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Abstract

Image deshadowing algorithms remove shadows from
images. This requires both detecting where the shadow is
and, once detected, removing it from the image. This work
focuses on the shadow removal part. We follow a common
physical shadow formation model and learn its parameters
using a deep neural network. Our model consists of an ex-
isting network for shadow detection, and a novel network
for shadow removal. The shadow removal network gets the
predicted mask of the shadow region and the shadow im-
age and predicts six parameters per pixel. Remarkably, a
straightforward network architecture, that is considerably
smaller compared to alternative methods, produces better
results on standard datasets1.

1. Introduction
Shadows follow us wherever we go. Virtually every

image we capture contains shadows that impact a variety
of Computer Vision applications such as object detection,
recognition and image segmentation. This is why detecting
and removing shadows can prove useful.

Classic methods use physical image formation models
to deshadow an image. The parameters of the light source
and the surface material are estimated in the case of no oc-
clusions, and used to produce a shadow-free image. In the
common physical model there are 6 unknowns per pixel
(gain and bias per channel) and some prior, or user assis-
tance is required in order to solve the problem.

This changed with the rise of deep learning models, and
the release of large scale datasets. It is now possible to train
deep neural networks to estimate these unknowns, without
making explicit prior assumptions or resorting to human in-
tervention.

Various Deep Learning algorithms have been proposed
to solve the problem using different architectures and es-

*Denotes equal contribution
1Code is available at https://github.com/tamireiny/

local_linear_deshadow

timating various types of parameters. One approach treats
image deshadowing as an image-translation problem where
the goal is to translate a shadow image to a shadow-free im-
age. However, in practice we found that this creates some-
what blurry images and instead opt for a physics based ap-
proach. In this approach, the goal is to estimate the param-
eters of the physical model. Once the parameters are recov-
ered we can use them to recover the shadow-free image.

Image deshadowing can be separated into shadow detec-
tion and shadow removal. A shadow detection algorithm
takes an input image and produces a mask (either binary or
probabilistic) that determines which pixels are affected by
the shadow, and to what extent. We build upon recent work
and use an existing shadow detection network to detect the
shadow mask.

Our shadow removal part takes the input image and its
corresponding mask and removes the shadows accordingly.
To do that, we suggest a simple network that directly es-
timates 6 parameters per pixel. The resulting network is
considerable smaller, in terms of the number of its parame-
ters, than what was previously reported in the literature, and
we obtain an improved model that achieves better results on
standard datasets.

To summarize, the main contributions of our paper are:

• A novel network for estimating a physical model that
consists of 6 parameters per pixel

• Smaller network for shadow removal (100k parame-
ters) vs. 100M for other methods

• State of the art deshadowing performance on standard
datasets

2. Related work
Physics based methods. Early works often utilized

a physical shadow formation model. Barrow and Tenen-
baum [2] introduced the notion of “intrinsic images” to rep-
resent the idea of decomposing an image into reflectance
and illumination components. The shadow-free image can
be recovered by extracting the changes in the image which
arise from changes in the scene illumination. Different
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shadow-formation models have been suggested to recover
the intrinsic images.

Finlayson et al. [5] created a shadow-invariant image by
projecting the image colors onto a direction orthogonal to
that of the illumination change. The invariant image is used
to detect the shadow region and the shadows are removed
by zeroing the gradients on the shadow edge.

Shor et al. [16] derived an affine shadow formation
model by expressing the illumination as the sum of ambi-
ent and direct illuminations and describing the shadow for-
mation by blocking completely the direct light and partially
the ambient light. They estimate 4 parameters to model the
affine relationship between the shadow and the shadow-free
regions. The shadow region is divided into several areas to
account for shadow variations.

Arbel and Hel-Or [1] pointed out some of the challenges
related to real-world shadow removal task. For example,
shadows can be non-uniform, i.e., the shadow intensity or
color varies within the shadow region. This is caused due
to interactions between the ambient light and the occlud-
ing object or by the geometry of the shadowed surface. To
address this challenge they estimate a per-pixel per-channel
shadow scale factor that allows a spatially varying correc-
tion. The scale factor is calculated by fitting a smooth inten-
sity surface to the approximated shadow-free region using a
thin-plate surface model.

Deep-learning based methods. More recently, the rise
of learning-based methods and the publication of large-
scale shadow removal datasets such as SRD [15] and
ISTD [18] have led to a significant improvement in shadow
removal performance. These methods can be divided into
two categories: (i) methods that utilize a physical model
for shadow formation, training a network to estimate the
model parameters, and (ii) methods that treat the problem
as an image-to-image translation and disregard the physical
model.

The first category includes the works of Le and Sama-
ras [11, 12], Qu et al [15] and Fu et al. [6]. Qu et
al [15] proposed the Deshadow-Net which directly learns
the shadow matte layer that represents the illumination at-
tenuation caused by the shadow. The shadow-free image
is recovered by applying the shadow matte weights to the
shadow image. Their framework extracts multi-context
features, involving semantics and appearance information
which are then used to predict the shadow matte layer.

Le and Samaras [11] created the SP+M-net that is based
on a physical model of shadow formation. They formulated
a linear shadow formation model in which the shadow im-
age can be expressed as a function of the shadow-free im-
age, the shadow parameters, and a matting mask. The first
network, named SP-net, predicts a single set of the shadow
parameters using a regression loss with a pre-calculated
shadow parameters set (calculated using LS regression be-

tween the shadow and the shadow-free images). The sec-
ond network, named M-net, estimates a matting mask. The
shadow parameters are used to relight the shadow image
and the matting mask is used to combine the relit image
with the shadow image. In [12], Le and Samaras presented
a patch-based semi-supervised network. By incorporating
an adversarial framework with their physical model, they
were able to train the network on unpaired data.

Fu et al. [6] formulated the shadow removal as an ex-
posure fusion problem. Their framework predicts exposure
levels to create multiple over-exposed images and then a
second network computes pixel-wise kernels for fusing the
original shadow image with the over-exposed versions.

The second category, that treats image deshadowing as
an image-translation problem, includes the works of Wang
et al. [18], Hu et al. [9], Cun et al. [4], Hu et al. [8] and Liu
et al. [14].

The ST-CGAN of Wang et al. [18] employed a stacked
conditional GAN framework for joint shadow detection and
removal. The first generator produces a shadow detec-
tion mask while the second generator directly predicts the
shadow-free image. Hu et al. developed the MaskShadow-
GAN [9], a variant of the cycle-GAN that is trained on un-
paired shadow and shadow-free images. The generator of
the shadow image also gets the shadow mask image to pro-
duce a shadow image.

DHAN proposed by Cun et al. [4] predicts the shadow
mask and the shadow-free image in an end-to-end man-
ner. Their network is based on the context aggregation net-
work [3] with additional hierarchical aggregation of multi-
contexts features and attentions to better learn the shadow
region. They also designed a shadow matting GAN to syn-
thesize realistic shadow images from a given shadow mask
and shadow-free image and used it to enhance the train data.

Hu et al. [8] design DSC, a direction-aware spatial con-
text module that includes spatial RNNs. They embed-
ded multiple copies of DSC modules in a convolutional
neural network to learn features in different scales. The
same framework can be trained for shadow detection or for
shadow removal by replacing the shadow masks with the
shadow-free images as the ground truth and changing the
loss.

G2R-ShadowNet of Liu et al. [14] is a GAN based
weakly supervised network that generates pseudo shadows
in the shadow-free region taking the shadow image and
shadow mask as input. The generated images are used
to train the shadow-removal and shadow-refinement sub-
networks.

Shadow detection. Zhu et al. [22] use the architecture of
Xie et al. [19] to extract image features. Spatial information
from any two adjacent feature maps is extracted using Re-
current Attention Residual (RAR) Modules. The network
is bi-directional, using both top-down and bottom-up ap-
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proaches. The output is generated by combining both paths.
Zheng et al. [21] focus on the false negative and false

positive regions of the shadow binary mask by distraction-
aware shadow module. They proposed a network that fo-
cuses on the hard areas of shadow image. Specifically, they
use this module at several resolution levels and fuse be-
tween the modules outputs.

A different approach was proposed by Le et al. [13].
Since it is laborious to collect large amount of shadow im-
ages and their corresponding masks, a GAN was used to
annotate the shadow-affected images. This is done by at-
tenuating the shadow area in the image, according to the
labeled mask. Shadow region in those annotations is harder
to detect, thus improving the performance of the detector.

Earlier works such as Gong and Cosker [7] and Shor et
al [16] use semi-interactive methods for the shadow detec-
tion that requires the user input.

While some of the shadow removal works [11, 12, 14]
made use of a dedicated shadow detection network prior to
their shadow removal step, other works [4, 8, 15, 18] per-
formed both the shadow removal and detection jointly in an
end-to-end manner.

3. Shadow formation model
In this section we describe a common physical shadow

formation model and the assumptions that were previously
taken to simplify it. We then examine the validity of this
model on real-world shadow images and observe that under
the previously taken assumptions, this model is not suffi-
cient to represent the shadow formation in real scenes. To
improve this model, we propose to extend it to a local lin-
ear shadow model where the shadow parameters can vary
across the shadow region.

3.1. Linear shadow model

We use the physical shadow formation model described
in previous works [11, 16]. The purpose of this model is
to map the relationship between a shadowed pixel to its
corresponding lit pixel. The light intensity reflected from
a point on a diffusing surface depends on the reflectance
of the surface material and the scene illumination. For a
point lying on the shadow-free region, the illumination can
be expressed as the sum of direct and ambient illumina-
tion components. Thus, the light intensity reflected from
the shadow-free region is:

Ishadow−free
x (λ) = Rx(λ)

(
Ld
x(λ) + La

x(λ)
)

(1)

where Ishadow−free
x (λ) is the light intensity reflected from

point x in the scene at wavelength λ, Rx(λ) is the re-
flectance, Ld

x is the direct illumination and La
x is the am-

bient illumination.
The shadow region can be partitioned into the umbra and

penumbra areas. The umbra area is fully shadowed while

the penumbra area is a transitional area at the outer bound-
ary of the shadow that is partially shadowed. In the umbra
area, the direct illumination is completely occluded and the
ambient light is partially occluded. Thus, the light intensity
reflected from the umbra area is:

Ishadowx (λ) = ax(λ)Rx(λ)L
a
x(λ) (2)

where ax(λ) is the attenuation factor indicating the remain-
ing fraction of the ambient illumination that arrives at point
x in wavelength λ. From Eq. 1 and 2 the relationship be-
tween the intensity reflected from the umbra and shadow-
free areas can be derived:

Ishadow−free
x (λ) = ax(λ)

−1︸ ︷︷ ︸
wx(λ)

Ishadowx (λ) + Ld
x(λ)Rx(λ)︸ ︷︷ ︸

bx(λ)

(3)
where wx(λ) and bx(λ) are used to denote the linear model
coefficients.

The model of image acquisition by a camera that relates
the scene reflected intensity to the actual pixel intensity is:

Ii(k) =

∫
Ix(λ)S

k(λ)dλ (4)

where Ii(k) is the grey level of pixel i and color channel k
k ∈ {R,G,B} and Sk(λ) is the camera sensor sensitivity
for color channel k. Assuming that ax(λ) does not change
rapidly across the sensor’s spectral range and that the color
acquisition process of the camera is linear as shown in Eq.
4, we get the following linear equation:

Ishadow−free
i (k) = wi(k)I

shadow
i (k) + bi(k) (5)

By calculating the values of wi(k) and bi(k), i.e. the
shadow parameters, and applying them to the shadow im-
age, the shadowed area in the image can be removed.

In its most general form, this model has 6 unknowns per
pixel which leads to a total of 6n parameters, where n is
number of pixels in the shadow region. To simplify the
model, [16] further assumed that ax(λ) is constant for the
entire spectral range of the camera and thus wi(k) does not
depend on the color channel k. This resulted in 4 unknowns
per pixel. Furthermore, they divided the shadow region into
smaller areas and the same set of shadow parameters was
calculated for each area. In [11] they assumed that wi(k)
and bi(k) are both dependent on the color channel k, but
are constant across all pixels in the umbra area. Thus, a sin-
gle set of shadow parameters w(k), b(k) is calculated and
used to relit the shadow image:

Ireliti (k) = w(k)Ishadowi (k) + b(k) (6)

To account for variations in the shadow region, specif-
ically in the penumbra area, [11] estimated an additional
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matting layer that is applied to linearly combine the shadow
image with the relight image:

Îi
shadow−free

(k) = αi(k)I
shadow
i (k)+ (1−αi(k))I

relit
i (k)

(7)
The matting layer αi(k) adds one unknown parameter per
channel per pixel, resulting in a total of 3n + 6 unknown
parameters.

When examining real-world images, we find that the lin-
ear model with the previously taken assumptions is not suf-
ficient for describing the relationship between the shadow
and shadow-free pixels. This happens for various reasons.
For one, shadows are not uniform. For example, the atten-
uation of the ambient light can vary both in intensity and
in spectral distribution across the shadowed region due to
interactions between the illumination and the occluding ob-
jects. Another reason is that the geometry of the shadow
surface may not be flat. Finally, as can be seen in Eq. 3, the
bias term of the shadow parameters depends on the pixel
reflectance. These reasons motivate us to explore a more
general linear model.

3.2. Local linear shadow model

We propose to use the generalized form of the shadow
formation model that estimates w, b per pixel, per channel.
The advantage of this form is that it allows the shadow pa-
rameters to vary throughout the shadow region. We find that
using a small network with only 100k parameters (see table
4 for comparison with other methods) serves mainly as a
regularizer and leads to piecewise smooth coefficient maps
(see example in Fig 1 and in the supplemental). The learnt
coefficient maps are applied to the shadow image to recover
the shadow-free image as in Eq. 5.

4. Method

4.1. Network architecture

Our pipeline is divided into two main parts: shadow de-
tection and shadow removal, which are implemented using
two different neural networks. The shadow detection net-
work input is a shadow image, and it predicts either a binary
or probabilistic shadow mask.

The shadow removal network is shown in Fig 1. It takes
as input a shadow image and an optional mask (binary or
probabilistic) and outputs 6 channels with the same reso-
lution of the shadow image ((w, b) per pixel, per channel).
Later, using Eq. 5, we predict the shadow-free image.

Shadow Detection Network Architecture We use the
network architecture and initial weights suggested by Zhu
et al. [22], this network is referred as BDRAR.

Shadow Removal Network Architecture We use the
multi-scale context aggregation network (CAN), developed
in the context of semantic image analysis. The input image
and output have the same resolution. We are using the archi-
tecture suggested by Chen et al. [3], which includes 10 lay-
ers. The first 8 layers contain convolutions with increasing
dilation step size. The 9th layer is convolution layer without
dilation. For these 9 layers we use the leaky ReLU activa-
tion function presented by Xu et al. [20], for the last layer
we use a linear transformation (1 × 1 convolution) without
non-linearity, and change its output to be 6 channels, instead
of 3 (see network architecture in the supplemental). The us-
age of dilation allows the network to process information
from large receptive field (513 × 513), while using small
number of parameters. Our network minimizes the L2 loss
function:

loss =

3∑
k=1

N∑
i=1

(Î(k)shad.−free
i − I(k)shad.−free

i )2 (8)

Applying Eq. 5 in Eq. 8 we get:

loss =

3∑
k=1

N∑
i=1

(ŵi(k)·I(k)shad.i +b̂i(k)−I(k)shad.−free
i )2

(9)

4.2. Implementation Details

Shadow Detection Network: To generate the binary or
probabilistic masks we fine-tuned BDRAR on ISTD+ or
SRD datasets. As initial weights, we used the weights pub-
lished by Zhu et al. [22] that trained the model on the SBU
dataset [17] for 3000 iterations. The model outputs prob-
ability masks, while the binary masks were created by ap-
plying CRF [10] refinement followed by thresholding. We
split the ISTD+ and SRD train sets to train and validation
sets, with approximately 5% of the original train set serving
as the validation set. We split the original ISTD+ train set
such that the same scene would not appear both in the train
and validation sets.

We evaluate the results with IoU and BER (balance error
rate). Using fine-tuning, we managed to increase the mean
IoU, on the ISTD+ test set, from 0.794 to 0.91 (see example
in supplemental). At the same time, the BER dropped from
5.61 to 1.94. We obtain similar improvements on the SRD
dataset.

Shadow Removal Network: The network predicts w, b
maps from the shadow image and the predicted shadow
mask. We then use Eq. 5 to predict the shadow-free im-
age. We further clip the result to be within valid image
range of [0, 255]. The network loss function is described
in Eq. 9. The network weights are initialized with the iden-
tity matrix. The training runs for 500 epochs with constant
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Figure 1. System architecture: Our de-shadow system contains
two parts: detection and removal. The detection part (not seen in
the figure) takes as input a shadow image and outputs the predicted
shadow mask. Our removal part gets the predicted mask and the
shadow image and predicts w, b maps, each map has the same di-
mensions as the shadow image. The predicted shadow-free image
is calculated pixel wise using Eq. 5.

learning rate of 1 · e−4. During training an augmentation
of random flip (vertical, horizontal or both) is used. All the
train set is used for training, as we do not use a validation
set. The last model is considered the best and is used for
inference and evaluation.

5. Experiments
5.1. Datasets and evaluation metric

ISTD & ISTD+: ISTD, which was created by Wang et
al. [18], contains triplets of shadow, shadow free and bi-
nary mask images captured from 135 different scenes. In
total there are 1870 triplets, where 1330 are part of the train
set and 540 are part of the test set. Since the dataset was
collected outdoors without any lighting control, the non-
shadow area in the shadow-free image and shadow image
do not necessarily match. The difference was noted by Le
and Samaras [11] that suggested a color correction method,
using linear regression, to reduce the effect. The revised
dataset is denoted as ISTD+.

The ISTD dataset contains images of size 640× 480, so
a network with a smaller receptive field can be used. There-
fore, we remove the last dilating layer and use a network
with 9 layers. We use 32 channels per layer resulting in a
network with a total number of only 67K trainable param-
eters.

SRD & SRD+: The SRD dataset was created by Qu et
al. [15]. It contains pairs of shadow and shadow-free im-
ages. In total there are 3088 pairs, where 2680 are part of
the train set and 408 are part of the test set. The dataset is
diverse in the following aspects: scenes, illumination con-
ditions and casting objects with different reflectance prop-
erties and multiple silhouettes.

The dataset contains mostly images of size 840×640, so
a network with bigger receptive field is required. Thus, we
use all the layers of our network architecture. The number

of trainable parameters for this architecture is 130k, using
42 channels per layer. SRD images with dimension bigger
than 840 were resized to have maximum dimension size of
840.

Unlike the ISTD dataset, that includes the shadow
masks, there is no ground truth shadow mask for the SRD
dataset. Therefore the shadow mask must be estimated. We,
like previous works [4,6], use the shadow masks calculated
by DHAN [4], even though we observe that they do not cap-
ture the shadow regions accurately.

We used the same method as for the ISTD+ to create the
color corrected dataset SRD+. The color correction reduces
the RMSE on the non-shadow region from 12.79 for the
SRD to 12.35 for the SRD+.

Evaluation metric. We use two metrics to evaluate our
results - Root Mean Square Error (RMSE) and Mean Ab-
solute Error (MAE) similar to [11] 2. First, the shadow-
free image and predicted shadow-free image are resized to
256×256, then the error is evaluated in LAB space. The er-
ror is reported for the test set in the shadow, non-shadow and
whole-image regions. Note that our network is fully convo-
lutional and outputs the predicted shadow-free images with
the same resolution as the input images. We evaluate the
error metrics after resizing the images in order to be com-
parable to other methods.

5.2. Comparison with other methods

We compare our method against a number of compet-
ing methods. Le and Samaras [11], Liu et al. Sup [14],
Fu et al. [6], Cun et al. [4] and Wang et al. [18] train
their networks on a training data containing triplets of
shadow, shadow-free and shadow masks images, similar to
our method. Hu et al. [8] trained their network in an end-to-
end manner and need only the shadow and shadow-free im-
ages for training. In [12] Le and Samaras trained their net-
work on unpaired shadow and non-shadow patches cropped
from the shadow image and thus do not need the shadow-
free image. Liu et al. [14] synthesize pseudo shadows in
the non-shadow area in the shadow image and thus need
only the shadow and shadow mask for training. Gong and
Cosker [7] is an interactive method that relies on the user
input and does not require training.

Figure 2 shows a visual comparison on the ISTD+
dataset (we did not include works, such as [6, 18], that
changed the predicted shadow free image aspect ratio). Ta-
ble 1 reports the results on ISTD+ dataset 3. As can be seen,

2Please note at the work of Le and Samaras [11] our MAE evaluation
is referred as RMSE.

3Results are not exactly the same as the Authors published in their orig-
inal papers since our evaluation code was written in Python, whereas others
mostly used Matlab. The same python script was used for all methods. The
same applies to the SRD dataset.
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Shadow Shadow Free Ours Le et al. Liu et al. Sup Le et al. Hu et al. Liu et al.
[11] [14] [12] [8] [14]

Figure 2. ISTD+ comparison to other methods: (1st row) our method reconstructs the shadow area occluded by a sign very well and
the non-shadow area is kept very similar to the non-shadow area of the shadow image, the other methods have reconstruction errors in the
sign area. Le et al. [12] also add visible artifact at the non-shadow area. (2nd row) all expect ours and Hu et al. [8] fail to reconstruct the
umbrella umbra area. We slightly outperform Hu et al. [8] in the penumbra area. (3rd row) our shadow area reconstruction is comparable
with le et al. [11], and outperform other methods. (4th row) our method keeps the non-shadow area unchanged, while other methods add
very visible artifacts to the black glass tiles.

Shadow Shadow Free Ours Hu et al. [8] Cun et al. [4]

Figure 3. SRD comparison to other methods: (1st row) The motorcycle image is a challenging scene since the plastic and seat have many
black shades. As can be seen, all the methods reconstruct the shadow area in a comparable way. In the non-shadow area Cun et al. [4] add
white artifacts under the motorcycle logo, while we preserve the original scene. (2nd row) Our method reconstructs the shadow area with
the least amount of artifacts at the sand when compared to the other methods.

we outperform other methods in most metrics except MAE
in the non-shadow area and RMSE in the shadow area,
where we are in second place. In the non-shadow MAE
we are outperformed by Gong and Cosker [7]. However,
they require the user input during the inference to define the
shadow and non-shadow regions. As for the shadow RMSE,
we are outperformed by Fu et al. [6]. However, they as-
sume that they have access to the shadow-free image when

evaluating the shadow mask, whereas we are estimating this
mask from the shadow image.

We repeat the experiment on the SRD dataset and report
results in Table 2. We also report there our results on the
SRD+ dataset, which are not that different. We come either
in the first or second place in all cases. Cun et al. [4] that
performs very well on this dataset, does not perform that
well on the ISTD+ dataset. Figure 3 shows a visual com-
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Method Train Data RMSE MAE
Shadow Non-Shadow All Shadow Non-Shadow All

Le and Samaras [11] Shd., Shd.Free, Mask 9.68 3.33 5.77 7.19 2.91 3.61
Liu et al. [14] Sup Shd., Shd.Free, Mask 10.08 3.55 6.16 7.43 3.03 3.75

Hu et al. [8] Shd., Shd.Free 9.97 3.53 6.11 7.52 3.14 3.86
Liu et al. [14] Shd., Mask 11.21 3.83 6.64 8.87 3.01 3.96

Le and Samaras [12] Shd., Mask 13.00 3.99 6.92 9.69 2.93 4.03
Gong and Cosker [7] No Training 16.60 4.42 7.66 12.99 2.58 4.28

Fu et al. [6] Shd., Shd.Free, Mask 8.78 3.64 6.31 6.57 3.84 4.29
Cun et al. [4] Shd., Shd.Free, Mask 11.28 5.38 9.31 11.33 7.18 7.86

Wang et al. [18] Shd., Shd.Free, Mask 14.38 6.24 10.80 13.25 7.70 8.60

Oracle based solution No Training (using GT images) 3.69 1.47 2.55 2.46 1.45 1.61

Ours Shd., Shd.Free, Mask 8.91 2.42 5.27 6.56 2.77 3.39

Table 1. Shadow removal on the ISTD+ dataset: We report deshadow results on the ISTD+ dataset. The ”Train Data” column details
the data used for training by the different methods, where ”Shd.” means ”Shadow Image” and ”Shd.Free” means ”Shadow Free”. The
best and the second best results are highlighted with bold font and underline, respectively. Fu et al. [6], that outperform us in the shadow
area RMSE, compute at inference time the shadow masks using Otsu’s algorithm on the difference between the shadow and shadow free
images.

Method Train Data RMSE MAE
Shadow Non-Shadow All Shadow Non-Shadow All

Fu et al. [6] Shd., Shd.Free, Mask 10.63 5.27 9.13 8.14 5.87 6.51
Hu et al. [8] Shd., Shd.Free 11.67 4.40 7.62 9.14 3.56 5.14
Cun et al. [4] Shd., Shd.Free, Mask 9.41 3.96 6.85 7.53 3.66 4.75

Ours Shd., Shd.Free, Mask 10.53 4.03 6.99 8.23 3.41 4.77
Ours SRD+ Shd., Shd.Free, Mask 10.17 4.16 7.21 8.24 3.57 4.97

Table 2. Shadow removal on the SRD dataset: We compare our method with several other state-of-the-art methods. As can be seen, we
achieve competitive results in all measures.

parison on the SRD dataset.
Our shadow removal network is quite small - only 100k

parameters, compared to millions in competing methods.
See Table 4. We use the same shadow mask detection net-
work as previous methods did, so the overall size of both
our networks is the second smallest, yet we achieve SOTA
results. We only lag behind the method of Cun et al. [4] that
is not physics based.

5.3. Ablation study

To quantify the importance of the different ways to eval-
uate the parameters w, b we conduct an ablation study. See
Table 3. The table compares different ways to obtain w, b.
As can be seen, using the ground truth mask leads to the best
overall results (top row), which is to be expected. Our pro-
posed method of predicting a binary shadow mask works
slightly better than predicting a probabilistic mask, and
much better than not estimating it at all. Trying to predict

a shadow-free image directly works well, but not as well as
our method.

In another ablation study, we investigate the gap between
our solution and the optimal solution obtained by comput-
ing local w, b maps, same as in our network, but with the
use of the shadow image and ground truth shadow-free im-
age. The maps were created in the following manner. First,
we calculated three coefficients maps using least-squares
on a disk-shaped neighborhood sized 9, 19 and 33 pix-
els. Then, the maps were combined together according to
weights determined by the absolute normalized cross cor-
relation value. Values closer to one represent an area with
a good linear fit and thus is weighted higher. To further
improve the results around the shadow border, we follow
with an aggregation step. Since each pixel belongs to sev-
eral overlapping disk shaped neighborhoods we can com-
bine the estimations of all the relevant neighborhoods by
weighted average. The weight is again determined by the
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RMSE MAE
Network Prediction Mask Shadow Non-Shadow All Shadow Non-Shadow All

w, b Ground Truth 8.94 2.17 4.97 6.77 2.56 3.25
w, b Binary 8.91 2.42 5.27 6.56 2.77 3.39
w, b Probability 9.19 2.52 5.49 6.97 2.89 3.55
w, b Without 12.20 3.09 7.15 9.59 3.38 4.39

Shadow Free Binary 9.88 2.69 5.87 7.32 3.09 3.78

Table 3. ISTD+ Ablation Study: (1st row) using the ground truth shadow mask gives best results. Predicting a binary mask (2nd row)
gives better results than predicting a probabilistic mask (3rd row). Not using a shadow mask at all (4th row) gives the worst result. Trying
to predict a shadow free image directly (bottom row) leads to mediocre results.

Method Detection (M) Removal (M)

Le and Samaras [11] 42.5 141.2
Hu et al. [8] 0 79

Le and Samaras [12] 42.5 188.6
Fu et al. [6] 0 338.7

Cun et al. [4] 0 21.7
Wang et al. [18] 0 108.8

Ours 42.5 0.1

Table 4. Model Size: We and [11, 12] separate deshadowing into
two smaller tasks, detection and removal. [8] learns directly from
shadow to shadow free image without mask. [6] uses the ground
truth shadow-free images to extract the mask which is then used at
inference. [4, 18] predict the mask and shadow-free image in one
network.

absolute normalized cross correlation value.
The results are presented in Table 1 as the oracle based

solution. We found that there is a gap in performance be-
tween the optimal solution (2.46 MAE) and our method
(6.56 MAE). Given that the previous ablation experiment
(Table 3) reports little difference in the results between us-
ing the predicted shadow mask and the ground truth mask,
we conclude that improving the w, b estimation is key to
future progress.

5.4. Limitations

We achieve state of the art results on ISTD+ dataset, and
2nd best results on SRD, but still have some limitations.
First, we observe that we have limited success in generaliz-
ing across datasets. Evaluating the SRD test set using model
trained on ISTD+ train set, results in degradation in perfor-
mance, compared to a model trained on SRD train set, and
vice versa. Second, in some cases, our network predicts
non-physical w, b values (i.e., w<1 or b>0), which might
stem from errors in the data. See example in the supplemen-
tal. These maps can yield good shadow-free predictions,
but may lead to poor generalization on unseen data. Finally,
our method requires triplets of shadow, shadow mask and

shadow-free images for training, which is difficult to col-
lect.

6. Conclusions

We proposed a physics-based deep learning algorithm
for shadow removal. Our algorithm takes as input the
shadow image and a shadow mask and computes the per
pixel parameters required to remove the shadow. We calcu-
late these parameters using a local linear model and train a
neural network to predict them. Remarkably, our deshad-
owing network is considerably smaller (about 100K com-
pared to millions of parameters), compared to alternative
methods. Empirical evidence suggests that our method pro-
duces state-of-the-art results on standard datasets.
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