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Abstract

Vegetation is desirable in most urban spaces, but its
management is not easy, mainly the intersection between
trees and sidewalks, or trees and electric wires. This work
presents a method to automatically detect the latter using
ground-level images instead of aerial images. Real-world
ground-level urban images are cheap to collect, but they
may be hard to label and classify because neural networks
tend to be overconfident, and manually labeling thousands
of images may be cumbersome and unfeasible. We propose
using Focal Loss to calibrate an overconfident neural net-
work and the use of the training protocol Noisy Student to
lessen the burden of manually labeling images. Our results
show that these methods improve the results over the Cross-
Entropy loss, and the confidence levels of the predictions
can be used in an Active Learning system to improve the
overall accuracy.

1. Introduction
The presence of aerial electrical wires alongside trees

on sidewalks may cause several problems, ranging from
the disruption of electric distribution, electrocution [17] and
even the start of wildfires [15] as shown in Fig. 1. There-
fore, it is crucial to properly manage the vegetation to avoid
the issues mentioned above.

Usually, the identification of trees near electrical wires
is performed manually (e.g., through a citizen report), and
an automatic system to detect trees close to electrical wires
could decrease the necessity and inaccuracy of person re-

Figure 1. Ignition started due to a short-circuit in electrical wires
close to trees’ branches during a storm. Image from: Robert
Lawton (https://commons.wikimedia.org/wiki/
File:Crossed_wires.JPG), ”Crossed Wires”, https:
//creativecommons.org/licenses/by-sa/2.5/
legalcode

ports. Currently, some proposals that map tall vegetation
close to electrical wires (or assess the risk of their interac-
tion) are based on aerial images [3,10,21,23]. For instance,
Wanik et al. [21] propose a LIDAR-based approach to di-
rectly assess the risk of an outage during a storm in locations
where tall vegetation and overhead power lines are close.

We propose a method to automatically detect trees and
wires intersection using ground-level images in this work.
Several papers assess urban features from ground-level im-
ages, i.e., urban imagery as Google Street View (GSV)
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ones [1], or user collected images with smartphone cam-
eras [2, 7]. These images allow one to analyze various as-
pects of an urban environment, for instance, physical as-
pects like urban vegetation distribution [13], or the relation-
ship between the environment (e.g., greenery, littering) and
health or safety outcomes [11, 16]. Another practical appli-
cation for systems based on such images is the detection of
issues in the city like quantification of walls degraded by
graffiti [20]. The acquisition of urban images by citizens is
cheap, accessible, as demonstrated and made available by
crowd-sourced platforms Kartaview and Mapillary [2, 19],
and aligned with the citizen science efforts [5].

The detection of intersections of trees and electrical
wires is also possible from ground-level images, and to the
best of our knowledge, no other work has done that. Fig-
ure 2a presents an example of part of a GSV image. The
right side of the image clearly shows some electric cables
between two large boughs and some electric cables touch-
ing one of the boughs from below. However, due to the
complexity of urban scenes, sometimes it may be hard to
assess the intersection automatically. For instance, a hu-
man being can infer that the cables intersect the other tree
(Fig. 2a, middle left of the image), but the intersection is
not clear anymore. Besides that, several other challenges
are present when dealing with GSV images as an imbalance
of classes (presence of intersection, or not), different ap-
pearance variations (Fig. 2b shows a difficult to deal glare
condition), hardness to annotate at scale (annotation is cum-
bersome and time consuming), and others.

We first collected 50.000 urban ground-level images to
build a dataset for training, testing, and validating our
method. It is the first public dataset to model trees and
wires intersection classification. Using the semi-supervised
Noisy Student training protocol [22] we avoid labeling the
whole dataset, and we could address the natural imbalance
of the dataset using Focal Loss (FL) [14] as the cost func-
tion. Our experiments shows an excellent performance of
the proposed method. In our experiments training with
FL achieved 83.7% and 78.8% recall rates with respect to
classes with and without intersections respectively, and an
overall test accuracy of 55.3%.

Our contributions are three-fold:

• A public dataset with urban images, eleven thousand
labeled for trees, electrical wires, and intersections.

• A method based on FL and Noisy Student training pro-
tocol.

• An experimental comparison between FL and the
vanilla Cross-Entropy loss (CE) cost functions for this
classification problem

2. Method
We review the Noisy Student method and then review the

Focal Loss before presenting our approach to classify trees
and wires intersection.

The Noisy Student training protocol [22] is a semi-
supervised approach created to leverage large amounts of
not annotated data. The basic idea is to train a neural net-
work model, or teacher, with the labeled data, apply the
teacher model to generate pseudo-labels for both the labeled
and the unlabeled data and then use the whole dataset with
the pseudo-labels to train another neural network model,
the student network model. Besides being trained only
with pseudo-labels (rather than ground truth labels), the stu-
dent network is also required to include input noise, that is,
data augmentation over the input images implemented with
RandAugment [4] and also model input, that is, Stochastic
Depth [9] and Dropout [18]. Figure 3 illustrates the noisy
student model/protocol.

The Focal Loss cost function [14] is a generalization of
the vanilla Cross-Entropy loss to deal with the class imbal-
ance in object detection due to a significantly large number
of easy negative cases in comparison with positive cases.
Formally it is defined as:

FL(ŷt) = −αt(1− ŷt)
γ log(ŷt)

where αt is the weight assigned for the class of sample t, γ
is the focusing parameter, y, and ŷ are respectively the true
and the predicted label by the model, and ŷt is defined as:

ŷt =

{
ŷ if y = 1

1− ŷ otherwise

The intuition behind the Focal Loss function is that by in-
creasing the focusing parameter, γ, samples correctly clas-
sified will have a smaller impact on the cost function (i.e.,
the factor (1−pt)

γ will be small), while samples misclassi-
fied will have a larger impact. In this sense, one may inter-
pret correctly classified samples as ”easy” samples or, on
the other hand, more difficult samples will have a larger
weight.

We partially used the Noisy Student protocol, i.e., we
trained a teacher model using only the labeled images, then
we used the first-generation teacher to generate pseudo-
labels for all the unlabeled images. Then we trained a
noisy student model using the labeled and the unlabeled
images now labeled with pseudo-labels generated by the
first-generation teacher. After that, we used the noisy stu-
dent model to generate a new set of pseudo-labels, replac-
ing the pseudo-labels generated by the previous generation
teacher. Thus effectively, the noisy student model becomes
a second-generation teacher model. We repeat this iteration
of teachers generating new pseudo-labels over the same set
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(a) (b)

Figure 2. Images from Google Street View. (a) Trees in contact with electrical wires. (b) Bad visibility due to sun glare.

Figure 3. The Noise Student training protocol. Image from [22].

of unlabeled images and combining pseudo-labeled images
with the training labeled images to train new students un-
til convergence. We use Early Stopping as our convergence
criteria for both the first teacher and every subsequent stu-
dent network. The Noisy student protocol is not the same as
the original proposal because we do not use any form of data
augmentation or model noise. Besides that, the model’s size
is kept constant from one teacher generation to the next.

Algorithm 2 describes formally the procedure used to
train a student in pseudo-code. Dt, Dv correspond to the
training and validation datasets, respectively. Xt, Xv, Xu

are sets of images for the training, validation, and unlabeled
datasets. Notice that both Xt and Xv have the correspond-
ing label sets Yt and Yv , but the labels for the unlabeled
images Xu are pseudo-labels Ŷu generated by a trained net-
work ϕt referred here as the teacher network. We define
maxPatience (Alg. 1 and 2, lines four and five, respec-
tively) to 10, which means that the network converged if it
can not improve the accuracy over the (labeled) validation
dataset for more than ten epochs. The first teacher network
ϕt is trained using the same procedure as the student (see
1), but using only the training and validation datasets Dt

and Dv .

3. Experiments
The proposed dataset has 50k images, each with a reso-

lution of 640x640 pixels, and the authors label 11k of them
following a simple label protocol described later. We split

Algorithm 1: The first teacher training procedure
Input: Dt = {Xt, Yt}, Dv = {Xv, Yv}
Output: ϕt

Initialize ϕt;
Patience = maxPatience;
D = Dt;
Let lastAcc be the accuracy of ϕt over Dv;
while Patience > 0 do

Optimize ϕt using D;
Let newAcc be the accuracy of ϕt over Dv;
if lastAcc < newAcc then

lastAcc = newAcc;
Patience = maxPatience;

else
Patience = Patience− 1;

end
end

the 11k labeled images into training, validation, and test
datasets, each with 5k, 3k, and 3k images.

3.1. Collecting and labeling the dataset

We first collected the metadata of Google Street View
(GSV) images, which contains an identifier that allows the
request for an image through the GSV API. This platform
allows one to select arbitrary regions in any country around
the world and, for each region, collect all the metadata for
images made available by GSV. Besides an identifier for
each image, the metadata also contains its location, times-
tamp, and the vehicle’s forward direction. A panorama is
also associated with each metadata, i.e., a collection of im-
ages that compose a panoramic image. Since our objects
of interest are the trees and the electric wires, we selected
images corresponding to four directions for each panorama:
the vehicle’s forward and backward directions and the side
window view direction.
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Algorithm 2: The student training procedure
Input: Dt = {Xt, Yt}, Dv = {Xv, Yv}, Xu, ϕt

Output: ϕs

Ŷu = ϕt(Xu);
Du = {Xu, Ŷu};
Patience = maxPatience;
D = Dt

⋃
Du;

Let lastAcc be the accuracy of ϕs over Dv;
while Patience > 0 do

Optimize ϕs using D;
Let newAcc be the accuracy of ϕs over Dv;
if lastAcc < newAcc then

lastAcc = newAcc;
Patience = maxPatience;

else
Patience = Patience− 1;

end
end

Labeling strategy for challenging images Urban
scenery images can be complex, and one of the difficulties
is the depth of information lost in 2D images. In our partic-
ular case, some intersection instances may be ambiguous to
determine if wires appear before or contact the branches of
a tree.

Due to this complexity, different human annotators may
judge the same picture as having distinct classification la-
bels. To capture possible ambiguities, we propose a new
label for challenging images, so an annotator may either
consider an image as a positive (an intersection is present),
negative (no intersection), challenging (an intersection may
be present, or not), or having no trees. Formally we define
four possible labels for an image, these are:

• Trees w/ int.: Trees with an intersection- the images in
this class have one or more trees, and the intersection
between the branches and the wires is visible;

• Trees maybe w/ int.: In this case, both the trees and the
wires are visible, but it is challenging to tell if they are
in contact or not;

• Trees w/o int.: Images in this class have trees but no
visible wires;

• No trees: There are no visible trees in this class.

3.2. The neural network model

In our experiments, we used the network architecture
MobileNetV3 [8] pretrained with the ImageNet dataset [12]
both for teacher and student networks. We also experi-
mented with all the family of EfficientNet networks (i.e. B0
to B7) as proposed in [22], both using the same architecture

across all generations of teachers and student networks and
also using for each new generation an architecture that has
the same number or a bigger number of parameters. Sur-
prisingly, the best results in terms of test accuracy were ob-
tained by using the MobileNetV3 in all generations. Fur-
thermore, we also experimented using random initialization
for the network weights and observed that for every tried
architecture using weights pre-trained with the ImageNet
dataset provided better results.

3.3. Computing the confidence of the prediction

A possible approach to estimate the confidence of the
network over its predictions is to take the maximum value
out of the vector obtained by computing the softmax of the
output of the network. Unfortunately, this approach leads
to uncalibrated networks that are overconfident in their pre-
dictions. We observed that a student network, trained with
uncalibrated pseudo-labels, overfits to the training data, and
moreover, the pseudo-labels To mitigate this issue, we ap-
ply the temperature scaling strategy proposed in [6]. Using
this strategy we want to find new confidence values for the
predictions of the network such that samples correctly clas-
sified have a higher confidence value, and samples misclas-
sified have a smaller confidence value.

For completeness we briefly describe here the strategy to
find the optimal temperature scale factor T to calibrate the
predictions of a trained network. Let x ∈ Xv be a sample
from the validation dataset. In this section we consider the
true label yx ∈ Yv of sample x to be a one-hot encoded vec-
tor and the prediction ŷx a probability vector, computed as
the softmax σ(.) of the output logits zx of a trained network
ϕ, that is

ŷx = σ(zx) = σ(ϕ(x))

Let the confidence of the network for this prediction be

qx = max
k

ŷ(k)x ,

that is, the confidence is the maximum value in the predicted
vector ŷx. Notice that (k), for k ∈ K = [0, 1, 2, 3], in the
exponent indicates a position in the prediction vector corre-
sponding to the predicted class for sample x. Dividing zx
by a temperature scale factor T and then taking its softmax
value produces a scaled prediction vector ŷ′x = σ(zx/T ).
When T → ∞ the values of the vector ŷ′x approach 1

|K| ,
that is, every class will have nearly the same probability,
thus the confidence of the network for this prediction is the
nearly same for every class. In the opposite case, when
T → 0, ŷx will approach a vector where every value is
zero, except for ŷ(k)x which will be one, that is, the confi-
dence of the network for this prediction will be 1. Since the
temperature scale factor is applied over the logits, before
taking the softmax, the final prediction is kept unchanged,
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Figure 4. Challenging samples which may be confusing (to an human annotator) to determine if there are intersections between trees and
wires or not. Images from GSV.
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thus the temperature scaling doesn’t change the accuracy of
the network.

The optimal temperature scale Topt to calibrate the pre-
dictions of the network as proposed by [6] is obtained by
minimizing the Cross-Entropy loss between the scaled pre-
dictions vector y′x and the corresponding true label yx for
sample x from the validation dataset, formally:

Topt = min
T

E[
K∑
k

y(k)x log(ŷ
′(k)
i )]

= min
T

E[
K∑
k

y(k)x log(σ(zx/T )
(k)])

finally the new calibrated confidence q′x is defined as:

q′x = max
k

σ(zx/Topt)
(k)

In our experiments we compute Topt only after the train-
ing of a network is done. Then we use this trained network
as a teacher to compute pseudo-labels (using the unlabeled
dataset) for a new student. These pseudo-labels are then
calibrated with Topt and only then they are used to train the
next student network generation together with the labeled
training dataset.

We performed experiments by training a sequence of
teachers/student networks using either Cross-Entropy or
Focal loss as cost functions. We experimented with dif-
ferent values for the hyperparameters γ and α of the FL
(the weighting vector and the focusing parameter, respec-
tively) [14]. We report the results for γ = 2 and
α = [0.5, 0.1, 0.2, 0.2]. Note that the weights vector
α has an assigned weight for each of the classes described
at Section 3.1.

4. Results and Discussion
This section analyzes the accuracy and confidence levels

trade-off observed by choosing either FL or CE as cost func-
tions. We characterize the confidence level of a prediction
as the highest probability in a prediction vector outputted
by the network for a given image. We observed that training
with the FL rather than Cross-Entropy provides lower confi-
dence levels for both challenging and incorrectly classified
images. In Figs. 5a to 5g we present in the vertical axis
of the upper (bottom) half of the graph the number of cor-
rectly (incorrectly) classified images. The horizontal axis
of these same graphs describes the confidence with which
these samples were classified. Note that the vertical axis is
log-scaled for better visualization. Each bar corresponds to
a confidence bin, including samples predicted with confi-
dence higher or equal to the value of the previous bin and
strictly smaller than the current bin.

Figures. 6a and 6b present the confusion matrices for
the classification results obtained by a network trained with

the Cross-Entropy and with the FL cost functions, respec-
tively. These matrices contain the classifications for the test
dataset, and the labels are: (0) Trees w/ an Intersection,
(1) Trees maybe w/ Intersection, (2) Trees w/o Intersection,
and (3) No trees. Table 4 shows the recall rates, over the
test dataset, for the network trained with the Cross-Entropy
(CE) and Focal Loss (FL) cost functions. The last row in
Table 4 (2+3) is the union of these classes, that is, images
without intersections regardless of the presence of trees.

- Recall CE Recall FL
(0) 66.5% 83.7%
(1) 64.1% 28.3%
(2) 58.0% 71.6%
(3) 22.7% 22.7%

(2+3) 63.7% 78.8%

As observed in each pair of graphs (in Figs. 5a to 5g),
the challenging images (i.e., ”trees maybe w. int.”) are
classified (in)correctly across all levels of confidence when
the CE is used. In contrast with FL, confusing images are
classified with maximum confidence of 55%. Furthermore,
most incorrectly classified images with FL also have a low
confidence score.

On the other hand, the network trained using the FL
achieved a recall of 83.7% for class (0) of positive cases,
while the recall for the same class obtained with CE was of
66.5%. For practical applications like the detection of trees
entangled with wires the higher recall rate for positive cases
is better because an human agent can simple discard false
positives. We conjecture that the high recall for the other
classes obtained by vanilla CE was due to equal weights
assigned to each class. In a future work we will explore
the use of active learning based on the confidence of the
network for a prediction, that is, given an image, its loca-
tion and the direction of the camera, if the prediction for
this image has a low confidence then another images from a
close location where the camera is pointing to the point as
before can be collected and used together to improve the fi-
nal prediction. The combined classification of both images
could be used to determine the presence or absence of a tree
in contract with electrical wires with higher accuracy and
confidence.

5. Conclusion
The observed recalls for non-challenging images (i.e.,

83.7% for the images with intersections and 71.6% for im-
ages without intersections) provide evidence that a system
to detect the intersections is feasible and could be imple-
mented with the current technology available. Using the
Noisy Student training protocol enables the usage of many
images requiring only the manual labeling of a small frac-
tion of them.
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(a) Results for the training partition with CE. (b) Results for the training partition with FL.

(c) Legend for the colors in the graphs.

(d) Results for the validation partition with CE. (e) Results for the validation partition with FL.

(f) Results for the test partition with CE. (g) Results for the test partition with FL.

Figure 5. Results for the comparisons between the networks trained with Cross-Entropy or Focal Loss at the training, validation and test
partitions.
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(a) (b)

Figure 6. (a) Confusion matrix for training with FL over the test dataset. (b) Confusion matrix for training with CE over the test dataset.

(a) (b) (c)

Figure 7. Images from Google Street View. (a) Image misclassified by both networks as ’Trees w/o int’. The confidence for prediction
dropped from 59% with CE to 49% with FL. (b) Image misclassified with CE as ’maybe with intersection’ and correctly classified with FL
as ‘without intersection‘. (c) Image misclassified with FL as ’without intersection’ but with a low confidence of 40%.

Due to the complexity of images in the urban scene, sev-
eral images may be hard to classify, even for a human an-
notator. An artificial class can represent such challenging
images. Training with the vanilla CE cost function resulted
in a network with an overall test accuracy of 60.5%, while
the same network architecture trained with FL cost func-
tion had an overall test accuracy of 55.3%. Nevertheless,
FL is better suited than the CE cost function to keep pre-
dicted challenging confidence and incorrectly classified im-
ages low. Future works consider the coupling of an active
learning system based on the confidence levels of the pre-
dictions.
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