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A. Supplementary Material
A.1. Shadow masks estimation fine-tuning

In figure 1, we present an example for the shadow mask
estimation before and after fine-tuning the BDRAR network
on the ISTD+ dataset. Similar to the results reported in the
main text for the ISTD+ dataset, in this example the IoU
increased from 0.06 to 0.95 and the BER dropped from 11.4
to 0.75 after the fine-tuning.
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Figure 1. Comparing predicted shadow mask before and after fine-
tuning.

A.2. Network architecture

Table 1 summarizes the parameters of the convolutional
layers in our network. The network contains convolutions
with a growing dilation rate which allows the network to
process information from a large receptive field (513×513),
while using a small number of parameters.

A.3. Estimated shadow coefficients maps

We show an example for our network estimated shadow
coefficients maps w and b for a single color channel (red) in
figure 2. As can be seen, the coefficients maps are piecewise
smooth and the values of w and b depend on the pixel’s color
and spatial location. For example, higher values of w can
be found at the upper shadow part close to the occluding
figure, where the shadow intensity is greater.

A.4. Qualitative results

In figures 3 and 4, we provide qualitative results for the
SRD dataset and additional results for the ISTD+ dataset

Layer Convolution Dilation Receptive Field

1 3× 3 1 3× 3
2 3× 3 2 7× 7
3 3× 3 4 15× 15
4 3× 3 8 31× 31
5 3× 3 16 63× 63
6 3× 3 32 127× 127
7 3× 3 64 255× 255
8 3× 3 128 511× 511
9 3× 3 1 513× 513

10 1× 1 1 513× 513

Table 1. Our shadow removal network

and compare our method with several other state-of-the-art
methods.
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Figure 2. Estimated shadow coefficients maps w and b for the red channel.
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Figure 3. SRD qualitative results.
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Figure 4. ISTD+ qualitative results.
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