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Abstract

Multiple datasets and open challenges for object de-
tection have been introduced in recent years. To build
more general and powerful object detection systems, in this
paper, we construct a new large-scale benchmark termed
BigDetection. Our goal is to simply leverage the training
data from existing datasets (LVIS, OpenImages and Ob-
ject365) with carefully designed principles, and curate a
larger dataset for improved detector pre-training. Specif-
ically, we generate a new taxonomy which unifies the het-
erogeneous label spaces from different sources. Our BigDe-
tection dataset has 600 object categories and contains over
3.4M training images with 36M bounding boxes. It is much
larger in multiple dimensions than previous benchmarks,
which offers both opportunities and challenges. Extensive
experiments demonstrate its validity as a new benchmark
for evaluating different object detection methods and its ef-
fectiveness as a pre-training dataset. The code and mod-
els are available at https://github.com/amazon-
research/bigdetection.

1. Introduction
Back in 2014, Microsoft COCO dataset [30] was an

extremely challenging benchmark where best performing
methods were claiming average precision scores less than
20 AP across all 80 categories. Now, state-of-the-art detec-
tors [9, 55] are already able to achieve 60+ AP on COCO
test-dev. As a golden standard, COCO has incubated many
popular object detection algorithms.

To build more robust and general object detection sys-
tems, several larger-scale object detection datasets have
been released, such as OpenImages [23], Objects365 [39],
and LVIS [21]. However, each dataset has its own limita-
tions and challenges. For example, OpenImages has around
10% bounding box annotations that are machine-generated,
which may cause problems like wrong label and bounding
box overlapping (Fig. 1 top). LVIS aims to craft a diverse

*Work done during an internship at Amazon.

Figure 1. Visual examples from OpenImages (top) and LVIS (bot-
tom) datasets. Top left (wrong label): “Crab” mistakenly labeled
as “Lobster”. Top right (bbox overlapping): bboxes with different
class labels locate at the same place. Bottom left (uninformative
annotations): class “crumb” may not be useful for detector pre-
training. Bottom right (long-tail): there is only one image with
“baboon” in the dataset.

set of densely annotated labels covering more than 1200 cat-
egories, but may bring problems like uninformative annota-
tion and serious long-tail distribution (Fig. 1 bottom). Ob-
ject365 has a relatively smaller vocabulary which may miss
common object categories like insect.

In this work, we introduce a new large-scale object de-
tection benchmark, termed BigDetection. Our goal is to
simply leverage the training data from existing datasets
(like LVIS, OpenImages and Objects365) with carefully de-
signed principles, so that we can curate a larger dataset more
suitable for object detector pre-training. Different from lit-
erature in multi-dataset detector training [52, 58, 61], we
use language model to build our initial unified label space
across datasets and perform manual verification to obtain
the final taxonomy as shown in Fig. 2. Our BigDetection
dataset has 600 object categories and contains 3.4M train-
ing images with 36M bounding boxes. We show the statis-
tics comparison to other datasets in Tab. 1. In addition, we
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Train Val Num. classesNum. images Num. boxes Num. images Num. boxes

LVIS [21] 100K 1.27M 19K 244K 1203
OpenImages [23] 1.74M 14.61M 41K 303K 600
Objects365 [39] 1.72M 22.89M 80K 1.06M 365

BigDetection 3.48M 35.96M 141K 1.58M 600

Table 1. Comparison of the dataset statistics among popular large-scale object detection benchmarks.

Figure 2. Overview of our category mapping pipeline, which is
used to generate the unified label space of BigDetection. See text
in Sec. 3.2 for more details.

perform various experiments to demonstrate its validity as
a new benchmark for evaluating different object detection
methods, and its effectiveness as a pre-training dataset. In
particular, as we can see in Tab. 3, a CBNetv2 [28] model
with Swin-Base backbone [32] pre-trained on BigDetection
can achieve 59.8 AP on COCO test-dev set. It is surprising
to find that this performance is competitive with the same
model using Swin-Large backbone without pre-training on
BigDetection. Note that Swin-Large is twice heavier than
the Swin-Base model. In addition, following a partially la-
beled data setting [43] on COCO, BigDetection pre-training
is shown to be extremely data efficient. e.g., 25.3 AP on
COCO validation set using only 1% COCO training data.

Our contributions can be summarized as follows:

• We introduce a new object detection dataset, BigDe-
tection, which is much larger in multiple dimensions
than previous benchmarks. It could serve as a more
challenging benchmark for evaluating different object
detection methods.

• We show effectiveness of BigDetection as a pre-
training dataset. We obtain state-of-the-art results on
COCO validation and test-dev sets, as well as under
data-efficiency settings.

• We perform extensive ablation studies to provide good
practices when training object detectors on large-scale
datasets.

2. Related Work
Datasets for object detection Large-scale datasets with
high-quality annotations play a crucial role in advance-
ment of better computer vision models. In terms of ob-
ject detection, PASCAL VOC [13] is one early benchmark
containing 20 classes over 17k images. Despite its rela-
tively small scale compared to datasets nowadays, PASCAL
VOC has successfully bred many object detectors including
both classical detectors [15, 53] and deep learning detec-
tors [19, 20, 22]. Then comes Microsoft COCO [30] in year
2014, which is the most widely adopted benchmark for ob-
ject detection to present. It contains 118k images and 860k
instance annotations over 80 classes. Thanks to its large-
scale and great quality, COCO together with deep learning
have revolutionized the landscape of computer vision. Re-
cently, with extensive high quality labeling efforts, larger
scale datasets like LVIS [21], OpenImages [23] and Ob-
jects365 [39] are introduced with millions of instance-level
annotations. They enable us to learn diversified and fine-
grained object concepts, as well as explore the possibility
of few-/zero-shot learning on new scenes. There are also
more datasets for object detection in specific domains, such
as [8, 17, 35, 40, 44, 48], to support various use cases.

Multi-dataset detector training Annotating gigantic
datasets by human labor is not scalable. Hence some recent
work start to explore multi-dataset training strategy, whose
goal is to learn better feature representations from more la-
beled data given existing datasets.

One early attempt [52] proposes to train a universal ob-
ject detector with domain attention on multiple datasets. All
parameters and computations are shared so that one detec-
tor can leverage knowledge across domains. In order to ad-
dress the partial annotation problem when using multiple
datasets with heterogeneous label space, UOD [58] exploits
a pseudo labeling mechanism to unify the label space for
training a single detector. Following [52], Zhou et al. [61]
proposes a weighted graph matching behind split classifiers
to automatically generate a common taxonomy. This frame-
work can generalize better to new test domains without
prior knowledge, and achieves great zero-shot performance.
In order to alleviate the scale variation problem, USB [42]
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(a) Before (b) After

(c) Before (d) After

Figure 3. Visual examples of bounding box overlapping problem
in OpenImages dataset. Left column: original annotations with
multiple boxes over the same object. Right column: annotations
after our bounding boxes de-overlapping.

introduces a universal-scale object detection benchmark to
enable multi-scale object detection. Their proposed Uni-
verseNet achieves top performance on two challenges.

Different from the above work, we construct the final
unified label space through a carefully designed mapping
pipeline and strict manual verification, which makes our
unified label space more credible than those machine gen-
erated results. In addition, existing object detectors can be
trained directly on our dataset without any modifications
like split classifiers, domain attention or graph matching.
Thus our composite dataset provides a new benchmark that
easily enables fair comparison. There is a recent work,
MSeg [24], that is similar to us in terms of manually build-
ing a composite dataset. However, MSeg is designed for
semantic segmentation and it only contains 200k images
over 194 semantics classes. Our composite dataset is sig-
nificantly larger, and we provide both clear benefits of pre-
training and large-scale analysis.

Object detectors Given these well annotated datasets,
deep learning based object detectors have made significant
progress over the past decade. Based on the network de-
sign, existing object detectors using convolutional neural
networks (CNNs) can be roughly divided into two types:
single-stage detector [2,14,16,25,27,31,36,37,47,62] and
two-stage detector [4, 19, 20, 38, 60]. The two-stage models
usually offer better performance while the one-stage mod-
els run with faster speed. Recently, with the rise of trans-
former [12, 49] in computer vision, some works investigate
the combination of CNNs and transformer for improved ob-
ject detection [1, 5, 10, 45, 51, 59, 63]

(a) Before (b) After

(c) Before (d) After

Figure 4. Visual examples of object categories that might confuse
model training, such as “Coffee” and “Coffee cup”, “Cosmetic”
and “Human eye”. Left column: original annotations. Right col-
umn: categories we keep in BigDetection.

3. BigDetection Dataset

The goal of this work is to construct an evolving object
detection benchmark designed to incubate next generation
object detectors. Our basic idea is to simply leverage the
training data from several existing datasets, with carefully
designed principles to construct a larger dataset more suit-
able for pre-training.

3.1. Existing Datasets and Limitations

We first give a brief review on three existing large-scale
object detection datasets LVIS [21], OpenImages [23] and
Objects365 [39]. All three datasets have been widely used
for object detection pre-training.

LVIS V1.0 LVIS is a dataset designed for large vocabulary
instance recognition. It collects high-quality object bound-
ing boxes and segmentation masks for over 1200 object cat-
egories using samples of COCO [30]. However, LVIS natu-
rally has an extremely long-tailed distribution. Nearly half
of the categories in LVIS have few training examples (e.g.,
≤ 20). Besides, given its object categories are more than 10
times of COCO, LVIS has some uninformative annotations,
such as the “crumb” example in Fig 1. Both attributes make
LVIS unsuitable as a pre-training dataset.
OpenImages V6 OpenImages (OID) is a large-scale dataset
of about 9M images with rich annotations, including image-
level labels, object bounding boxes, object segmentation
masks, visual relationships, localized narratives, etc. In
terms of object detection, OpenImages has 14.6M bound-
ing boxes over 600 object classes. 90% of these boxes are
manually drawn by professional annotators using clicking
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(a) (b)
Figure 5. (a) Number of images per category of BigDetection. BigDetection have 555 frequent categories (black line) out of 600, which
means it suffers less from long-tail problem. (b) Number of instances in different object sizes. We find that OpenImages and Objects365
are biased towards certain scale, while BigDetection is balanced across object scales.

interface [34], while the remaining 10% are produced semi-
automatically using [33]. We find that there still exists a fair
amount of annotations with poor quality. For example, we
observe bounding box overlapping problem. As can be seen
in Fig. 3a and Fig. 3c, several bounding boxes with similar
size locate at the same place, but have different class labels.
This may confuse model training. We also argue that some
categories in OpenImages may not be useful for general de-
tector pre-training, such as “tea” and “cosmetics” in Fig. 4a
and Fig. 4c.
Objects365 Objects365 is another large-scale dataset de-
signed for object detection pre-training. It contains around
1.72M images with more than 22.8M bounding boxes over
365 categories. Comparing with OpenImages, Objects365
is close in terms of dataset scale, but has a smaller vocabu-
lary. This may not cover enough semantic concepts to pre-
train a universal object detector and generalize to other do-
mains.

3.2. Building a Unified Label Space

Despite being large-scale, these three datasets have their
own limitations and challenges, such as LVIS being too
fine-grained, noisy annotations in OpenImages and rela-
tively small number of object categories for Objects365. It
would be ideal if we can find a way to combine the datasets
and alleviate their individual limitations. However, this is
non-trivial given the heterogeneous label spaces.

As we mentioned in Sec. 2, there are some studies on
multi-dataset detector training, such as using split classi-
fiers [52, 61] and pseudo labeling [58]. But considering the
noisy annotations and domain gap among different datasets,
we would like to clean the data before model training and
combine datasets in a more careful manner.

Our goal is to merge the datasets under one unified la-
bel space, and train a single detector on it. In order to cre-

ate the unified label space, we introduce a category map-
ping pipeline using language models, which is illustrated in
Fig. 2. First, we adopt LVIS’s object categories as the ini-
tial vocabulary, since LVIS dataset has the largest taxonomy
with the most fine-grained annotations. Second, we uti-
lize a Bert-Large model1 [11] to extract features of category
words in each dataset. Third, we compute a cosine similar-
ity between each category word of Objects365/OpenImages
and that of LVIS. The intuition is the more similar the
features are, the higher possibility those categories can be
merged. Thus, an initial category mapping dictionary will
be generated by collecting the top-10 similar pairs. In the
end, to further enhance the validity of the final vocabulary,
we manually verify each matching pair in the dictionary
with the following principles:
Classes matching We notice that some object categories
should belong to the same semantic concept, but their fea-
ture similarity is low due to different category words, such
as “Remote” (Objects365) and “remote control” (LVIS). In
this case, we will perform a manual merge. For some cat-
egories in OpenImages and Objects365 that never occurred
in LVIS, we will just adopt them as new classes.
Classes merging Since the class granularity of each dataset
is different, some categories have inclusion relationship in
semantic space. In order to obtain a unified label space, we
simply merge these categories into a single one. For exam-
ple, we merge different bird specifies to the “bird” class.
Classes removing We argue that some non-discriminating
categories or classes with too few training examples are
not suitable for general detector pre-training. These classes
will be directly removed. Some examples are illustrated
in Fig. 1.
BBoxes de-overlapping We find that even after removing
some classes, there still exists a large number of overlapped

1https://huggingface.co/bert-large-uncased
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bounding boxes. In order to filter them credibly, we first
collect all category pairs with bounding boxes IoU greater
than 0.65. Then for object categories that always co-occur,
we keep them if they are supposed to be multi-labels for the
same object. Otherwise we remove them from the annota-
tion set. We show some de-overlapping results in Fig. 3b
and Fig. 3d.

3.3. BigDetection and Its Statistics

At this point, we have a unified label space that can
combine the training data of Objects365, OpenImages, and
LVIS. This allows us to build the largest existing object de-
tection dataset, thus we name it BigDetection.

In Tab. 1, we show its statistics comparison to several
other large-scale datasets. In terms of training set, BigDe-
tection has around 36M bounding boxes in 3.4M images for
600 object categories. On average, there are 10.3 annotated
bounding boxes per image.

In addition, we plot the number of images in each cat-
egory in Fig. 5a. According to LVIS [21], a category is
considered as frequent if there are more than 100 images
it appears. In BigDetection, we have 555 frequent classes,
which surpasses OpenImages (540) and Objects365 (363).
Since the majority of classes are frequent, BigDetection suf-
fers less from long-tail problem, which makes it more ideal
for object detector pre-training.

In terms of object sizes, we plot the number of instances
in each scale bin2 for different datasets in Fig. 5b. We can
see that OpenImages and Objects365 are biased towards
certain scale, while BigDetection is balanced across object
scales. We will show later that this property helps detector
in reducing localization errors.

4. Pre-training on BigDetection

Large datasets are usually good for model pre-training,
but they also pose challenges. For example, BigDetection
has a serious class imbalance problem. Some classes like
“person” have greatly more annotations than others like
“ferret”. In addition, BigDetection suffers from the partial
annotation problem when merging the datasets. Some ob-
ject categories annotated in one dataset could be considered
as “background” in another dataset. In this section, we in-
vestigate effective methods to handle class imbalance and
partial annotation problems during model training.

4.1. Class Imbalance

There are several widely adopted strategies to alleviate
class imbalance problem, like loss re-weighting [26,46,50],
data re-sampling [6, 21, 41] and data augmentation [18, 56].

2The three object scales follow the definition in COCO [30]: Small <
32× 32, 32× 32 < Medium < 96× 96, 96× 96 < Large

In this work, we explore all of them and find that data re-
sampling, especially class-aware sampling [41], is most ef-
fective.

To be specific, we use fixed class weights derived from
the dataset to perform loss re-weighting. The more samples
one class contains, the lower weight will be assigned to that
class when computing the loss. However, this does not help
the training since BigDetection is so imbalanced, which
leads to slow convergence. For data augmentation, we adopt
the recent CopyPaste [18] augmentation who achieves great
performance on instance segmentation. The core idea of
CopyPaste is to randomly paste masked objects from one
image onto another inside a training batch. Unfortunately,
BigDetection only has bounding box annotations. Directly
pasting the boxed image patches will inevitably introduce
unnecessary noise. For data re-sampling, we use class-
aware sampling (CAS) method following [41]. CAS sam-
ples each class with equal probability, which is ideal for
datasets with imbalanced classes. Note that since each sam-
ple contains multiple instances of different categories, the
sampled data will not be completely balanced. We will
present the experimental results in later Sec. 5.3.

4.2. Partial Annotations

In order to address the partial annotation problem when
merging different datasets, we adopt a self-training ap-
proach similar to [58, 64] to complement the ground truth
annotations. The goal is to generate additional pseudo an-
notations that were not manually labeled in the dataset.

In our work, using self-training is more straightforward
than [58] since we already have a unified label space. To
be specific, we first train a teacher model on BigDetec-
tion. Then the teacher model is used to generate pseudo
annotations for the train set of BigDetection. Noted for
object detection, pseudo annotations include two elements:
pseudo labels for classification, and pseudo bounding boxes
for localization. The credibility of pseudo labels and the
maximum overlap area of pseudo boxes can be adjusted by
changing the values of score threshold and NMS threshold
of the teacher model, respectively. The last step is to incor-
porate these new pseudo annotations to the ground truth and
train a better student model. However, in order to ensure
that these pseudo boxes capture the missing objects without
introducing more noise, we add an additional step to fil-
ter the pseudo annotations. Namely, one pseudo annotation
will be removed if the IoU between its box and any ground
truth box is greater than 0.6. Once filtered, the remaining
pseudo annotations will be used to augment the training set.

We find that even two detectors have similar mAP on
a dataset, their precision for each class differs greatly
due to the different training setting. To further improve
the credibility of pseudo annotations, we adopt a multi-
teacher strategy. Suppose the ground truth annotation set
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Detector Backbone BigDetection COCO
AP AP50 AP75 AP AP∗

YOLOv3 [14] D53 9.7 17.4 9.7 21.8 30.5(+8.7)
Deformable DETR R50 13.1 19.3 14.2 37.4 39.9(+2.5)
Faster R-CNN [38] R50 18.9 28.8 20.5 35.7 38.8(+3.1)
Faster R-CNN [38] R50-FPN 19.4 29.3 21.3 37.9 40.5(+2.6)

CenterNet2 [60] R50-FPN 23.1 30.2 24.9 42.9 45.3(+2.4)
Cascade R-CNN [4] R50-FPN 24.1 33.0 25.8 42.1 45.1(+3.0)

Table 2. BigDetection as a challenging and effective pre-training new benchmark. First, we provide comparison of popular object detection
methods on BigDetection validation. All models are trained with an 8× schedule to enable fair comparison. Then we show the finetuning
results on COCO validation set after 1× finetuning. AP∗ indicates that models are pre-trained on BigDetection.

Figure 6. Error diagnose by TIDE [3]. Left: BigDetection. Right:
COCO.

for sample i is Y i
gt, and we have multiple teacher models

[t1, t2, · · · , tk]. Each teacher model generates a pseudo an-
notation set Y i

tj , j = 1, · · · , k. The final annotation set of
sample i will be obtained:

Ỹ i = NMS(Y i
t1 , · · · , Y

i
tk
; τ) ∪ Y i

gt

where NMS (non-maximum suppression) is utilized to de-
overlap multiple pseudo annotation sets and τ is the thresh-
old. We set k = 2 throughout this work. More details can
be found in the supplementary materials.

5. Experiments
Setup and evaluation protocol BigDetection is
split into train set (bigdet_train) and validation
set (bigdet_val). When using it as a new benchmark,
we train different detection models on bigdet_train
and evaluate their performance on bigdet_val. When
using it as a pre-training dataset, we first pre-train the
detection models on bigdet_train, and then finetune
them on COCO train set, and report results on either
COCO validation or test-dev set. For both evaluations on
bigdet_val and COCO, we follow the standard COCO
style metrics to report mean average precision (mAP) under

different IoU thresholds and object scales. We also adopt
a partially labeled data setting to study data efficiency.
Pre-trained models will be finetuned on COCO using 1%,
2%, 5% and 10% labeled data.
Implementation details We adopt CenterNet2 [60]
equipped with ResNet-50 and FPN [29] to provide base-
line results and conduct ablation study. Our implementation
is based on Detectron2 [54]. Most hyperparameters follow
the default setting of CenterNet2 unless otherwise stated.
Specifically, we train the detector with an SGD optimizer
for 8× (720K iterations) on BigDetection pre-training and
1× (90K iterations) on COCO finetuning. Base learning
rate is set to 0.02 and is dropped at iterations 660K/60K
and 700K/80K. We use 8 V100 GPUs, with 2 samples per
GPU. Multi-scale training is adopted with the short edge in
range [640, 800] and the long edge up to 1333. No extra
data augmentations are used, such as Jittering, Mosaic [56],
CopyPaste [18] or Mix-up [57].

When comparing to state-of-the-art detectors on
COCO, we adopt CBNetV2 [28] equipped with a Swin-
Transformer-Base backbone. For a fair comparison, the
training strategy and all hyperparameters follow the default
setting in [28] implemented with MMDetection [7]. Again,
we do 8× schedule for pre-training stage on BigDetection
and 1× for COCO finetuning.

5.1. A New Object Detection Benchmark

To provide a rough picture of how challenging BigDe-
tection is, we select several most popular object detectors to
evaluate their performance on bigdet_val. The methods
include Faster R-CNN [38], Faster R-CNN with FPN [29],
Cascade R-CNN [4], YOLOv3 [14], CenterNet2 [60] and
DETR [5], which represent a variety of object detection
models (e.g., two-stage/one-stage, anchor-based/anchor-
free, CNN-based/transformer-based). All these models are
trained on bigdet_train for 8× schedule to provide
fair comparison. Other hyperparameters follow their default
setting in MMDetection [7].
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Method Backbone TTA APval APtest AP50 AP75 APS APM APL

CBNetV2 [28] Swin-B ✗ 58.4 58.7 76.9 64.3 40.7 62.0 72.0
CBNetV2 [28] Swin-B ✓ 58.9 59.3 77.6 65.0 41.7 62.7 72.5
CBNetV2 (BigDet) Swin-B ✗ 59.1 59.5 77.3 65.3 42.0 62.4 72.7
CBNetV2 (BigDet) Swin-B ✓ 59.5 59.8 77.9 65.6 42.2 62.9 73.0

Table 3. Comparison with state-of-the-art object detection methods on COCO validation and test-dev sets. BigDet: pretrained on BigDe-
tection dataset. TTA: test-time augmentation. Our CBNetv2 with Swin-B backbone achieves 59.8 AP on COCO test-dev.

Method 1% 2% 5% 10%

Supervised† 9.8 14.3 21.2 26.2
STAC† [43] 14.0 18.3 24.4 28.6

SoftTeacher† [55] 20.5 26.5 30.7 34.0

Ours 26.1 29.3 31.9 34.1

Table 4. Comparison with different methods under partially la-
beled COCO. BigDetection pre-training is particularly beneficial
when dealing with insufficient training data. † indicates using
strong augmentations, such as Cutout.

As can be seen in Tab. 2, good detectors on COCO also
perform well on BigDetection, e.g., CenterNet2 and Cas-
cade R-CNN are top performers on both datasets. However,
we see that even the best result on BigDetection is 24.1 AP,
which is close to the initial results when COCO was intro-
duced in 2014. This suggests that BigDetection is a much
more challenging dataset than COCO. We hope BigDetec-
tion can help advance the development of next-generation
object detection algorithms. Unless otherwise stated, we
use CenterNet2 for most experiments in the following sec-
tions. We find that CenterNet2 often show better general-
ization during fine-tuning.

In addition, we use our trained CenterNet2 model to per-
form an error diagnosis by TIDE [3]. The results can be
visualized in Fig. 6. By comparing the result on BigDe-
tection (left) and the result on COCO (right), we can see
that the main difference lies in the Cls and Loc categories.
BigDetection shows more Cls errors since it has much more
object categories than COCO. At the same time, BigDetec-
tion makes far fewer Loc errors than COCO. Even within
BigDetection, Loc errors are fewer than Miss and Bkg.
We believe this is because BigDetection is more balanced
across object scales as mentioned in Fig. 5b, so that it can
better handle small and medium objects. This observation is
also supported by our results later in Tab. 3 that pre-training
on BigDetection improves APS significantly on COCO.

5.2. Generalization to COCO

Baseline We first show that BigDetection pre-training pro-
vides significant benefits for different detector architectures
(single-stage or two-stage, anchor-based or anchor-free).
Following the model set in Sec. 5.1, we finetune each model

on COCO train split with 1× schedule, and ImageNet pre-
trained checkpoints are adopted for comparison. After pre-
training on BigDetection, most detectors gain 2 ∼ 3 AP im-
provement, and especially YOLOv3 even gains 8.7 AP im-
provement. These results suggest that BigDetection forms
a strong pre-train dataset to provide better feature represen-
tation for downstream transfer.
Comparison to state-of-the-art We would like to show
how far BigDetection can advance performance of cur-
rent strongest detectors. We adopt CBNetV2 with Swin-
transformer backbone as our baseline [28].

The results are shown in Tab. 3. We have several ob-
servations. First, with pre-training on BigDetection, we
can further improve this strong baseline by 0.7 AP (58.4
→ 59.1). In particular, most improvements come from
small objects, i.e., APS increases from 40.7 to 42. Sec-
ond, combined with test-time augmentation, our CBNetV2
model with Swin-Base backbone pre-trained on BigDetec-
tion achieves superior performance on both COCO valida-
tion and test-dev sets, 59.5 and 59.8 AP respectively. We
want to point out that this performance with Swin-Base
backbone is even competitive to CBNetv2 with Swin-Large
backbone without pre-training on BigDetection. Note that
Swin-Large is twice heavier than Swin-Base, which sup-
ports well that such pre-training is useful.
Data-efficiency One of the great benefits of pre-training on
a large-scale dataset is a well-trained model only needs a
few target labels to perform considerably well. Here, we
show BigDetection pre-training is helpful across a variety
of dataset sizes and helps data efficiency.

Following the partially labeled data setting introduced
in STAC [43], Faster R-CNN [38] with FPN is adopted
for fair comparison. The finetuning is done on COCO us-
ing 1%, 2%, 5% and 10% samples of train split. Tab. 4
summarizes the results. Our method significantly improves
the performance upon supervised baseline and STAC. Com-
pared to STAC, we obtain 12.1, 11, 7.5 and 5.5 AP gain un-
der difference dataset sizes. We also compare our method
to a recent work SoftTeacher [55], which is an end-to-end
self-training method for object detection. Interestingly, our
method shows a significant performance improvement (5.6
AP) on 1% COCO setting, and performs still better when
more data is introduced. Note that SoftTeacher uses longer
training schedule and strong augmentations. In [65], the re-
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AP AP50 AP75 COCO

IAS 12.8 17.2 13.9 44.9
RFS 20.4 26.9 21.9 44.2
CAS 23.1 30.2 24.9 45.3

Table 5. Ablation study on the effectiveness of different data sam-
plers used to deal with class imbalanced problem. IAS: instance-
aware sampling. RFS: repeated factor sampling. CAS: class-
aware sampling. First three columns show results on BigDetection
validation set, while the last column shows results on COCO.

sults show that self-training works better than pre-training
across dataset sizes with a lowest data regime of 20%. How-
ever our work suggests that BigDetection pre-training is
particularly useful when dealing with extremely insufficient
training data (1 ∼ 10%).

5.3. Ablation studies

Regarding data re-sampling Recall in Sec. 4.1, data re-
sampling is the most effective method to alleviate class im-
balance problem. Here, we ablate the effects of using dif-
ferent samplers in Tab. 5.

IAS selects each training sample with equal probability,
thus it is expected to perform poorly on class imbalanced
datasets. RFS is designed for low-shot long-tailed data in
LVIS [21]. It first assigns a pre-computed repeat factor for
each category. Then the maximum factor of labeled cat-
egories will be chosen for each image. Since BigDetec-
tion does not show long-tail phenomenon, RFS performs
mediocre on bigdet_val, and even affects the general-
ization ability to COCO. CAS offers the best performance
as it is designed to handle class imbalance. It is simple, and
thus scales well on large-scale dataset.
Regarding different pre-training datasets It is important
to show how BigDetection compares to other large-scale
datasets when used as pre-training dataset. We use fine-
tuning results on COCO to reflect the capability of the pre-
trained models.

In terms of baseline, we use models directly trained on
COCO with 1× and 8× schedules. For other datasets, we
always pre-train for 8× schedule and finetune on COCO for
1× schedule to enable fair comparison. CAS is adopted as
data sampler for OpenImages, Objects365 and BigDetec-
tion, except for LVIS. Since RFS is shown to have more
reasonable performance on LVIS. As shown in Tab. 6, our
model pre-trained on BigDetection improves over the base-
line by a notable margin (43.8→ 45.7). It also outperforms
models pre-trained on those individual datasets, which sug-
gests its better potential in pre-training. Furthermore, Tab. 6
also shows individual contributions from using CAS and
self-training, i.e., CAS brings 1.5 AP improvement while
self-training brings another 0.4 AP improvement.

Sampler Schedule AP
COCO - 1× 42.9
COCO - 8× 43.8
LVIS RFS 1×+1× 37.8
OpenImages CAS 8×+1× 44.0
Objects365 CAS 8×+1× 45.1
BigDetection CAS 8×+1× 45.3
BigDetection† CAS 8×+1× 45.7

Table 6. Ablation study on generalization ability to COCO using
different pre-training datasets. † indicates using additional pseudo
annotations generated by self-training. We show that BigDetection
serves as a better pre-training dataset.

6. Limitations

Here we list several limitations that remain unsolved in
our dataset. Scalability Despite our initial category map-
ping dictionary is automatically generated with the help of
large language models, we heavily rely on manual inspec-
tion as described in Sec. 3.2 to build the final unified label
space. This is more reliable than machine generated anno-
tations, but also sacrifices scalability to some extent. Data
sampling We use CAS to handle class imbalance problem,
but it introduces a side problem. Within an 8× schedule,
the model may not see all the images in the dataset. This
indicates a low utilization of the data. Noisy annotations
Following our dataset merging principles, some noisy an-
notations from OpenImages have been removed, but some
remain. Our work mainly aims at how to build a unified
taxonomy to leverage existing datasets. And learning from
noisy data will be a promising direction.

7. Conclusion

In this paper, we have presented BigDetection, an evolv-
ing large-scale object detection dataset. It is much larger
in multiple dimensions (object categories, training images,
bounding box annotations) than previous benchmarks. It
could serve as a new challenging benchmark for evaluat-
ing different object detection methods, since state-of-the-art
detectors only achieve around 30 AP on its validation set.
We also show its effectiveness when used as a pre-training
dataset. After pre-training on it, we achieve superior gen-
eralization performance on COCO validation and test-dev
sets, as well as strong data-efficiency results. BigDetection
presents both opportunities and challenges. We hope it can
be used to incubate next-generation object detectors.
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