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Abstract

Growing abundance of multi-dimensional data creates
a need for efficient data exploration and analysis. In this
paper, we address this need by tackling the task of tensor
dataset visualization and clustering, as tensors are a nat-
ural form of multi-dimensional data. Previous work has
shown that representing individual tensor modes via re-
spective linear subspaces and unifying them on the product
Grassmann manifold (PGM) is an effective and memory-
efficient way of representation. However, such representa-
tion may lead to loss of valuable temporal information. To
address this issue, we model temporal tensor modes with
a Hankel-like matrix, preserving sequence information and
encoding it with a linear subspace, fully compatible with
PGM. Unifying regular tensor modes and Hankel-like rep-
resentation of regular tensor modes then enriches represen-
tation on the PGM, with minimal increase in computational
complexity. By relying on geodesic distance on the man-
ifold, we facilitate analysis of multi-dimensional datasets
in two ways: 1) by enabling straightforward visualizations
using algorithms such as t-SNE; and 2) by fostering clus-
tering of data using distance- or similarity-based methods
such as spectral clustering. We evaluate our approach on
hand gesture and action recognition datasets as exemplars
of temporal tensor datasets.

1. Introduction
Data exploration and representation has been at the fore-

front of problems tackled by the pattern recognition com-
munity for a long time. Increase of multi-dimensional data
sources, such as various sensors and cameras, has been fol-
lowed by a steady rise of representation techniques. Their
common aim is to naturally mold and express rich informa-

tion contained in the data in a unified way. Such representa-
tion then enables analysis via visualisations, clustering and
classification, allowing for a deeper insight into the struc-
ture of a given dataset. In this paper we consider represen-
tation of multi-dimensional data with temporal information,
and their visualization and clustering as first steps of data
exploration.

A representation method of particular interest is the ten-
sorial form, where the nature of multi-dimensional data is
preserved without changing its inherent structure. Con-
cretely, a single data point is represented as a single ten-
sor. In addition to the simplicity of singular representa-
tion, this approach brings the benefits of established multi-
linear algebra, allowing for efficient computations on ten-
sor data. Applications such as hand gesture and action
recognition [5, 15, 22], medical data analysis and imaging
[16,27,28,31,42,46], multi-spectral imaging [3,17–19,23]
and others [4, 32] may benefit from tensor representation.

One way to efficiently represent a tensor as a single data
point is representation on the product Grassmann manifold
(PGM) [26], rooted in tensor unfolding [21] and subspace
representation [6, 30, 43]. An n-dimensional tensor can be
unfolded along each of its dimensions, generating n modes
[21]. With each mode essentially presenting a unique look
into the data contained within the tensor, by analyzing sepa-
rate modes it is possible to extract information inaccessible
by other means. For example, a video can be viewed as a
3-dimensional tensor containing two spatial and one tempo-
ral mode, and each mode can be compactly represented by
a respective linear subspace it spans.

A Grassmann manifold (GM) is defined as a set of linear
subspaces of same dimension, and can be geometrically in-
terpreted as a surface where these subspaces are points on
the manifold. Therefore, there is a GM corresponding to
each of the tensor modes. A single manifold expresses geo-

4869



Figure 1. A temporal tensor can be unfolded along dimensions D1, D2 and T to generate mode features. Hankel-like matrix is created
from temporal mode by applying a sliding window of size H to preserve sequential information. Unified tensor representation is created
on product Grassmann manifold with Hankel-like embedding (PGM-HLE).

metrical relations between subspaces of the same mode via
geodesic distance, enabling discriminative analysis within
the manifold [12, 14, 34, 36, 37, 41].

However, utilizing information from each mode in a uni-
fied manner requires the construction of a PGM from dis-
tinct factor (mode) manifolds [7, 25]. Analysis can then be
performed on the PGM in a similar vein, taking into account
that chordal distance between points on PGM is equivalent
to the Cartesian product of geodesic distances on respective
mode Grassmannians [13, 25]. The downside is that repre-
senting all tensor modes in the same way can lead to loss of
mode-specific information. For videos, this means potential
loss of discriminative temporal features, as linear subspaces
do not fully preserve sequence information [9].

In this paper, we address the lack of explicit handling of
temporal information, by exploiting the fact that subspace
representations of data on any number of factor manifolds
can be used on the PGM. To this end, we model the temporal
mode with a Hankel-like matrix, which can then be encoded
with a sequence-preserving linear subspace and incorpo-
rated with regular tensor mode representations via PGM.
We refer to this representation as product Grassmann Man-
ifold with Hankel-like embedding (PGM-HLE), shown on
Fig. 1. The idea of Hankel-like representations is strongly
motivated by its recent applications for sequential data, as
investigated in the literature [8, 24, 33, 35, 39].

Further analysis of tensors on PGM-HLE is done in the
context of chordal distance between two points on the man-
ifold [11, 38], a metric that unifies distances between sub-
spaces within a single factor Grassmannian [2]. In this
way, we provide valuable temporal context at a minimal in-
crease in computational complexity. Besides, our approach

demonstrates usability of specialized representations via
PGM.

Our main contributions are summarized as follows:

1. We introduce product Grassmann Manifold with
Hankel-like embedding (PGM-HLE), a temporal ten-
sor representation method based on tensor decomposi-
tion and Hankel-like matrix.

2. Next, we show the benefit of using PGM-HLE through
visualizations. In addition, we demonstrate a simple
use-case of tensor dataset visualization with t-SNE and
PGM-HLE.

3. Finally, we evaluate spectral clustering on PGM-HLE
with hand gesture and action recognition datasets.

The rest of the paper is organized as follows. In Sec. 2 we
describe PGM-HLE in detail, and how to use it for t-SNE
visualization and clustering. Sec. 3 describes the datasets
and experimental results. Finally, with Sec. 4 we conclude
the paper and suggest future work.

2. PROPOSED METHOD
In this section, we describe the proposed tensor represen-

tation on PGM-HLE, shown on Fig. 2. First, we formulate
the problem of tensor representation. Next, explain the n-
mode tensor representation of spatio-temporal features via
linear subspaces and then introduce Hankel-like embedding
of temporal modes. We describe our full tensor representa-
tion on the PGM with Hankel-like embedding. Finally, we
show how PGM-HLE enables distance and similarity-based
visualization and clustering algorithms such as t-SNE and
spectral clustering (SC).
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Figure 2. A greyscale tensor X is unfolded to generate mode features X1,X2,X3, and Hankel-like matrix X4. non-centered PCA is
performed to generate a set of subspace basis vectors. Tensors X and Y , represented by sets of subspaces Sp and Sq are compared using
geodesic distance ρ(Sp, Sq).

Notation is as follows. Scalars are denoted by lower-
case letters and sets are denoted by uppercase letters. Vec-
tors and matrices are denoted by boldface lowercase and
uppercase letters respectively. Calligraphic letters denote
tensors and script letters denote subspaces. Given a matrix
A ∈ Rw×h, A⊤ ∈ Rh×w denotes its transpose.

2.1. Basic Idea

For simplicity, in this work, multi-dimensional data
points are regarded as 3-mode tensors X of size d1×d2× t,
where the mode of size t is a temporal mode. However,
the proposed approach can be generalized to temporal ten-
sors with n modes. In its raw form, the data can be rather
unwieldy and uninformative. Therefore we compactly rep-
resent a tensor X with a set of mode subspaces. This rep-
resentation has multiple advantages: it allows parallel pro-
cessing, and helps finding correlations among various fac-
tors inherent in each mode.

We formulate the tensor representation problem as fol-
lows: Let X = {Xi}ni=1 be a set of n tensors. In addition,
let T (X ) be a transformation of a tensor in its raw form to
its representation on PGM-HLE. Finally let ρ(X ,Y) be the
similarity function between two tensors X and Y defined
by geometric properties of PGM-HLE.

We consider optimization problems where we minimize
a function F dependent on some sort of distance d(X ,Y)
between tensors X and Y . This can be written as:

minF (d(X ,Y)), (1)

where X ,Y ∈ X = {Xi}ni=1. We aim to create a trans-
formation T (X ) which provides similarity ρ(X ,Y) as an
interface for solving Eq. (1) with d(X ,Y) = 1− ρ(X ,Y).

2.2. n-mode Tensor Representation with Linear
Subspaces

Let X ∈ Rd1×d2×t be a 3-dimensional tensor, where t
represents the temporal dimension. Tensor X is unfolded
into a set of matrices X = {X1,X2,X3}, a process
known as matricization. Consider a video as a tensor of
size t × h × w, where w, h and t are width, height and
number of frames, respectively. This tensor is unfolded into
X = {X1 ∈ R(wt)×h,X2 ∈ R(ht)×w,X3 ∈ R(wh)×t},
with each mode representing concatenated slices along a
specific tensor dimension. Therefore, X can be decom-
posed to achieve a compact subspace representation using
n-mode SVD [21], defined as:

X = C×1U1×2U2×3U3. (2)

Core tensor C contains values analogous to eigenvalues of
SVD, while matrices {Uj}n=3

j=1 contain the singular vectors
for each unfolded matrix Xj , and expression UjΛjU

⊤
j =

XjX
T
j holds.
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Subsequently, we select a subspace spanned by eigen-
vectors Uj , resulting in a set of subspaces Sp = {Pj}n=3

j ,
spanned by basis vectors {Pj}n=3

j , where Pj ∈ Rfj×mj ,
containing mj eigenvectors corresponding to the highest
mj eigenvalues. Different mj can be selected, as each mode
exhibits different properties and levels of information den-
sity. In summary, tensor X is mapped to a set of mode
subspaces Sp. This offers a compact representation and
an opportunity to analyze each tensor mode independently.
However, as SVD does not preserve sequence information,
temporal features may be lost.

2.3. Hankel-like Embedding of Temporal Modes

It is possible to preserve sequential features from tem-
poral tensor modes within a linear subspace. Consider the
temporal mode of tensor X ∈ Rd1×d2×t:

vect X = Xt = X3 = [x1, . . . ,xt]. (3)

A Hankel-like matrix H can be created by applying a
sliding window of size h over the columns of matrix X3.
This creates a set of n lagged frame sequences comprised
of h frames, arranged into matrix H ∈ Rg×n as follows:

H =


x1 x2 . . . xn

x2 x3 . . . xn+1

...
. . .

...
xh xh+1 . . . xh+n−1

 . (4)

The number of columns of matrix H is determined by
the total length of sequence [x1, . . . ,xt], given by relation-
ship n = t− h+ 1, and the number of rows is g = h× ft.
In our method, h is considered a hyperparameter.

In temporal mode X3, the ordering of columns carries
sequence information, which is lost when applying SVD to
create a subspace representation. However, H preserves
temporal information by embedding it in its columns. We
then construct a compact subspace representation in the fol-
lowing manner:

V ΣV ⊤ = HH⊤. (5)

V ∈ Rg×n contains eigenvectors as columns and
Σ ∈ Rn×n is a diagonal matrix with n eigenvalues. Ba-
sis vectors of a subspace are obtained by selecting m eigen-
vectors P4 = [v1, ...,vm] corresponding to the m highest
eigenvalues. Resulting subspace Q4 spanned by P4 exhibits
sequence-preserving qualities in each of the eigenvectors,
which are generalized to the whole subspace. We call this
representation Hankel-like embedding (HLE). Additionally,
HLE fully is compatible with subspaces modeling spatio-
temporal data from Sec. 2.2.

2.4. Product Grassmann Manifold with Hankel-like
Embedding

By using the two approaches described in subsections
2.2 and 2.3, a temporal tensor X ∈ Rd1×d2×t is represented
by a set of subspaces Sp = {Pj}4j=1, containing mode sub-
spaces P1, P2 and P3 and the HLE subspace P4. Ev-
ery Pj is a point on a Grassmann manifold Mj(mj , dj),
where mj and dj are dimensions of subspace Pj and fea-
ture space respectively. A unified representation is con-
structed on product Grassmann manifold from a set of factor
manifolds M = {Mj}4j=1 as follows:

M = M1 ×M2 ×M3 ×Mt = (P1,P2,P3,P4), (6)

where × denotes Cartesian product. Therefore, each
temporal tensor is represented as a single point on M . Fur-
ther data analysis is possible using a metric defined on
PGM, namely the geodesic distance between two points on
the PGM. This is a natural choice of dissimilarity due to its
utilization of the manifold surface [1].

To define geodesic distance on M , we first define
geodesic distances between points (subspaces) on factor
manifolds. These distances are parametrized in terms of
canonical angles between subspaces, defined as minimal
angles between two subspaces [6]. Given subspaces P
and Q and their basis vectors P and Q, canonical angles
{0 ≤ θ1, ..., θm ≤ π

2 } can be computed by SVD as:

P⊤Q = UpΣUq. (7)

Up and Uq contain canonical vectors, and Σ =
diag(κ1, . . . , κr) is a diagonal matrix with m singular val-
ues {κl}ml=1. Canonical angles

{
θl
}m

l=1
can be obtained as{

cos− 1(κl)
}m

l=1
. Similarity between subspaces P and Q

is then defined as:

s(P,Q) =
1

m

m∑
l=1

cos2 θl. (8)

Using this similarity in each factor manifold, we define
the similarity on PGM. Tensors X and Y represented by
sets of subspaces {Pj}4j=1 and {Qj}4j=1 is defined as:

ρ(X ,Y) =
1

n

√√√√n=4∑
j=1

s(Pj ,Qj)2. (9)

As individual similarities s(Pj ,Qj) are bounded be-
tween 0 and 1, division by number of factor manifolds n is
introduced to maintain same bounds for final geodesic dis-
tance. This enables the conversion of similarity to distance
as d(X ,Y) = 1 − ρ(X ,Y). Having defined the similar-
ity between points on PGM, it is possible to conduct further
analysis of tensor datasets by considering their layout in the
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manifold space. We explore an example of dataset visual-
ization and clustering in Sec. 2.5 and Sec. 2.6 respectively.

2.5. Multilinear t-SNE

t-SNE [40] is a well known data visualization algo-
rithm able effectively map multi-dimensional data to two
or three dimensions, while preserving both global and local
structure. This is achieved by representing distances be-
tween data points as probabilities under Gaussian distribu-
tion, and minimizing Kullback-Leibler divergence between
joint probability distributions A and B in high-dimensional
and low-dimensional spaces respectively. The following
Eq. (10) represents this cost function and is optimized using
gradient descent:

C = KL(A||B) =
∑
i

∑
j

pij log
pij
qij

. (10)

Consider two data points xi and xj in high-dimensional
space, and their low-dimensional mappings yi and yj . Here,
pij is the probability of choosing xj as a closely-related
neighbour of xi under a Gaussian distribution centered on
xi. Analogously, qij is the same probability with respect to
yi and yj . Probability pij , given by the following equation:

pij =
exp(−||xi − xj ||2/ 2σ2)∑
k ̸=l exp(−||xk − xl ||2/ 2σ2)

, (11)

is calculated explicitly as part of t-SNE algorithm. It as-
sumes Euclidean distance between points xi and xj , which
is defined for multi-dimensional vectors. However, if data
points xi and xj are instead multi-linear tensors Xi and Xj ,
the Euclidean distance is not defined, and Eq. (11) cannot
be solved. Therefore, t-SNE cannot be utilized to visualise
temporal tensor datasets.

We have provided an interface to solve this problem in
Sec. 2.4, by introducing a similarity function between two
tensors based on the PGM with Eq. (9). Thus, we modify
Eq. (11) in the following manner:

pij =
exp(−d(Xi,Xj)/ 2σ2)∑
k ̸=l exp(−d(Xk,Xl)/ 2σ2)

, (12)

where d(X ,Y) = 1 − ρ(X ,Y). By using Eq. (12) it is
possible to optimize the Kullback-Leibler divergence as de-
fined in Eq. (10) for datasets with temporal tensor datasets
and make appropriate visualizations with t-SNE.

2.6. Clustering based on distance and affinity ma-
trices

A variety of clustering algorithms relies on constructing
symmetric matrices based on pairwise distances or similar-
ities between all data points in the dataset. One notable
example is spectral clustering [29]. Given a set of points

Figure 3. Uniformly sampled frames of temporal mode from CMB
dataset.
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Modes 1, 2 and 3 HLE eigenvectors 1, 2 and 3

Figure 4. Subspace basis vectors of tensor modes 1, 2, 3 and
Hankel-like embedding, exhibiting different form and informa-
tion.

S = {s1, s2, . . . , sn} ∈ Rl, the first step in spectral cluster-
ing is to construct an affinity matrix A ∈ Rn×n, where
Aij = exp(−||si − sj ||2/ 2σ2), i ̸= j and Aii = 0.
However, if we consider a set of multilinear tensors X =
{X1,X2, . . . ,Xn} as a set of data points, the similarity de-
fined in Eq. (9) can be used to rewrite the formation of affin-
ity matrix to:

Aij = ρ(Xi,Xj). (13)

Having constructed the affinity matrix A ∈ Rn×n us-
ing Eq. (13), spectral clustering algorithm proceeds with
standard steps, without modifications, as defined in [29].
A major advantage of PGM-HLE representation is that via
Eq. (9) it provides an interface for using various algorithms
on tensor datasets, otherwise defined only for vector-valued
data.

3. EXPERIMENTAL RESULTS
3.1. Datasets

We use Cambridge Hand Gesture [20] (CMB) and UT-
Kinect [45] (UT) datasets in visualization and clustering
experiments. CMB is a benchmark dataset for hand gesture
recognition, and comprises 9 classes with 100 videos per
class. It is divided equally into five sets based on illumina-
tion settings. We perform clustering experiments on each
set, and on the entire dataset to evaluate robustness against
illumination change. UT contains skeleton data of 10 ac-
tion classes, performed by 10 subjects in front of a Kinect
device. There are 200 sequences in total. The data contains
x, y and z coordinates of 20 skeleton joints.
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Figure 5. t-SNE visualizations of baseline vectorized representation, regular tensor modes, HLE and PGM-HLE for Cambridge Hand
Gesture dataset. This dataset combines three hand shapes - ’flat’, ’spread’ and ’v’ with three movements - ’leftward’, ’rightward’ and
’contract’. Baseline is very cluttered. Modes and HLE offer different perspectives and provide high discrimination among the clusters.
PGM-HLE has the best defined visualization obtained by unifying those perspectives.

Tensors in CMB dataset are of shape h × w × t, where
h, w and t stand for height, width and sequence length re-
spectively, while in UT they are of shape c× j× t, where c,
j and t stand for coordinate, joint and sequence length re-
spectively. As all tensors have variable temporal dimension
t, we resize them to 12× 16× 30 (CMB) and 3× 20× 20
(UT). We use video data as it is easy to visualize and in-
terpret subspace basis vectors, as well as evaluate formed
clusters.

3.2. Visualizations of Hankel-like subspaces

As videos are simple to interpret, we can visualize eigen-
vectors spanning subspaces of tensor modes, including the
Hankel-like embedding (HLE) of temporal mode. This pro-
vides insight into information contained within these rep-
resentations, as well as grounds for further interpretability.
An example tensor X from CMB dataset, a closed hand
moving to the left, is shown on Fig. 3.

We then decompose tensor X into three modes, obtain
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Dataset Baseline M1 M2 M3 HLE PGM PGM-HLE

CMB S1 32.94% 88.88% 87.77% 84.44% 95.00% 97.22% 98.33%
CMB S2 16.88% 74.44% 80.00% 78.88% 83.88% 86.11% 88.33%
CMB S3 21.44% 74.44% 70.55% 72.77% 78.88% 81.11% 82.22%
CMB S4 27.55% 74.44% 71.11% 63.33% 76.66% 80.00% 83.88%
CMB S5 28.61% 78.88% 81.66% 80.55% 84.44% 86.66% 88.33%
Cambridge 18.80% 75.55% 69.77% 75.44% 83.11% 84.88% 86.66%
UT-Kinect 61.30% 80.90% 62.31% 65.32% 77.38% 92.46% 93.96%

Table 1. Spectral clustering results on CMB and UT. All tensor modes outperform the baseline. HLE works better than regular modes 1, 2
and 3, except on UT. PGM-HLE outperforms all baselines with 86.66% (CMB) and 93.96% (UT).

a Hankel-like matrix, perform non-centered PCA and con-
struct respective subspaces. On Fig. 4 we depict first three
eigenvectors of each mode. It can be clearly seen that each
mode carries different information, with modes 1 and 2 be-
ing difficult to interpret. Eigenvectors of mode 3 are very
similar to eigenvectors of Hankel-like subspace, with the
latter being almost a concatenation of the former. However,
in Sec. 3.4 we show the effect of this information on clus-
tering accuracy.

3.3. Tensor visualization on TS-PGM

To investigate the effectiveness of PGM-HLE on CMB
dataset, we use t-SNE on 1) baseline vectorized representa-
tion of tensors, 2) subspaces of individual modes, including
the HLE and 3) on the PGM-HLE, and compare these vi-
sualizations. As t-SNE is not a deterministic algorithm, we
run it 10 times and pick the one with lowest KL value [44].
Results are depicted on Fig. 5.

Baseline setting 1) results in the worst visualization,
with a high KL divergence score of 0.371, while setting 3)
achieves the best, with the lowest KL score of 0.208. Modes
1-4 in setting 2) showcase that each mode carries infor-
mation of different characteristics and quality with respect
to separability, with respective KL scores of 0.213, 0.271,
0.282 and 0.242. For example, mode 2 seems capable of
separating all classes of ’contract’ shape, mode 1 success-
fully extracts rightward movements and mode 3 ’flat’ hand
shapes.

HLE appears very similar to temporal mode 3, which is
expected due to underlying temporal information of both
representations. However, separability between clusters in
HLE is much higher and easier to notice. For example,
HLE is able to group samples of classes ’v-rightward’, ’v-
leftward’ and ’spread-rightward’, while improving on the
separability of all ’flat’ hand shapes. This indicates that
there might be some merit in utilizing information from
HLE. Finally, it can be clearly seen that PGM-HLE pro-
duces superior results in terms of separability and cluster
interpretability in addition to lowest KL score.

3.4. Spectral clustering on TS-PGM

To investigate contributions of different tensor modes on
clustering accuracy, we use spectral clustering (SC), a sim-
ple and fast algorithm. Both CMB and UT datasets contain
labels, which we use to evaluate the accuracy as defined as
in [10]. In short, cluster class is determined by the labels
of majority members, and accuracy is defined as number of
correctly clustered data points divided by number of total
samples. Results are presented in Tab. 1.

Clustering performance differs across tensor modes. On
the entire CMB dataset, modes 1 and 3 perform similarly
at 75.55% and 75.44%, with mode 2 performing worse
at 69.77%. Performances vary in subsets of CMB, most
likely due to different illumination settings affecting spatio-
temporal features. All three modes significantly outper-
form the baseline at 18.80%, indicating valuable informa-
tion contained within them. Furthermore, HLE performs
the best compared to individual modes on CMB, offering
noticeable improvement. In UT dataset mode 1 outperforms
other two modes and the baseline at 80.90%. Unlike CMB,
the nature of modes 1 and 2 is harder to interpret due to the
structure of skeletal data. However, it is noticeable that HLE
significantly improves the performance of temporal mode
from 65.32% to 77.38%.

It worth noting that M1 provides superior accuracy com-
pared to HLE when PGM and PGM-HLE are not available.
This behavior may happen when some of the classes present
very similar shapes where the ordering of the observations
over time does not define their semantics.

Unifying information from different tensor modes con-
sistently improves accuracy in all cases, shown on PGM
and PGM-HLE performances. In PGM [26], a tensor is
represented as a point on product Grassmann manifold, and
serves as a baseline for the idea of unifying tensor modes.
PGM-HLE offers additional context by utilizing specialized
encoding of temporal information, and the improvement is
consistent across all datasets.

4875



4. CONCLUSIONS
In this paper we introduced a method for representing

temporal tensors based on established multilinear algebra.
We use the PGM geometry to naturally unify representa-
tions of tensor modes and Hankel-like embedding of tem-
poral information and apply the geodesic distance to inves-
tigate the relationship between temporal tensors. We further
demonstrate the use of geodesic distance as an general in-
terface for solving optimization and clustering problems.

Using this interface, we performed t-SNE visualizations
and spectral clustering of temporal tensor datasets contain-
ing video and skeletal data, giving some weight to the strat-
egy of unified representation on PGM, special treatment of
temporal information via Hankel-like embeddings and fi-
nally the idea of geodesic distance as a general interface
for solving various problems. Specifically in the context
of video datasets, this approach may prove valuable as it al-
lows simple and fast analysis of data in its raw form, without
the need for significant data pre-processing or pre-training
of heavy representational models.

As potential future research steps, we will consider sev-
eral directions. First would be to evaluate the proposed
method on various types of multilinear data, such a rela-
tional and signal data. Specifically, we believe that unified
representation on PGM would be effective in utilizing side
information in addition video data, such as sound infor-
mation, movement information via gyroscope signals, etc.
Secondly, we plan to investigate different Riemannian man-
ifolds in order to leverage their different characteristics and
similarity metrics that they provide, as potential improve-
ments to the representational aspect of our method. Lastly,
a potential future direction includes extending the proposed
method to consider applying kernel trick to handle potential
non-linearity in tensor modes and other data.
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