) is the likelihood function. Ω :=
{B,R | 0 ≤ Bi,Ri ≤ Oi,∀i ∈ [1,M ×N ]} is the solution
space.

Fu et al. [7] described image removal as an image de-
composition problem using morphological component anal-
ysis (MCA). First, bilateral filtering is used to divide the
rainy image into two parts: low-frequency component and
high-frequency component. The low-frequency component
and non-rain component are then combined to obtain the
rain removal result. Gu et al. [9] recently proposed a sparse
representation model based on joint convolution analysis
and synthesis (JCAS), which uses analytical sparse rep-
resentation (ASR) to approximate the image’s large-scale
structure and synthetic sparse representation (SSR) to de-
scribe the image’s Fine texture. JCAS can effectively ex-
tract the image texture layer without overly smoothing the
background layer due to the complementarity of ASR and
SSR.
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Figure 1. The overall architecture of proposed DSM-Net for image deraining. CADB and MAB are shown in Figure 2 and Figure 3
respectively. The goal of the DSM-Net is to recover the corresponding rain-free image from the rainy image.

2.2. Deep Learning Based Methods

Single image rain removal based on deep learning started
in 2017. Yang et al. [38] constructed a joint rain detection
and removal network (JORDER) to focus on the removal
of overlapping rain streaks under heavy rain. The network
can better monitor the rain and locate the rain through pre-
diction. This method has achieved impressive results under
heavy rain conditions, but it may delete some texture details
by mistake. Qian et al. [25] designed an attention genera-
tion network whose basic idea is to inject visual informa-
tion. Since the deep residual network (ResNet) [12] has
achieved the greatest success in the field of deep learning,
Fu et al. [5] further proposed a deep detail network (DDN)
to achieve better deraining effect. Existing deep learning
methods usually treat the network as an end-to-end map-
ping module, instead of studying the rationality of removing
rain streaks [23, 32]. Li et al. [17] proposed a non-local en-
hancement encoder-decoder network, which can effectively
learn more abstract features, so as to achieve more accurate
image removal while retaining image details.

In order to alleviate the problem that the deep network
structure is difficult to reproduce, Ren et al. [26] presented
a simple and effective progressive recurrent deraining net-
work (PReNet). Lightweight pyramid networks (LPNet) [6]
pursued a light-weighted pyramid to eliminate rain, result-
ing in a network that was simple and comprised fewer pa-
rameters. However, most of the existing single image de-
raining networks have not well noticed the internal con-
nection of rain streaks at different scales. RESCAN [36]
employed the dilated convolution method to obtain contex-
tual information, and used a recurrent neural network to re-
model the rain features. GCANet [1] adopted smooth di-
lated convolution instead of dilated convolution, and fused

high-level and low-level features to improve the recovery
effect. SPANet [31] created a recurrent network to capture
spatial contextual information from local to global scales.
[34]calculateed the residual difference between the input
image and the derained image used a semi-supervised learn-
ing method. RCDNet [30] represented the rain feature with
a convolution dictionary and simplified the network with
proximal gradient descent technology. Chen et al. [2] pre-
sented a multi-scale hourglass hierarchical fusion network
(MH2F-Net) in end-to-end manner, this network accurately
obtained rain trace features through multi-scale extraction,
hierarchical extraction and information fusion. However,
existing multi-scale deraining methods do not fully exploit
the relevance of scale-space. Inspired by hourglass net-
works and dense networks, this paper designs a hierar-
chically structured feature mining framework to efficiently
learn richer features for better deraining.

3. Proposed Method

In this section, the design of the overall DSM-Net archi-
tecture will be described. The key modules included in the
designed network are described in the subsections, as well
as a description of loss function.

3.1. The framework of DSM-Net

This paper proposes an effective DSM-Net based on the
DenseNet [13] and HourglassNet [22], which is an end-to-
end network that can input any rainy image for training. As
is shown in Fig. 1 , the overall architecture of DSM-Net
mainly consists of MAB and CADB for feature extraction
and distillation, respectively.

4278



Input Feature

ReLU

Fully 

Connected

Global pooling

Re-weight

Sigmoid

Fully 

Connected

DWConv

Feature 

Subspace1

Softmax

Expand

1×1 Conv

Out1

n

Contact

H×W×C

1×1×C

1×1×C

1×1×(C/r)

1×1×C

1×1×(C/r)

H×W×C

H×W×(C/n)

H×W×(C/n)

H×W×(C/n)

H×W×1

H×W×(C/n)

H×W×(C/n)

H×W×(C/n)

Output Feature
H×W×C

3×3 Conv

Max Pooling

DWConv

Feature 

Subspacen

Softmax

Expand

1×1 Conv

Outn

3×3 Conv

Max Pooling

H×W×(C/n)

H×W×(C/n)

H×W×(C/n)

H×W×(C/n)

H×W×(C/n)

H×W×1

H×W×(C/n)

H×W×(C/n)

H×W×(C/n)

H×W×C

Figure 2. The overall architecture of proposed Concurrent Atten-
tion Distillation Block for image deraining.

3.2. Concurrent Attention Distillation Block

In terms of the single image rain removal problem, the
key is how to better acquire rain features and characterize
them for removal. Although a deeper network facilitates
layer-by-layer extraction of rain features, as the depth of the
network increases, the ability for characterizing with fea-
tures will gradually weaken with the process of transmis-
sion, and a large amount of redundant feature information
will be generated.

Therefore how to solve these problems will directly af-
fect the quality of the image after enhancement. In this pa-
per, we adopt a simple distillation structure with attention
mechanism as shown in Fig. 2. The CADB is placed at the
cross-layer fusion and also embedded in each MAB to solve
the information loss in the process of multi-scale feature ac-
quisition and transmission and fusion. The core of CADB
is the recalibration of feature information using concurrent
channel and subspace attention mechanisms to achieve fea-
ture distillation. It is useful for mining scale space feature
information.

Concurrent Channel and Subspace Attention Mech-
anism Inspired by the success of visual attention mecha-
nisms, we implement a concurrent structure by combining
the channel attention module [35] and the subspace atten-
tion module [27] to eliminate a large number of aimless
features and extract more useful hierarchical features. The
concurrent channel and subspace attention mechanisms in-
vestigate useful spatial and channel components and allow
only features containing useful information to proceed.
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Figure 3. The overall architecture of our proposed Multi-scale At-
tention Block (MAB). It is mainly composed of a multi-scale fea-
ture acquisition module and a CADB. The CADB has been shown
in Figure 2. This architecture enables the network to better explore
and reorganize features in different scales.

3.3. Multi-scale Attention Block

Multi-scale feature acquisition methods effectively com-
bine image features at different scales and are now widely
used to collect useful information about objects and their
surroundings. In order to improve the ability of net-
work representation even further, MAB employs inter-layer
multi-scale information fusion, which realizes information
fusion between features of different scales. This struc-
ture also ensures that the input information is propagated
through all parameter layers, allowing the original image’s
characteristic information to be better learned.

Under the guidance of the above ideas, we propose MAB
and use it to learn the different scale space feature informa-
tion in rainy images more comprehensively and effectively,
as shown in Fig. 3. The MAB can be described in detail
with mathematical formulas. Referring to Fig. 3, the in-
put feature image of MAB is set as Fin , which first passes
through the convolutional layers with the convolution ker-
nel sizes of 1×1, 3×3, and 5×5, and the output is expressed
as follows:

F 1×1
a = Conv1×1

(
Fin; θ

1×1
a

)
, (2)

F 3×3
a = Conv3×3

(
Fin; θ

3×3
a

)
, (3)

F 5×5
a = Conv5×5

(
Fin; θ

5×5
a

)
, (4)

where Fn×n
a presents the first layer output of multi-scale

convolution with the convolution size of n×n,Convn×n(·)
presents convolution operation, and θn×n

a means the hy-
perparameter formed by the first multi-scale convolutional
layer with the convolution kernel size of n× n. The image
features can be further extracted by using the convolution
kernel size to be 1× 1, 3× 3, and 5× 5

F 1×1
b = Conv1×1

((
F 1×1
a + F 3×3

a + F 5×5
a

)
; θ1×1

b

)
,
(5)
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F 3×3
b = Conv3×3

((
F 1×1
a + F 3×3

a + F 5×5
a

)
; θ3×3

b

)
,
(6)

F 5×5
b = Conv5×5

((
F 1×1
a + F 3×3

a + F 5×5
a

)
; θ5×5

b

)
,
(7)

where Fn×n
b presents the output of the second layer

of multi-scale convolution with size n × n,Convn×n(·)
presents a convolution of size n × n, and θn×n

b means the
hyperparameter formed by the second multi-scale convolu-
tional layer with a size of n× n. Similarly, we can express
the output of the multi-scale third layer as follows:

F
1×1
c =

((
Conv1×1

(
F

1×1
b +F

3×3
b +F

5×5
b + F

1×1
a

)
+F

1×1
a

)
; θ

1×1
c

)
,

(8)

F
3×3
c =

((
Conv3×3

(
F

1×1
b +F

3×3
b +F

5×5
b + F

3×3
a

)
+F

3×3
a

)
; θ

3×3
c

)
,

(9)

F
5×5
c =

((
Conv5×5

(
F

1×1
b +F

3×3
b +F

5×5
b + F

5×5
a

)
+F

5×5
a

)
; θ

5×5
c

)
.

(10)

As shown in Fig.3, MAB realizes multi-scale informa-
tion fusion through convolutional layers with the convolu-
tion kernel sizes of 1× 1 and 3× 3, and finally introduces a
CADB to improve feature fusion. We can express the final
output of MAB as follows:

Fout = CADB
((
Conv3×3

(
Conv1×1

(
Cat

(
F 1×1
C , F 3×3

C , F 5×5
C

)
; η1) ; η2) ; η3) ; η4) + Fin ,

(11)
where Fout denotes the output of the MAB, CADB(·) in-
dicate the Concurrent Attention Distillation Block, respec-
tively, and {η1; η2; η3; η4} indicates the hyperparameters of
the MAB output.

3.4. Loss Function

The commonly used loss function in image processing
research is MSE loss function [11], because it has better re-
sults in most application scenarios. However, the disadvan-
tages of the MSE loss function are also obvious. When the
application task involves image quality evaluation, it is as-
sumed that the influence of noise is independent of the local
features of the image. This is contrary to the human visual
system (HVS) [14], so the correlation between MSE as a
loss function and image quality is poor. In order to solve
the above shortcomings, we combine MSE and structural
similarity index (SSIM) loss [33] to propose a loss func-
tion, so as to achieve a balance between the effect of image
rain removal and image quality evaluation. In this paper, the
rain model we refer to is as follows:

I = B +R. (12)

We can obtain the rain-free background by subtracting
rain streaks R from the rainy image I The MSE loss and
SSIM loss can be formulated as:

LMSE =
1

HWC

H∑
i=1

W∑
j=1

C∑
k=1

∥∥∥B̂i,j,k −Bi,j,k

∥∥∥2 , (13)

Table 1. Synthetic and real-world datasets.

Datasets Rain100L Rain100H Rain800 Rain1400 MPID Li et al.
Training Set 200 1800 700 12600 - -
Testing Set 100 100 100 1400 185 34

where H,W and C represent height, width, and number of
channels respectively. B̂ and B denote the restored rain-
free image and the groundtruth, respectively.

SSIM(B̂, B) =
2µµB

B̂
+ C1

µ2
B̂
+ µ2

B + C1
·
2σB̂σB + C2

σ2
B + σ2

B + C2
, (14)

where µx, σ
2
x are the mean and the variance value of the

image: x. The covariance of two images is σxy, C1 and
C2 are constants value used to maintain equation stability.
The value range of SSIM is from 0 to 1 . In the image rain
removal problem, the larger the value obtained by SSIM
in the interval means that the recovered rain-free image is
closer to the real image. Therefore, the loss function based
on SSIM can be defined as:

LSSIM = 1− SSIM(B̂, B). (15)

The total loss is defined by combing the MSE loss and the
SSIM loss as follows:

L = LMSE + λLSSIM , (16)

where λ is a hyperparameter that balances the weight be-
tween MSE loss and SSIM loss. By properly setting λ, the
similarity of each pixel can be ensured while maintaining
the global structure. This helps to get a better rain image.

4. Experiments
In this section, the dataset used in the experiment is de-

scribed, and some details of the experimental environment
and settings are described. In order to prove that the pro-
posed DSM-Net has a good effect on the image rain removal
problem, we performed a quantitative and qualitative evalu-
ation of the proposed method on synthetic and real datasets,
comparing the results to recent state-of-the-art methods. Si-
multaneously, complete ablation studies are carried out to
demonstrate the significance of each component in the pro-
posed network.

4.1. Experimental Settings

Datasets Setup. Four synthetic datasets and two real-world
datasets will be used to evaluate the performance of the pro-
posed method. The composition of the datasets is shown in
Tab. 1. Experiments on the proposed DSM-Net are carried
out on the four synthetic datasets Rain100L [38], Rain100H
[38], Rain800 [41], and Rain1400 [5]. Rain streaks of var-
ious sizes, shapes, and directions are included in the four
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Table 2. The quantitative results in the table are evaluated based on the PSNR and SSIM average results of the synthetic benchmark datasets
(Rain100L, Rain100H, Rain800 and Rain1400), and the best results are shown in bold.

Datasets Rain100L(PSNR/SSIM) Rain100H(PSNR/SSIM) Rain800(PSNR/SSIM) Rain1400(PSNR/SSIM)
Rainy 26.91/0.838 13.35/0.388 21.16/0.652 25.24/0.810

GCANet 31.70/0.932 24.10/0.814 - 27.84/0.841
LPNet 33.39/0.958 24.39/0.820 25.26/0.781 22.03/0.800

RESCAN 36.12/0.970 27.88/0.816 24.09/0.841 29.88/0.905
DDN − 24.95/0.781 22.16/0.732 27.61/0.901

JORDER 36.55/0.974 22.79/0.697 26.24/0.850 27.55/0.853
SPANet 35.33/0.970 25.11/0.833 24.37/0.861 28.57/0.891
PReNet 37.11/0.971 28.06/0.888 22.83/0.790 30.73/0.920
RCDNet 35.28/0.971 26.18/0.835 24.59/0.821 −

Ours 38.27/0.982 28.62/0.902 27.76/0.871 30.93/0.929

datasets. Rain100L is a light rain dataset that contains only
one type of rain streak and is made up of 200 training image
pairs and 100 test image pairs. The Rain100H dataset in-
cludes 5 rain streaks in different directions, as well as 1800
training and 100 test image pairs. Rain800 is made up of
700 training and 100 test image pairs. Rain1400 contains
14 rain streaks of varying sizes and directions, from which
12600 image pairs with rain are chosen as training data and
the remaining 1400 image pairs are used for testing. Be-
cause the real-world dataset is critical for assessing the per-
formance of image rain removal, we conducted additional
experiments on two real-world datasets: one is the MPID
dataset proposed by Li et al., and the other is also proposed
by Li et al. [29] in 2019. They are made up of 185 and 34
real rain pictures, respectively.

Evaluation Metrics. The performance of image rain re-
moval methods is usually evaluated according peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM). The
higher the PSNR value, the better the performance of recov-
ering the rainless image from the rainy image. The SSIM
value means the similarity of two different images to each
other, and the value range is 0 to 1. When the SSIM is
closer to 1, the rain removal performance is good. Since
it is a basic fact that there is no completely clean image in
the real world, which makes it impossible to quantitatively
analyze the rain removal effect, we will intuitively evaluate
the performance on the real world datasets from the visual
effect.

Implementation Details. Fig. 1 shows the overall structure
and parameter settings of the designed DSM-Net. For better
feature extraction, the number of MAB is set to 10. During
the training process, the loss weight λ is set to 0.2, and data
is supplemented by randomly cropping 64×64 patch pairs
with horizontal flipping. Using the Adam optimization, the
parameters are as follows: initial learning rate is 0.001 and
batch size is 32, where β1 and β2 have default values of

0.9 and 0.999, respectively. To improve performance, we
train our model with 200 epochs for the Rain100L/H dataset
and 100 epochs for the Rain800/1400 dataset. PyTorch is
used for all training and testing on a workstation with an
NVIDIA Geforce RTX 3080Ti GPU (12G).

4.2. Experimental Results

Results on Synthetic Datasets. In this section, a large
number of experiments are conducted on the synthetic
datasets Rain100L, Rain100H, Rain800 and Rain1400,
which are commonly used in the problem of image rain re-
moval. The results of the DSM-Net proposed in this paper
on the datasets compared with some recent mainstream ad-
vanced methods: GCANet [1], LPNet [6], RESCAN [36],
DDN [5], JORDER [38], SPANet [31], PReNet [26], RCD-
Net [30]. Tab. 2 shows the quantitative results of the pro-
posed method on the four synthetic datasets. It can be seen
that the method proposed in this paper has improved PSNR
and SSIM value compared with the advanced method of ref-
erence. It shows that DSM-Net has better robustness and
versatility.

In addition to the quantitative evaluation of the rain re-
moval effect of the images, some images are provided for
intuitive comparison. As shown in Fig. 4 and Fig. 5,
Rain100L and Rain100H images are provided for visual
comparison. We selected some details in the image and en-
larged it. By observing the enlarged local area, although
GCANet, JORDER, LPNet, PReNet and RESCAN have re-
moved a lot of rain patterns, they will all cause different
degrees of background blur and there are certain shortcom-
ings in the preservation of the image background details.
Compared with Ground Truth, the results obtained by the
method in this paper have achieved good results. There-
fore, by comparing the method proposed in this paper, the
rain streaks can be effectively removed while preserving the
background details on the synthetic datasets.

Results on Real-world Datasets. In order to evaluate the
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Figure 4. Deraining performance comparison on synthetic dataset (Rain100L).

Figure 5. Deraining performance comparison on synthetic dataset (Rain100H).

Figure 6. Deraining performance comparison on Real-world dataset.

Figure 7. Deraining performance comparison on Real-world dataset.

effectiveness of the proposed method in practical applica-
tion, the proposed method is compared with the reference
method on two real-world rainy datasets mentioned in Sec-
tion 4.1 for further experimental evaluation. In order to
compare the fairness, all methods use the weight of the pre-
training model obtained from Rain100H dataset to remove
the rain streaks from the real rain dataset. As shown in Fig.
6 and Fig. 7, compared with the most advanced methods,
the proposed method produces a more natural and pleas-

ant rain removal image. Specifically, from the enlarged lo-
cal details, it can be seen that GCANet and DDN can not
completely remove the rain streaks in most cases, while
JORDER and LPNet blur the details of the rain removal
results more. The method in this paper can remove the rain
streaks in the real world rain image more effectively and
retain more texture details, through mining scale-space fea-
ture information.
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Figure 8. The five kinds of blocks with different operations based MAB.Their abbreviations are as follows: M1: The MAB stripped of all
connections. M2: The MAB that does not have a Dense-Fusion connection. M3: The MAB that does not have an Across-Up connection.
M4: MAB without an Across-Down connection. M5: The MAB that we proposed.

4.3. Ablation Studies

In order to prove the validity and rationality of the struc-
ture configuration and parameter setting in DSM-Net pro-
posed in this paper, ablation experimental studies are con-
ducted. All the studies involved use the Rain100L dataset
and are guaranteed to be carried out in the same environ-
ment.

Analysis of the proposed CADB. In this paper, we pro-
pose CADB which uses a combination of channel attention
mechanism and subspace attention mechanism.To explore
the structure on the effect of network deraining, We analyze
the network designment that consists of Channel Attention
mechanism (CA), Sptial Attention menchanism (SP), Sub-
space Attention mechanism (SA) The results are illustrated
in Tab. 3.

Table 3. Ablation study on analysis of the proposed CADB.

Framework CA SP SA CA+SP SP+SA CA+SA

PSNR/SSIM 37.36/0.976 37.90/0.980 37.08/0.978 38.21/0.981 37.86/0.981 38.27/0.982

Analysis Number of subspaces for CADB. To investigate
the effects of number on distillation capacity, we run de-
raining experiments with varying numbers of subspaces to
the CADB. In particular, the number of subspaces is set to
n ∈ {4, 8, 16}, and the corresponding PSNR/SSIM results
are shown in Tab. 4. As shown, increasing blocks can pro-
duce higher PSNR/SSIM values, resulting in better extrac-
tive performance. The PSNR improvement appears to be
limited after n=8, despite the massive calculated cost. As a
result, we choose n=8 as the default parameter.

Table 4. Ablation study on number of subspaces for CADB.

Metric n= 4 n=8(default) n=16

PSNR/SSIM 38.08/0.9825 38.27/0.9829 38.11/0.9826

Analysis of the proposed MAB. It is meaningful to ana-
lyze the different connection operations of MAB. Fig. 8
shows other different modules. The results are shown in
Tab. 5. Compared with other moudules, we can see that our
proposed default module obtains the best result.

Table 5. Results of different operations of MAB on Rain100L. The
best results are marked in bold.

Experiments M1 M2 M3 M4 M5

Across-Down ✓ ✓ ✓

Across-up ✓ ✓ ✓

Dense-Fusion connection ✓ ✓ ✓

PSNR/SSIM 36.15/0.9757 36.40/0.9760 36.65/0.9770 36.44/0.9765 38.27/0.9829

5. Conclusion
In this paper, we propose a deep scale-space mining net-

work (DSM-Net) to deal with single image deraining. A
noval multi-scale attention structure is being developed to
extract local and global features at multiple scales. In partic-
ular, a concurrent attentive distillation block is used first to
recalibrate the hierarchical features by utilizing the channel
attention module and the subspace attention module feature
responses. Furthermore, an advanced Hierarchical feature
fusion strategy is introduced to achieve comprehensive fea-
ture aggregation, so that features from various sources are
progressively discriminated and fused to improve derain-
ing performance. On both synthetic and real-world rainy
datasets, quantitative and visual results show that our de-
veloped model outperforms other comparing deraining ap-
proaches.
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