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Abstract

Modern applications such as self-driving cars and
drones rely heavily upon robust object detection techniques.
However, weather corruptions can hinder the object de-
tectability and pose a serious threat to their navigation and
reliability. Thus, there is a need for efficient denoising, de-
raining, and restoration techniques. Generative adversar-
ial networks and transformers have been widely adopted for
image restoration. However, the training of these methods
is often unstable and time-consuming. Furthermore, when
used for object detection (OD), the output images generated
by these methods may provide unsatisfactory results despite
image clarity. In this work, we propose a contrastive ap-
proach towards mitigating this problem, by evaluating im-
ages generated by restoration models during and post train-
ing. This approach leverages OD scores combined with at-
tention maps for predicting the usefulness of restored im-
ages for the OD task. We conduct experiments using two
novel use-cases of conditional GANs and two transformer
methods that probe the robustness of the proposed approach
on multi-weather corruptions in the OD task. Our approach
achieves an averaged 178 increase in mAP between the in-
put and restored images under adverse weather conditions
like dust tornadoes and snowfall. We report unique cases
where greater denoising does not improve OD performance

and conversely where noisy generated images demonstrate
good results. We conclude the need for explainability frame-
works to bridge the gap between human and machine per-
ception, especially in the context of robust object detection
for autonomous vehicles.

1. Introduction

Sensors are employed by unmanned autonomous vehi-
cles to navigate through their surroundings, with a substan-
tial dependence on vision-based sensors like RGB cameras.
As these sensors are impacted by bad weather conditions,
perception pipelines require considerable training on di-
verse data to increase the robustness on downstream tasks.
One specific scenario which causes distortion of images is
adverse weather conditions, like heavy snowfall, haze and
dust tornados. In these critical situations, weather corrup-
tions can hinder the object detectability and pose a serious
threat to navigation and reliability. Thus, there is a need for
efficient denoising, deraining and restoration techniques.

However, denoising techniques are often evaluated using
Image similarity metrics like PSNR, SSIM [8] and not by
their effectiveness in achieving results for the targeted appli-
cation. It is possible that the output image of these methods
has high image quality but is contextually irrelevant for the
object detection task. In this work we evaluate the effective-
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ness of restoration techniques for denoising images with the
intention of better object detection. By introducing a con-
trastive approach towards restoration evaluation, a method
for guiding the training of GANs and restoration progress
is proposed. Additionally, attention maps are leveraged for
understanding why these techniques assist object detection
and why certain classes are easily recognized or ignored.

Primary contributions of this work are:

1. Exploring two new data-based generative adversarial
network techniques for denoising weather corrupted
images.

2. Proposing a novel contrastive approach using a
weighted loss for evaluating the training progress and
post-training performance of the highlighted restora-
tion techniques.

3. Explaining the training progress of the proposed gen-
erative denoising methods using attention maps and
validating the results using object detection evaluation
metrics.

4. Evaluating the optimal noise level of the trained
Restormer denoising methods (colour and grayscale)
using attention maps and validating the results using
object detection evaluation metrics.

2. Related Work
The rapid development and deployment of autonomous

vehicles have exposed several critical challenges in com-
puter vision, one of which being object detection robust to
weather corruptions. At the foundation of this challenge is
the classic vision task of object detection, the progress of
which we summarize in the following sub-section 2.2. Ul-
timately, when these modules are integrated in autonomous
driving systems, their suggestively “black-box” nature, trig-
gers the concerns of industry professionals, carmakers and
users alike. Without human-tailored explanations for the
vehicle’s behavior, even the most advanced systems fail to
benefit from widespread adoption due to concerns about
safety and reliability. Especially in adverse weather, when
even human drivers exercise extra caution, these robust
models need to provide irrefutable explanations for the de-
tections made at every state. We discuss the progress of pre-
vious works in these 3 directions which set the background
of our work in restoration (Sub-section 2.1), detection (Sub-
section 2.2) and explainability (Sub-section 2.3).

2.1. Multi-weather corruption and restoration

The thermal variations accompanying weather change
can adversely impact the optical, electronic, and mechani-
cal components used in capturing visual data, thus harming

the performance of visual recognition systems [6]. Frigid
temperatures, snowfall or dense fog, for example, can cause
condensation on the lens; rain streaks on car windows can
generate glares or act as a double lens [20]. For an au-
tonomous car, it is critical and essential to overcome the
effects of weather conditions to ensure reliability. For ex-
ample, one study [4] looked at the performance of gated
cameras, while another [3] expanded the research to in-
clude stereo, gated, and thermal cameras, as well as Radar
and LiDAR scanners, and found considerable increases in
car recognition in varying levels of fog, and other ad-
verse weather conditions. The use of unique methodolo-
gies like domain adaptation to transform the weather con-
ditions while keeping objects of interest intact. For exam-
ple, [22] investigates the consequences of synthetic weather
images on road segmentation and traffic object detection,
whereas [24] shows that using synthetic time-of-day (night
imagery) improves localization, and [23] proposes a derain-
ing model to improve semantic segmentation. For their ef-
ficiency in image restoration and effectiveness in removing
weather corruptions, image restoration employing Restorm-
ers [34] and image denoising algorithms [5] are becoming
increasingly popular.

2.2. Object Detection

The introduction of fast detectors like SSD, Faster
RCNN, and YOLO transformed the face of object detec-
tion [16,25,26]. Taking 2D detectors forward, 3D detection
expanded with Stereo RCNN [15], AVOD [13], MVLidar-
Net [7] and MVF algorithm [37] bringing new perspectives
to the task of object detection. Specific tasks like multiscale
object detection [31], pedestrian detection in crowds [17]
and detection under adverse weather [32] have also been
solved using ensemble methods and data augmentation.

2.3. Explainability in Object Detection

The early rise of deployable machine learning technolo-
gies was accompanied by criticism of the “black-box”-like
nature of ML models. Particularly in sensitive applications
like medical diagnosis, self-driving cars and algorithmic
test checking, there is a need for thorough explainability
in models to ensure the trust and safety of users. To meet
these requirements, many techniques were proposed for ex-
plaining models [1, 2, 29, 30, 36]. In [21], explainability
is demonstrated by studying what each of its neurons has
learned to detect. [19] focused on individual predictions, us-
ing the technique of heatmaps to highlight important pixels.
Some works also interpret classifiers by identifying repre-
sentative training examples [11, 12]. [27] introduced a new
perspective to this challenge by making CNN-based models
more transparent by producing visual explanations.
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Figure 1. RestoreX-AI: Proposed contrastive approach for monitoring restoration models.

3. Methodology

This work proposes a contrastive approach (feedback)
for monitoring the training progress of restoration models
in the context of object detection. To put forward a diverse
range of training samples, new restoration techniques using
GANs have also been proposed. First, the restoration mod-
els were trained on different tasks and tested on the DAWN
dataset [10]. As the models trained, their progress was mon-
itored using the contrastive approach and simultaneously at-
tention maps were generations to support the detection task.
Finally, the OD performance of all the methods is compared
using standard evaluation metrics (class AP and mAP). The
4 restoration techniques experimented with in this study are:

1. Weather-NightGAN: Conditional GANs trained on
night-to-day task for multi-weather corruption restora-
tion.

2. Weather-RainGAN: Conditional GANs trained on
rain-to-clear task for multi-weather corruption restora-
tion.

3. Restormer (Gaussian colour denoising) for multi-
weather corruption restoration.

4. Restormer (Gaussian grayscale denoising) for multi-
weather corruption restoration.

3.1. Conditional Generative Adversarial Networks

GANs or Generative Adversarial networks are genera-
tive models that learn mapping between noisy z and output
image y, G : z → y. Conditional GANs learn a mapping
from observed image x and random noise vector z, to y, G :
x, z → y [9]. The generator G is trained to produce images
similar to the “real” images, as compared by an adversari-
ally trained discriminator, D, which is used for detecting the
“fakes”. The final objective of the conditional GAN can be
expressed as:

G∗ = argminGmaxDLcGAN (G,D) + λLL1(G)

where G tries to minimize this objective against an
adversarial D that tries to maximize it, i.e. G∗ =
argminGmaxDLcGAN (G,D).

In this study, we propose 2 new use-cases of the con-
ditional GAN for restoration purposes. In the first case, the
GAN is trained on night-to-day images and tested for multi-
weather corruption tasks. The intuition behind this is the
similarity in corruptions of night and bad weather images,
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like poor lighting and condensation on lens. In the second
use-case, the GAN is trained on only rain-to-clear images
(synthetically generated) and tested for multi-weather cor-
ruption tasks. The intuition behind this is the similarity in
corruptions of rain and bad weather images, like snow and
rain streaks. There is an additional challenge which notes
if the single-weather trained conditional GAN can adapt to
multi-weather corruptions.

3.2. Restormer

The Restormer is a highly efficient transformer that
was proposed for denoising tasks in image restoration
[35]. It consists of a multi-Dconv head transposed at-
tention (MDTA) and a gated-Dconv feed-forward network
(GDFN). These proposed architectural changes gave it the
ability to capture long-range pixel interactions, while still
remaining applicable to large images. It is both compu-
tationally efficient, and has the capacity to handle high-
resolution images, a feature critical for a task like adverse
weather object detection. In this work, we study the effects
of trained noise levels (15, 25 and 50) on the denoising per-
formance of colour and grayscale Restormers on the DAWN
dataset. The goal is to study how the noise level affects the
model performance in OD task and which level is optimal
for generating explainable detections.

3.3. Grad-CAM

Gradient-weighted Class Activation Mapping (Grad-
CAM) is a technique that produces visual explanations for
the purpose of making CNN-based models more transpar-
ent [28]. For getting the class discriminative localization
map Grad-CAM Lc

Grad−CAM ϵRu∗v of width u and height
v for any class c, first comes the computation of gradient
of the score for class c, yc (before the softmax), accord-
ing to feature maps Ak of a convolutional layer, i.e. ∂yc

∂Ak .
The neuron importance weights akc are attained by global-
average-pooling these gradients flowing back. The ‘impor-
tance’ of feature map k for a target class c is captured by this
weight akc . A weighted combination of forward activation
maps is performed, and followed by a ReLU to obtain, This
results in a coarse heat-map of the same size as the convolu-
tional feature maps. Grad-CAM is used for the purpose of
explaining object detection in the restored images of differ-
ent techniques compared in this study. We additionally use
the Grad-CAM model’s detection probability in calculating
the contrastive metric for monitoring training progress.

3.4. Proposed Approach: RestoreX-AI

Due to the instability of training of GANs, over-or-under
training does not always lead to the perfect solution images
for object detection. Parallelly, tuning on high noise levels
does not always provide the best images from the Restormer

model. Even after producing good images by standard met-
rics (PSNR, SSIM), their applicability for the OD task re-
mains uncertain, which brings the need for a new evaluation
standard. We propose using a weighted sum of the explain-
ability results (detection probability of class provided by the
Grad-CAM model) and the similarity of the predicted and
actual label to define this new standard. This weighted sum
is calculated for every stage of training (one stage can be
a user-defined set of epochs), and then used to monitor the
progress of the model. We introduce this new parameter
for assessing the quality of restoration which is calculated
using equation 1.

∆ϕ = ∆(Σ(S(p, a) ∗ d)/N) (1)

Here S is the similarity of labels that be measured ei-
ther by grouping the objects (cars, race cars and taxis have
similarity 1, person, groom have 1 and so on), or by strict
parameters (cars and race cars have similarity 0). p and a
are the predicted and actual labels of the object under de-
tection. N is the number of training samples generated in
that stage, which are used to evaluate the current progress
of that model. The explanation probability is d or the value
returned by the Grad-CAM model, which is its prediction
of what is present in the image. The quality of restoration
between stages can be denoted as ∆ϕ, or the difference be-
tween qualities at consecutive stages.

3.5. Datasets

For training the Weather-RainGAN and Weather-
NightGAN, corresponding images of the same scene in
rain-clear and night-day conditions were required. For the
Weather-RainGAN, the Rain 100L [33], a synthesized data
of rain streaks with corresponding rain-free images was
used. For the Weather-NightGAN, the Transient Attributes
dataset [14] was used. This data was generated by a high-
level image editing method which allows a user to adjust the
attributes of a scene, e.g., change a scene to be “night” or
“day”. The final testing of all restoration methods required
a multi-weather dataset with high-resolution images, for
which the DAWN dataset was selected. The DAWN dataset
is a large vehicle detection dataset which has captured im-
ages of driving scenes in adverse weather conditions [10].
It consists of 1000 images from real-traffic scenes as seen
in multiple adverse weather conditions including fog, snow,
rain, and sandstorms. The images have been annotated with
2D annotations(boxes) with 6 object classes namely car,
bus, truck, motorcycle, person and bicycle.

4. Experiments and Results
4.1. Restormer-based Grayscale Denoising

Section 1 of Table 1 shows the object detection scores
of Gaussian grayscale image denoising using the Restormer
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Figure 2. Foggy weather condition: Grad-CAM Attention Maps for (a) Restormer Grayscale Denoising (b) Restormer Colour Denoising
(c) Weather-RainGAN and (d) Weather-NightGAN.
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Figure 3. Snowfall weather condition: Grad-CAM Attention Maps for (a) Restormer Grayscale Denoising (b) Restormer Colour Denoising
(c) Weather-RainGAN and (d) Weather-NightGAN.
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Image Restoration Technique Class 1 AP
[car]

Class 2 AP
[bus]

Class 3 AP
[person]

Class 4 AP
[motorcycle] mAP

Gaussian Gray Denoising Restormer
Noise 15 1 5 22 0 6
Noise 25 1 9 23 0 6
Noise 50 1 0 29 0 6
Gaussian Colour Denoising Restormer
Noise 15 1 3 21 0 5
Noise 25 1 5 22 0 6
Noise 50 1 11 24 0 7
Weather-RainGAN
Stage 1 1 0 0 0 0
Stage 2 1 17 0 0 4
Stage 3 1 0 0 0 0
Stage 4 1 0 0 76 15
Stage 5 1 0 0 0 0
Weather-NightGAN
Stage 1 11 0 0 0 2
Stage 2 1 0 0 0 0
Stage 3 1 0 0 0 0
Stage 4 17 0 0 0 3
Stage 5 48 0 0 0 10

Table 1. Object detection performance of all 4 restoration methods as measured at the designed stages.

model. To compare the clarity and detection scores, mod-
els trained on different noise levels 15, 25 and 50 are in-
cluded in testing. The purpose of this experimentation is to
identify which noise level is optimal for the object detection
task, additionally verified by the explainability setup shown
in Figures 2 and 3. The overall mAP of object detection re-
mains constant on all noise levels, however individual class
scores are observed to fluctuate. The AP for bus and per-
son class increases from noise 15 to 25 by 4 AP and 1AP
respectively. However, the bus AP drops to 0 and person
AP boosts to 29 when noise is set to 50. The increase in
noise level would correspond to smoother images produced
by Restormer, however, it is observed that the bus AP drops
when noise level is set to 50. This is very interesting to note
and also observable in Figure 2, where the attention maps
shift from the bus to the car as the noise level increases.

4.2. Restormer-based Colour Denoising

Section 2 of Table 1 shows the object detection scores
of Gaussian colour image denoising using the Restormer
model. To compare the clarity and detection scores, models
trained on different noise levels 15, 25 and 50 are included
in testing. The purpose of this experimentation is to identify
which noise level is optimal for the object detection task,
additionally verified by the explainability setup. The over-
all mAP of object detection increases steadily by 1 with all
increasing noise levels, and individual class scores are ob-

served to increase as well. The AP for bus and person class
increases from noise 15 to 25 by 2 AP and 1AP respectively.
The bus AP further increases to 11 and person AP boosts to
24 when noise is set to 50. The increase in noise level is im-
proving the image quality and object detection. As visible
in Figure 3, the attention maps on the people are focusing
in the region of interest as the noise level increases.

4.3. Weather-RainGAN

The utilization of Pix2Pix GAN [9] for denoising in
mapped rain-clear images is proposed and validated through
experimentation. The dataset used is Rain 100L [33]. The
images in Rain 100 L are originally from BSD 200 dataset
[18]. The GAN model is trained with the rainy images as
source and clear images as target, expecting this technique
to produce denoised images on test images of the DAWN
dataset. The intuition behind this idea was the inherent
similarity between weather corruptions and synthetic rain
streaks, with the goal of the GAN learning to work similarly
on the 2 tasks. The training epochs are divided into stages
(1,2,3,4,5) to monitor the training progress of the GANs and
produce results of OD and explainability at each stage. As
expected, the GANs are producing highly unstable behavior
with increasing and 0 AP at most of the stages. However,
the sudden boost in AP at specific epochs inspired the for-
mulation of our proposed weighted explainability measure.
It can be seen in Section 3 of Table 1, that the bus AP is 17
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at Stage 2, but 0 at all other stages and the motorcycle AP
is 76 at Stage 4 and 0 at other Stages. The car AP however,
remains constant at 1 and overall mAP increases over time
due to the individual class performance boosts. As these
results are vague, we take a closer look at Figures 2 and 3,
to determine possible causes for this object detection per-
formance. It can be observed that the GAN is actually per-
forming quite well in denoising weather conditions like fog
and snow, and the attention maps are converging towards
the relevant objects as the training progresses. But while
the object detection results are very disjoint, the attention
maps progress continuously and show improvement. The
effectiveness of this GAN can be observed as a deraining
solution as the image not only gets clearer, but the object
detection and attention maps get more precise over training
as well.

4.4. Weather-NightGAN

Using PixtoPix GAN [9] for denoising (using mapped
rain-clear images) is proposed and validated using the ex-
perimental procedure. The dataset used is Transient At-
tributes dataset [14]. The GAN model is trained with the
night images as source and day images as target and is ex-
pected to produce denoised images on test images of the
DAWN dataset. The intuition behind this idea was the
inherent similarity between weather corruptions and dark
night images. As expected, the GANs are producing highly
unstable behavior with increasing and 0 AP at most of the
stages as shown in Table 1. This technique actually worked
out only for 1 class (car) and boosted its AP from 11 to 48
over the training period. By taking a closer look at Fig-
ures 2 and 3, possible causes for this object detection per-
formance can be determined. The GAN is performing ran-
domly in denoising weather conditions like fog and snow
using night training images, but the attention maps are still
converging towards the relevant objects as the training pro-
gresses. This is exactly aligned with the initial analysis and
intuition for the discovery i.e., cases in which object de-
tection is clear to a CV detector, although imperceptible
to the human eye. While the object detection results are
very disjoint, the attention maps progress continuously and
show improvement. The effectiveness of this GAN can be
observed in denoising weather conditions for cars, but not
for other classes. The purpose of our methodology is not
just to observe the restoration progress in a positive light,
but to also stop training in case the GAN goes too far. As
can be seen in this particular case, the GAN distorts the im-
ages after Stage 2, which may confuse detectors when tested
against it. In Stage 4, the GAN produces images which are
heavily distorted but oddly easier for car detection than even
the original image.

5. Conclusion

The goal of our work was to study the relationship be-
tween object detection performance and restoration in the
context of novel and established restoration techniques. The
scope of this study covered 4 restoration techniques, with
the goal of denoising images corrupted by over 6 different
weather conditions, namely fog, snowstorm, haze, dust tor-
nadoes, rainfall and mist. All 4 techniques worked differ-
ently, with the Restormer-based methods providing stable
all-rounded results, while the GANs provided class-specific
boosts in performance. The overall rise in mAP before and
after applying the techniques was 0%, 40%, 275%, 400%
respectively. Contrary to popular beliefs, greater denois-
ing does not always guarantee better object detection re-
sults as observed in this paper. And conversely, poor de-
noising does not always guarantee worse object detection
results. Particularly for specific tasks like bus and car detec-
tion, it can be seen that newer approaches like our proposed
method (Weather-RainGAN and Weather-NightGAN) can
boost the detector’s performance with its resultant images.
We present conditional GANs cases that perform superbly
on diverse weather conditions ranging from dust tornadoes
to snowfall, in spite of having trained on limited single
weather conditions.

We present 2 very interesting observations obtained
through this study:

1. GANs can generate images complex to the human eye,
but comparatively interpretable for vision models post
processing. This opens the possibility of exploring
the capabilities of vision models beyond the scope of
human vision and also warding off potential attacks
which can cripple modern detectors.

2. Restoration and denoising methods which produce
clearer images (as measured using standard image
quality metrics like PSNR), may in fact present a
greater challenge for machine perception in object de-
tection.

Understanding how differently humans and detectors per-
ceive information in the same image demands greater explo-
ration of explainability. Countless possibilities arise from
these disparate perspectives, for example, if a model sees
a pedestrian on a rainy road which a human cannot see, or
conversely a pedestrian visible to a passenger’s eye which
a model cannot capture. Although denoising techniques are
a popular choice for tackling corruptions, not all techniques
are suitable for all use-cases as seen for car detection. Cer-
tain classes respond better to denoising and restoration as
perceived by the object detectors. We hope to inspire further
research in this direction, for overcoming complex weather
corruptions using robust generalizable solutions.
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