
 

Abstract 

 

Object detection is to effectively find out interested 

targets in images and then accurately determine their 

categories and positions. Recently many excellent methods 

have been developed to provide powerful detection 

capability. However, their performance may degrade 

significantly under severe weather such as smoky 

conditions. In this paper, we propose a contrastive 

learning-based robust object detection algorithm for 

smoke images. The proposed object detector consists of 

two modules: contrastive learning module and object 

bounding box prediction module. The first module learns 

representation vectors by maximizing agreement between 

different augmented views of the same smoke image. These 

representations are then sent to the second module to yield 

the bounding box for each object. In addition, we also 

propose a novel affine data augmentation method. 

Extensive experiments have been conducted on A2I2-Haze 

dataset which is the first real haze dataset with in-situ 

smoke measurement aligned to aerial and ground imagery. 

This dataset is also the only dataset used in the 5th UG2+ 

challenges of CVPR 2022 for both training and testing. 

Compared with state-of-the-art methods, evaluation 

results show the superiority of our proposed object 

detector. 

 

1. Introduction 
 Object detection, one of core issues in computer vision 

fields, aims to effectively find out interested targets in 

images and then accurately determine their categories and 

positions [1]. It has some down-stream applications, in 

particular, in autonomous driving, unmanned aerial vehicle 

(UAV) camera, surveillance, and visual question 

answering. So far, some excellent techniques have been 

proposed especially for object detection, and widely used 

in many areas. However, in severe weather scenarios such 

as smoky, hazy, and rainy environments [2-5], the 

performance of object detection algorithms may degrade 
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significantly because they usually assume that the inputs 

are clear images or videos [6]. Therefore, it is crucial to 

develop robust object detection on outdoor platforms like 

UAVs under real-world adverse conditions. 

In the past decades, object detection has been 

extensively studied, and a large number of methods have 

been presented for natural objects (e.g. pedestrians, 

animals, and plants) and artificial objects (e.g. traffic signs 

and lights, vehicles, buildings, and bridges). Traditional 

approaches rely heavily on hand-crafted features extracted 

from captured images or videos. However, these 

approaches usually are sensitive to tiny changes in lighting, 

pose, etc. 

Recently, with the rapid development of deep learning, 

convolutional neural network (CNN) has proved to be an 

extremely powerful tool in extracting features, spurring 

researcher’s passion in creating object detection methods 

via deep learning. Currently, deep learning approaches can 

be roughly divided into two categories, i.e. anchor-based 

methods [7-20] and anchor-free methods [21-25]. The 

former represents each object through an axis-aligned 

bounding box along with its label, while the latter express 

an object only by a single point at its bounding box center. 

The representatives of anchor-based approaches are R-

CNN series, YOLO series, and SSD, while those of anchor-

free methods are CornerNet and CenterNet. However, 

these excellent algorithms achieve pretty good detection 

results but dramatically inferior performance under 

adverse weather conditions. 

Smoke, consisting of dust and particles, is a normal 

atmospheric phenomenon. As we know, similar to haze, 

the brightness and contrast of images captured in smoky 

environments are always reduced, producing seriously 

degraded images. This may lead to a significant decline in 

the ability of the detection of critical objects. Thus, in this 

work, we focus on object detection under smoky conditions 

which is also the goal of Track 1 in the 5th UG2+ challenges 

of CVPR 2022. 

Contrastive learning, belonging to the class of 

discriminative representation learning, learns a 

representation by comparing among different samples. 

This comparison is implemented between positive pairs of 
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“similar” inputs and negative pairs of “dissimilar” pairs. 

By comparing them, the objective of contrastive learning 

that the representation of “similar” samples should be 

mapped close together while that of “dissimilar” samples 

should be further away in the embedding space, can be 

effectively accomplished. It follows that, contrastive 

learning has a clear advantage that it can neglect the 

superficial phenomenon of inputs while is able to learn and 

extract their internal consistency. Thus, we leverage it to 

seize the essential information of objects among different 

inputs, to help forge a robust object detection. 

In this paper, we propose a contrastive learning-based 

robust object detection algorithm for smoke images. The 

proposed algorithm has two modules: contrastive learning 

module and object bounding box prediction module. We 

first use the first module, to train a base encoder network 

and a projection head, so as to learn representations by 

maximizing agreement between different augmented views 

of the same smoke image through a contrastive loss in the 

latent space. The learned representations along with the 

original smoke image are then fed to the second module, 

generating three prediction features with different scales. 

These prediction features are employed to estimate the 

bounding box of each object. In addition, we also propose 

a novel affine data augmentation method to simulate UAV 

view angle changes. In this method, testing data are 

transformed by perspective transformation, into new 

images with different camera angles, which are then added 

to training data. 

Our main contributions can be highlighted as follows: 

1. In this work, we introduce contrastive learning to 

effectively seize the internal consistency of objects, and 

then propose a contrastive learning-based robust object 

detection algorithm for smoke images. 

2. Considering UAV view angle changes usually exist 

among photos shot by UAVs, we also propose a novel 

affine data augmentation method to simulate these 

changes. 

3. Experimental results demonstrate our proposed 

method is the current state-of-the-art (SOTA) in the 5th 

UG2+ challenges of CVPR 2022. 

2. Related work 

2.1. Anchor-based detectors 

Anchor-based detectors can be further classified into the 

following two types: two-stage methods and one-stage 

methods. Well-known R-CNN series [7-9] belong to the 

former, while the latter mainly includes YOLO series [10-

15], SSD [16], RetinaNet [17], and RefineDet [18]. For the 

two-stage approaches, in the first stage a huge number of 

candidate bounding boxes are established through a region 

proposal network based on a sliding-window mechanism, 

and in the second stage region-of-interest (RoI) pooling is 

leveraged to extract feature maps from each bounding box. 

In contrast, the one-stage detectors directly regress the 

bounding boxes, leading to high efficiency while 

sacrificing accuracy. 

R-CNN [7] is one of the earliest and successful object 

detection methods using CNN. In R-CNN, the traditional 

handcrafted feature tool is replaced by a CNN-based 

feature learning process, resulting in a significant 

performance boost. Its successor important variant, Fast R-

CNN [8], improves detection efficiency by a large margin. 

In this variant, an input image and multiple RoIs are input 

into a fully convolutional (FC) network. Each RoI is pooled 

into a fixed-size feature map and then transformed into a 

fixed-length vector, to output softmax probabilities and 

per-class bounding box regression offsets. Following Fast 

R-CNN, Faster R-CNN [9] introduces a region proposal 

network to construct region proposals, which are then sent 

into a RoI pooling to obtain proposal feature maps and 

bounding box positions. 

The first version of YOLO series, YOLO [10], was 

proposed by Redmon et al. in 2015. This technique uses a 

CNN to predict the class and bounding box of each object 

in a single run. Compared with YOLO, YOLOv2 [11] can 

detect 9000 different objects with more accuracy and lower 

complexity. It introduces anchor boxes to predict bounding 

boxes and develop a new network, namely DarkNet-19. 

Their subsequent variant is YOLOv3 [12] that is based on 

DarkNet-53. As its backbone, DarkNet-53 has 53 

convolutional layers but without FC layers. Inspired by the 

pyramid idea, YOLOv3 generates three scales of feature 

maps to detect different sizes of objects. In 2020, YOLOv4 

[13] was proposed to make everyone be able to use a 1080 

Ti or 2080 Ti GPU to train a super-fast and accurate object 

detector. It consists of CSPDarkNet-53 [26] as its 

backbone, SPP and PAN as its neck, and YOLOv3 as its 

head. YOLOv5 [14] is also proposed soon after the 

emergence of YOLOv4. In contrast to its four 

predecessors, YOLOv5 not only has the network with the 

smaller size of weight parameters, but also is faster. The 

latest version of the YOLO series is YOLOX [15]. It 

chooses YOLOv3 with DarkNet-53 as baseline and 

exceeds YOLOv5 by 1.8 % AP. 

Liu et al. proposed SSD [16] in 2016 to detect objects in 

images using a single deep neural network. In SSD, the 

output space of bounding boxes is discretized into a set of 

default boxes over different aspect ratios and scales per 

feature map location. A simple one-stage object detector 

called RetinaNet [17], is developed to demonstrate the 

effectiveness of a new loss function. This loss function is 

acted as a more effective alternative to previous approaches 

for dealing with class imbalance. To achieve better 

accuracy than two-stage methods and maintain comparable 

efficiency of one-stage methods, RefineDet [18] is 

specially designed by Zhang et al. It consists of an anchor 

refinement module and an object detection module.
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2.2. Anchor-free detectors 

Substituting key point prediction for bounding box 

estimation, CornerNet [21] and CenterNet [22] have 

outperformed their anchor-based counterparts. Without the 

concept of anchor, Law and Deng proposed CornerNet to 

detect an object bounding box as a pair of points, the top-

left corner, and the bottom-right corner. In CornerNet, a 

single convolutional network is used to predict heatmaps, 

and moreover a corner pooling is designed, which is a new 

type of pooling layer that helps a convolutional network 

better localize corners of bounding boxes. Besides 

CornerNet, CenterNet also does not rely on anchors. This 

anchor-free detector models an object as a single point, i.e. 

the center of its bounding box. Object size is then regressed 

directly from image features at the center location. 

Rashwan et al. proposed a new scale and aspect ratio aware 

architecture, i.e. MatrixNets. This method maps objects 

with similar sizes and aspect ratios into specialized layers. 

3. Proposed object detector 

Our proposed object detection algorithm mainly 

contains two modules, one being contrastive learning 

module, and the other object bounding box prediction 

module, as illustrated in Fig. 1. The former module is 

devoted to capturing the intrinsic agreement features 

among the different augmented versions of each same 

smoke image, and thus be able to learn their consistent 

representations. Then, the latter module does not only take 

original smoke image data, instead takes these 

representation vectors along with the original smoke image 

as input, to predict the bounding box for each object. 

3.1. Contrastive learning module 

Fig. 2 shows the structure of the contrastive learning 

module. Three components in total that are data 

augmentation, encoder network, and projection head, are 

included into this module, which is similar to SimCLR 

[27]. First, in the data augmentation, given a smoke image 

� randomly, we employ two image augmentation methods, 

namely image graying and random image brightness 

enhancement, to generate its relatedly augmented views. 

These two augmentations, denoted as ��  and �� , 

respectively, can be regarded as a positive pair of �. 

Second, the encoder extracts features ℎ� and ℎ� from the 

augmented smoke data examples ��  and ��, respectively. In 

this encoder, we leverage a well-known deep learning 

network, i.e. ResNet50 [28]. These extracted features are 

subsequently output as the consistent representation 

vectors of the data examples. 

Third, the last component, i.e. the projector that is also a 

nonlinear transformation, further maps ℎ�  and ℎ�  to their 

corresponding more abstractive characteristics ��  and �� , 

respectively. In the projection head, we use not a complex 

network but two simple MLPs each of which has only one 

hidden layer. In addition, between those two MLPs we also 

adopt a ReLU nonlinearity. 

Finally, we optimize the contrastive learning module 

using the following loss function: 

���	
 � 1
2� � ���2� � 1,2�� � ��2�, 2� � 1��

�

���
�1� 

���, �� � ��� !�"��� , ��� #⁄
∑ &��'��(���� exp �!�"��� , ��� #�⁄ �2� 

Figure 1: Overall framework of our proposed object detector. 
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where a batch of N examples are randomly sampled to 

construct 2N augmented images, in which for �� except �� 

the other 2N-2 augmented examples are acted as its 

negative examples. &��'�� ∈ .0,10 is an indicator function 

equaling to 1 if � 1 � , !�"�2, 3� � 243 ‖2‖‖3‖⁄  

represents the dot product between L2 normalized 2 and 3, 

and # denotes a temperature parameter [29-31]. 

3.2. Object bounding box prediction module 

As the same suggests, the second module aims to 

determine the bounding boxes of objects. This module 

consists of four components: pre-processing, backbone, 

neck, and head, as shown in Fig. 1. To be specific, Fig. 3 

gives the detailed diagram of the object bounding box 

prediction module. In the pre-processing part, we perform 

Transposed convolution to change the input representation 

vectors  ℎ�  and ℎ�   into the features  6�  and 6� . These 

features 6� and 6�, together with the feature   derived from 

� , are then pass through the backbone subnetwork of 

YOLOv5. 

YOLOv5 has four different versions: YOLOv5s, 

Figure 2: Diagram of the contrastive learning module. 

Figure 3: Illustration of the object bounding box prediction module. 
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YOLOv5m, YOLOv5l, YOLOv5x, where they have 

gradually increasing network depths and widths from 

YOLOv5s to YOLOv5x. In this work we employ the 

simplest version YOLOv5s to decrease the complexity. 

This YOLOv5s is composed of backbone, neck, and head, 

which are the same with those in [14], respectively. The 

backbone part mainly includes Focus and bottleneck, 

where Focus part is composed of convolutional layer, slice, 

and concatenation, and bottleneck mainly contains CBL in 

[14] and residual blocks. Next, the neck is used to collect 

feature maps from different stages, and is also mainly 

composed of CBL. Finally, the head is adopted to predict 

the bounding boxes of objects. As the loss function, we 

employ the loss functions of YOLOv5 to optimize the 

object bounding box prediction module. 

3.3. Data augmentation 

In this paper, we also propose a novel affine data 

augmentation method considering UAV view angle 

changes exist among shooting images. First, we take some 

photos with similar contents but with different camera 

angles and different shooting distances. Then, the 

homography matrix between each pair of similar images is 

computed by using perspective transformation. After that, 

we perform these homography matrices on every image of 

testing dataset, creating new transformed images. Finally, 

these transformed images are put to use in the training of 

network, together with original training data. 

4. Experiments 

4.1. Baselines and datasets 

In order to evaluate the performance of our proposed 

object detector, in experiments it is compared with widely 

used SOTA object detection methods including CenterNet 

[22], YOLOv5 [14], and twelve excellent methods 

proposed by CVPR 2022 challenge participants. The 

dataset used for training and testing is A2I2-Haze [32] that 

is the only dataset adopted in the track of object detection 

in Haze in the 5th UG2+ challenge of CVPR 2022. A2I2-

Haze is the first real haze dataset with in-situ smoke 

measurement aligned to aerial and ground imagery. This 

dataset consists of not only a total of 177 paired hazy/clean 

frame images clipped from 12 videos but also 240 

annotated clean images collected from the same sources for 

training, and 60 other smoke images for testing. In 

addition, we also employ the proposed data augmentation 

method. Affine transformation is performed on those test 

images, to produce 384 transformed images with different 

angles and different distances, which are then employed as 

the supplement to the training data. 

 

 

Table 1: Detection results of the SOTA methods and our 

proposed algorithm. 

Method AP (%) AP50 (%) AP75 (%) 

YOLOv5 [14] 36.63 55.75 42.29 

CenterNet [22] 27.74 44.72 29.59 

sl - 98.43 - 

asdfghjkl - 95.98 - 

longpham3105 - 95.69 - 

haoxl - 95.38 - 

thlbsj - 94.99 - 

Feiyu_Yao - 94.75 - 

Frank_Yao - 93.60 - 

da2986 - 92.94 - 

willer - 92.35 - 

tangweiyi - 92.35 - 

tanghulu - 92.09 - 

tangzixia - 86.23 - 

Proposed 80.77 98.49 95.42 

4.2. Implementation details 

We first use the training data to individually update 

weights only for the contrastive learning module. Once 

accomplishing this training process, the built 

representation vectors along with original images are then 

used as the input of the object bounding box prediction 

module to train its network. After all these tasks, the 

training of our proposed object detector is really finished. 

The proposed object detector is trained and tested on 

NVIDIA GeForce RTX3080 GPU. In the training process 

of the contrastive learning module, the batch size and the 

patch size are set to 8 and 512 × 512, respectively, and the 

stochastic gradient descent (SGD) optimizer is adopted 

with the learning rate initialized to 0.05 and decreased by 

90 percent at 150, 200, and 250 epochs in a total of 300 

epochs. In addition, for the training of the object bounding 

box prediction module, we set the batch size and the patch 

size to 32 and 512 × 512, respectively. Warmup is 

performed before the training. The learning rate is 

initialized to 0.01, and then the Cosine learning rate drop 

strategy is adopted in the training in a total of 500 epochs. 

4.3. Quantitative evaluation 

Table 1 gives the numerical results of object detection 

produced by the SOTA methods and our proposed detector. 

For those challenge participants, only their AP50 results are 

announced by CVPR 2022, as described in Table 1. From 

the results in this table, one can see that because neither 

YOLOv5 nor CenterNet takes measures to adapt to smoky 

conditions, they both obtain inferior performance. 

Although each of the twelve challenge participants gets 

high score in the AP50, our proposed algorithm still 

achieves the best average prediction result referring to 

object detection among all the evaluated methods. 
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Table 2: Quantitative results of ablation study. 

Method AP (%) AP50 (%) AP75 (%) 

Baseline1 79.29 98.48 95.25 

Baseline2 38.85 55.86 42.57 

Proposed 80.77 98.49 95.42 

 

4.4. Quanlitative evaluation 

Fig. 4 shows the qualitative comparison results 

conducted on six chosen test images from A2I2 dataset. 

From this figure, we can observe that YOLOv5 or 

CenterNet does not find the target well or produce false 

detection, so that they get low AP results. Moreover, our 

proposed algorithm detects the most objects among all the 

methods. 

4.5. Ablation study 

In this subsection, we will verify the validity of our 

Figure 4: Qualitative comparisons on six real smoke images in A2I2 dataset for GT and three methods, i.e. GT, CenterNet, 

YOLOv5, and our proposed algorithm, from left to right, respectively. 
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contrastive learning mechanism used in object detection by 

directly removing Module 1 from the framework in Fig. 1. 

In addition, the validity of the proposed data augmentation 

is also evaluated by avoiding employing those transformed 

data in the training. To clarify the effect of them, we 

compare our proposed method with the following two 

baselines: 1) Baseline1: We only train Module 2 with the 

augmented training data. 2) Baseline2: We train our 

proposed method only with original training data. Table 2 

compares their object detection results in the ablation 

study. From these results in Table 2, it can be seen that 

contrastive learning can learn the internal consistency of 

objects to further accurately determine target positions. 

Also, our proposed data augmentation method largely 

improves the AP results of object detection. 

5. Conclusions 

In this paper, we focused on object detection under 

smoky conditions and proposed a corresponding robust 

object detector. Contrastive learning is a strong tool that 

can extract the internal consistency of “similar” samples by 

comparing positive pairs of “similar” inputs and negative 

pairs of “dissimilar” pairs. We thus introduce contrastive 

learning to help forge a robust object detection. In the 

proposed algorithm, we first employ a contrastive learning 

module to effectively learn consistent representations for 

objects. The second module, namely object bounding box 

prediction module, takes these representation vectors as 

input, to determine the bounding boxes of objects. 

Considering that UAV view angle changes usually exist 

among photos taken by UAVs, we also propose a novel 

affine data augmentation method to simulate these angle 

changes. This augmentation method transforms the testing 

data via perspective transformation into new transformed 

images with different camera angles, which are further 

used for the training of network. In comparison with the 

current SOTA methods, experimental results indicate that 

our proposed object detector achieves more accurate 

detection performance for smoke images, and is the current 

SOTA in the Track 1 of 5th UG2+ challenges of CVPR 

2022. 
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