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Abstract

The Visual Genome Dataset is the de facto standard
dataset used in Scene Graph generation. It contains a large
collection of images with corresponding object and rela-
tionship labels. We explore the lingual aspect of the rela-
tionship predicates and find that very few symmetric/inverse
relationships are represented in the dataset(for example,
’above’ and ’under’). We believe this is linked to hu-
man spatial cognition, and posit that labelling bias stem-
ming from human representations of relationships creates
asymmetric relationship labels that span the whole dataset.
We also perform a 2D topological analysis of the bound-
ing boxes linked by different relationship predicates. This
analysis sheds light on certain classes and their ambiguity
wherein more frequent classes are semantically overloaded
and therefore quite confusing. Finally we show that when
reduced to more lingually and topologically well defined
spatial relationships scene graph generation algorithm per-
formance improves tremendously, but scene graph genera-
tors are still far from perfect.

1. Introduction
The Visual Genome (VG) dataset [7] is a collection of

over 100,000 human annotated images that has been used
extensively in computer vision research. A main motivation
for creating the dataset was to allow for more cognitive-
based computer vision research that is focused on image un-
derstanding and reasoning, rather than solely image percep-
tion tasks such as object detection or image segmentation.
VG enables research that incorporates this sort of reasoning
such as Scene Graph Generation [12, 13, 20], Visual Ques-
tion Answering [14, 19], Image Captioning [5], among oth-
ers [1, 16]. The full VG dataset is composed of a collection
of 108K images, along with human generated annotations
in the form of class-labelled bounding boxes around the ob-
jects in the images, attributes describing those objects, rela-
tionships between those objects, as well as question-answer
pairs about the images. A sample of some of the kinds of

(a) The sample image with labelled bounding boxes.

(b) The labelled relationships between the objects(objects dis-
played in red, while relationships are in green).

Figure 1. A sample of a data point in the VG dataset, the object
relations are displayed in the form of a scene graph. Object at-
tributes are not shown for clarity.

data found in the VG dataset is shown in Figure 1.

1.1. The VG dataset and Scene Graphs

The images comprising the VG dataset were taken from
the YFCC100M [15] and COCO datasets [9] and then an-
notated rigorously using human annotators crowdsourced
though an online platform. In short, labellers were tasked
with creating text descriptions of regions in the image, these
text descriptions are then grounded into the specific parts
they’re describing using bounding boxes to ground the ob-
jects being described and relationships and attributes being
connected to and between the object bounding boxes. The
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final dataset is comprised of over 3.8 million total bounding
boxes classified into 33,877 object categories, these bound-
ing boxes are connected by over 2 million total relation-
ships (classified into 42K distinct relationship predicates),
in addition to over 2.5 million attributes describing the clas-
sified objects in the bounding boxes (with 68K distinct at-
tributes). On average, one image is expected to contain 35
object bounding boxes, 26 attributes and 21 relationships.

The Visual Genome Dataset therefore lends itself very
well to the task of scene graph generation [3, 12, 13, 20],
where given an input image, a model is expected to output
the objects found in the image as well as describe the re-
lationships between them. In this task, the vast amount of
objects and relationships found in the VG dataset can be a
drawback due to severe class imbalance across object cat-
egories and relationship predicates. It is common practice
across scene graph literature to instead opt for using a sub-
set of the VG dataset, the VG200 dataset [12], containing
the 150 most frequently occurring objects along with their
50 most frequent relationships. The final object count in
the VG200 dataset is 1,145,398 objects, i.e. the top 150
object classes (out of the 33K classes) accounted for ap-
proximately a third of the total bounding boxes. The to-
tal preserved relationships in the VG200, which are spread
across 50 predicates is 622,705 relationships (these are out
of the original 42K predicates that described the 2M orig-
inal relationships). Overall, this serves to lessen the sever-
ity of the inherent class imbalance across objects and re-
lationships, though not entirely, without altering the origi-
nal Visual Genome Dataset too severely. Another common
practice in scene graph literature is formalizing relationship
triplets found in the VG dataset as [subject, predicate, ob-
ject] triplets. For example, one such triplet observed in Fig-
ure 1 is [leaf, on , tree], where leaf is the subject, on is the
predicate and tree is the object of the relationship.

2. Language and Inverse Relationships
In language, spatial prepositions often have inverses,

which can serve as a dual(but opposite) representation of
the same physical phenomenon being observed. For exam-
ple, if a table is ‘to the right of’ a person, it is immedi-
ately understood that the person is ‘to the left of’ the table.
Several of the 50 predicate classes that exist in the VG200
data set have linguistically ‘inverse’ relationship predicates
within the set as well. For example, the predicates ‘behind’
and ‘in front of’ are both in the VG200 predicate set. It
follows that if a subject-predicate-object triplet of subject
A-‘behind’-object B exists, we would expect to see the in-
verse triplet of subject B-‘in front of’-object A. One very
commonly occurring predicate, ‘near’, could even function
as its own inverse.

Figure 2 shows a heat map of how often two relationship
predicates share an inverse relationship in the VG dataset.
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Figure 2. A heatmap of the occurrence of inverse relationships for
specific predicates. The letters in square brackets indicate which
predicates we expect to be inverse pairs, the numbers in parenthe-
ses are the total occurrences for this predicate in the dataset. For
every row the value in the heat map reflects the ratio of: (inverse
relationship occurrences of the row predicate with the predicate in
the column) to (total occurrences of the predicate in the row).

An inverse relationship exists if the same two bounding
boxes(containing the same specific objects) share two re-
lationships, with one in each direction. In other words,
one inverse relationship exists between predicates ‘above’
and ‘under’ if for a specific pair of objects the objects are
linked by the triplet subject A-under-object B as well as sub-
ject B-above-object A in the dataset. Note that two objects
may have multiple relationships connecting them. The full
heatmap of inverse relationships between all 50 predicates
can be found in the supplemental material.

We notice that inverse relationships do not form a signifi-
cant portion of the relationships observed in the VG dataset.
In fact, even the expected inverse relationships between lin-
guistically inverse predicates are not at all frequent. Predi-
cates ‘under’ and ‘above’ (or ‘under’ and ‘over’ whose re-
sult can be seen in the supplemental material) don’t share
much of an encoded inverse relationship, in fact ‘under’
seems to share a stronger inverse relationship with ‘on’,
however that is likely also due to how over-represented the
predicate ‘on’ is in the VG dataset.

The work done by Landau and Jackendoff [8] on hu-
man spatial cognition touches on a relevant issue. They
describe the ‘asymmetry’ in the way humans form spatial
representations, where these asymmetries come from many
factors, including that certain objects are more likely to be
the ‘reference point’ based on size or relevance or saliency.
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Even the more apparently ‘symmetrical’ spatial predicate
relations tend to become asymmetric in our reasoning by
virtue of how humans form their own spatial reasoning.
Given that the VG labels are generated by human annota-
tors, there is an asymmetric skew that will inevitably ex-
ist in the resulting labels which is the root cause for why
these inverse relationships do not exist. For example, of
the over 243,000 relationship triplets that include humans
in the VG200 dataset, humans are the subjects in approxi-
mately 84% of those relationships, while they are objects in
only 19%.

This asymmetric skew is to be expected in human con-
versation and description, mainly because human reasoning
can understand the inverse relationship immediately and it
does not need to be explicitly stated. However, this will not
be the case for learning algorithms who don’t have an ex-
isting knowledge of the world, or of the verbal semantics
of the relationship predicates they are predicting. A small
percentage of inverse relationships existing in the VG200
dataset, even for the predicate classes where we expect them
to exist, could likely hinder the ability of learning models
to understand these relationships. A potential solution to
this could be in the form of data augmentation (for a data-
driven solution) or even prior knowledge about these inverse
relationships being given to the learning algorithms utiliz-
ing this data. Alternatively, inverse relationships could be
used as a metric for measuring generalization performance
of learned models, especially if certain models were shown
to be able to piece together these inverse relationships with-
out explicitly being told about them, or incentivised to learn
them.

It is worth noting we also measured co-occurring ‘for-
ward’ relationships between the same two objects i.e. two
objects related in the same subject-object configuration but
with different predicates. This measurement yielded no re-
sults of interest, as these relationships turned out to be very
rare.

3. Topological Relationships
The language that creates the relationship triplets may

be biased by how humans view and reason about the world,
which makes the bounding boxes that also define these
triplets worth exploring as well. These bounding boxes are
the smallest 2D image axis-aligned rectangles that can hold
the object they border and they lend themselves well to a 2D
topological analysis. Topological relationships [2,4] can be
determined between two 2D areas, and the topological re-
lationship can be classified depending on the configuration
between the borders and the interiors of these areas. Figure
3 describes the possible topological relationships between
two 2D areas.

A topological analysis of the bounding boxes found
in the VG dataset sheds light on the relationships in the

dataset. Where our language and how we describe a re-
lationship can be influenced by our cognitive biases, ob-
serving the topological relationships between the bounding
boxes can give us an understanding of what a certain rela-
tionship is prioritizing. They can inform us on whether the
subject or the object is the more ‘dominant’ for a given pred-
icate class as well as validate whether the downstream task
of scene graph prediction that utilizes the features in these
bounding boxes is being built on valid data. Since several
scene graph generation approaches [1, 18] operate by tak-
ing the union or intersection of the detected object bound-
ing boxes to predict the relationship predicate, a topological
perspective on how these bounding boxes are related in the
VG dataset is quite relevant.

Furthermore, we analyse the dominant directions in
which these relationships are occurring. These directions
are found by analysing the location of the object relative
to the subject when they are linked by a specific relation-
ship predicate. For triplets with predicates describing spa-
tial prepositions, such as [subject, ‘above’, object], we ex-
pect to see the object always being towards the south of the
subject. This analysis also sheds light on whether more fre-
quent and more vague predicates (such as ‘on’ or ‘has’) are
exhibiting any regular directional relationships.

We visualize some of the results of the topological anal-
ysis in Figure 4 and the directional analysis in Figure 5.
The full heat maps for all the relationship predicates can
be found in our supplemental material. Note that while the
‘equal’ topological relationship doesn’t occur in this sub-
set of predicates, mainly due to its more specific and rare
configuration, it is does show up in the full set. Also note-
worthy is our evaluation of the ‘covers’ versus ‘in’ topo-
logical relationships. While [4] describes these relation-
ships rigidly(as shown in Figure 3), we loosened them very
slightly (in the order of 5% of the smaller of the two bound-
ing boxes under analysis) to account for human error in la-
belling the bounding boxes. For example, if a subject A lies
completely within object B for a given case, however it is
proximal enough to the boundary of object B (though not
exactly touching it as shown in Figure 3e) we could still bin
the topological relationship as a ‘subject covers object’ rela-
tionship depending on how close subject A is to the bound-
ary (of B) relative to its own size. Our directional calcula-
tions are binned into the 8 cardinal directions of a compass,
and measured based on the relative centers of gravity of the
bounding boxes. For example if for a certain relationship
triplet [subject, predicate, object] the center of gravity of
the object bounding box is south-east of the center of grav-
ity of the subject bounding box, it is binned as ‘SE’. We
also calculate the spread of the directions for the 8 different
topological configurations within each predicate, and iso-
late some predicate-topological pairs of interest where di-
rections exhibit a noteworthy spread, this is shown in Figure
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(a) Disjoint (b) Subject in Object (c) Touching

(d) Equal (e) Object Covers Subject (f) Overlap

Figure 3. Topological relationships [2, 4] visualized. Note that two additional relationships exist Object in Subject (similar to (b), but with
object and subject reversed), as well as Subject Covers Object (similar to (e) but with the object and subject reversed).

6.

The topological relationships tend to reveal the more
‘dominant’ of the subject and object pair linked by a certain
predicate. In some cases, such as the predicate ‘has’(e.g.
building has window), the expected topological configura-
tion is dominant: the object, window, is fully contained
in the subject. This follows from how we expect the lin-
gual relationship to occur [8]. Notably, the topological
spread of the predicate ‘in’ is not as would be expected, and
further highlights the vagueness of this relationship predi-
cate. While the expected dominant topological configura-
tion (subject in object - it is literally in the name) is the
most frequently occurring, it is not extremely dominant. We
would expect a ‘subject in object’ topological configuration
for the relationship triplet [person in car], but, for exam-
ple, the triplet [bottle in hand] (where the bounding box of
the bottle is actually larger than that of the hand produces
an ‘object in subject’ topological configuration, and an ex-
ample triplet [plant in pot] counter-intuitively produced a
disjoint topological configuration due to how the bounding
boxes are labelled.

The directional evaluation produced more expected re-
sults. Predicates ‘above’ and ‘under’ mostly exhibited di-
rectional configurations that are true to their descriptions. In
fact, their symmetric relationship is highlighted well by how
they exhibit similar topological configuration distributions,
while having inverse directional configurations. A similar,
but less pronounced, symmetric relationship is also seen in
the predicates ‘behind’ and ‘in front of’. Vague predicate
classes, however, such as ‘on’ or ‘in’ still showed a big va-
riety of directional configurations, likely due to them en-
coding several different lingual interpretations of ‘on’ and
‘in’. The predicate ‘near’ interestingly seemed to imply
the subject and object were side by side (with the slightly

higher chances for a ‘W’ and ‘E’ configuration). The results
shown in Figure 6 help shed some light on the combina-
tion of topological and directional configurations and serve
to disambiguate some predicate classes. For instance, the
predicate ‘on’ exhibited more predictable directional quali-
ties when the topological relationship was ‘overlap’. In this
predicate + topological combination, ‘on’ usually meant the
subject was on top of the object e.g.[person on sidewalk],
as opposed to ‘on’ with the configuration ‘Subject in Ob-
ject’(e.g. [fruit on tree]) where the subject is potentially
anywhere within the bounding box of the object.

Similarly to how inverse relationships can be used to
augment the dataset, we believe it is possible to modify
the more vague relationship classes based on their topolog-
ical configurations. Spatial predicates that are linguistically
similar and exhibit similar topological and directional con-
figurations could possibly be merged into broader classes
without losing too much of their meaning. For example,
predicates such as ‘laying on’, ‘lying on’, ‘parked on’ which
all occur in the VG200 dataset, and all seem to be describ-
ing a similar spatial configuration (further proven by their
topological configurations) can be merged into a super set1.
While on the other hand the larger and vaguer predicate
classes ‘on’ or ‘in’ can possibly be broken down.

We would also like to note that a topological analysis
of the bounding boxes in VG may be subject to certain bi-
ases and shortcomings as well. We live in a 3D world, and
it may be difficult for any computer vision system to in-
fer the 3D concepts from 2D images in the Visual Genome
dataset annotated with 2D bounding boxes. Concepts like

1This could provide an alternative to the synset embeddings that are
extracted from Wordnet [10] IDs which are already supplied in the VG
dataset. Note we did not evaluate the topological configurations while uti-
lizing those IDs.
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Figure 4. A heatmap of the occurrence of topological relationships
between bounding boxes related by specific predicates. The values
shown in the heatmap are the portions of the total occurrences of
the row predicate that exhibit the specific topological configuration
in the column. The values in parenthesis next to the predicate
names are the total occurrences of that predicate.

‘behind’ and ‘in front of’ may be extremely difficult for a
vision system that has only seen 2D images to reason about,
especially if it is not designed with the 3D world in mind. A
topological analysis of the VG dataset is likely better suited
for the relationship labels that are not overtly 3D in nature.
Relationships like ‘above’ or ‘under’ are more two dimen-
sional than ‘in front of’ or ‘behind’, for example, which
may be why the symmetric relationship between the more
2D pair(above-under) was more easily distinguishable in
the topological and directional analysis than that of of the
more 3D pair(behind-in front of). With that in mind, we
still see value in this analysis and the properties that it was
able to reveal in the underlying data.

4. Algorithmic Use in Scene Graphs

While we believe the topological and directional config-
urations along with the augmentations defined by spatial
language discussed previously could possibly be incorpo-
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Figure 5. A heatmap of the angles between subject and object for
selected relationship predicates. The values shown in the heatmap
are the portions of the total occurrences of the row predicate that
exhibit the specific directional configuration in the column. The
values in parenthesis next to the predicate names are the total oc-
currences of that predicate.

rated into a novel algorithm for scene graph generation, it is
outside of our scope of discussion in this work. Instead we
aim to experiment with different data configurations based
on what our exploration has yielded. The topological and
lingual analysis enabled us to better understand the ambi-
guities of the labels and restructure relationships in a man-
ner that is lingually and topologically sound. We created 2
alternate subsets of the VG200 relationship predicates and
measured the performance of the same baseline model when
trained with these new labels.

In this section we conclude with 3 simple scene graph
generation experiments that are driven by modifying the
data rather than modifying the underlying algorithm. To
reiterate, in scene graph generation [1], we are given an in-
put image and tasked with identifying the objects in that
image along with the relationships that exist between those
objects much like the graph shown in Figure 1. Scene graph
generators are evaluated under 3 different settings:

• Predicate Classification: Where the object bounding
boxes and the object class labels associated with the
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Figure 6. A heatmap of the angles between subject and object
for selected relationships and specific bounding box topologies for
bounding boxes that are connected by those relationships. The val-
ues shown in the heatmap are the portions of the total occurrences
of the row predicate+topological configuration that exhibit the spe-
cific directional configuration in the column.

bounding boxes are given, hence the scene graph gen-
erator must only find the relationships between the
given objects.

• Scene Graph Classification: Where the object bound-
ing boxes are given, but the class labels associated with
the bounding boxes are not, so the scene graph gen-
erator must infer both the class labels as well as the
relationships between the bounding boxes.

• Scene Graph Generation: Where the input image is
given without any other labels or information, and the
scene graph generator must uncover the relevant ob-
jects in the image, their bounding boxes as well as
the relationships between them. This is the most chal-
lenging setting for evaluation.

Scene graphs are also evaluated based on their recall, as
opposed to based on their precision. Given an input image,
the scene graph generator is evaluated on how many of the
ground truth relationships it was able to uncover. The defin-
ing metric in scene graph literature is the mean recall@K
metric. The mean recall averages the recall score across ev-
ery predicate class individually instead of every predicted
relationship instance. This is mainly due to the large pred-

icate class imbalance that exists in the VG data set. So the
average recall is calculated for every predicate separately
first, and then averaged again to get the mean recall which
ensures under-represented predicate classes are not being
ignored in the evaluation. The mean recall@K metric is the
mean recall score when the top K scene graph predictions
are used for evaluation, so a mean Recall@20 would mean
the scene graph was allowed to predict up to 20 relationship
triplets to compare to the ground truth.

The baseline scene graph generator we utilize for the
experiments is the Stacked Motif Network (MOTIF) [20].
In brief, the Stacked Motif Network (MOTIF) [20], first
generates the object label only then utilizes a bidirectional
LSTM to propagate information between the different ob-
ject proposal and relationship proposal stages, effectively
allowing object context to influence its label and its rela-
tionship labels. For our experiments we follow the imple-
mentation of [6] and exchange the VGG16 [11] detector
with a RESNeXt-101-FPN [17] which was shown to im-
prove performance. Proposing a novel scene graph genera-
tion model is out of the scope of this work and we only aim
to see the differences in performance that a strong baseline
generator can observe when the data it uses is better struc-
tured. Scene graph generation networks usually achieve rel-
atively low recalls (with the Scene Graph Generation mean
Recall still being under 10% in state of the art models [1]).
The reasoning authors give is usually the vagueness of the
predicates and ‘long tailed’-ness of the distributions in the
VG dataset. Certain relationships dominate the dataset and
learning algorithms struggle to capture the true conceptual
information contained in the entirety of the dataset, instead
focusing on the dominant classes. As shown in our lingual
and topological analysis, the VG dataset does indeed show
topological and lingual ambiguity, lack of symmetrical re-
lationships and labelling bias, and these are detrimental to
learning models.

We train and evaluate the same scene graph model [6,20]
on three different predicate configurations derived from the
VG200 set:

• Original Predicates: We use the original 150 classes
and 50 predicates from the VG200 data set to baseline
the model.

• Relationship Subset 1: The ‘less vague’ subset where
we remove 14 of the more vague original 50 predicate
classes, and merge 4 others to keep 32 unique relation-
ship predicates. The removed classes are either lin-
guistically vague, or did not exhibit topological and
directional configurations that matched their descrip-
tions. That being said, we do keep the larger vague
classes (such as ‘in’ or ‘on’) since they form such a
large subset of the dataset.

• Relationship Subset 2: The spatial preposition sub-
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set where we take a subset of the 50 classes that cor-
respond only to spatial prepositions, we also merge
classes that exhibit similar lingual, topological and di-
rectional configurations. We end up with 8 unique
predicates that are a combination of 20 of the original
predicates.

The exact predicates we use are listed in Table 1. The
results of the experiments are shown in in Table 2. At
first glance the recall results when using relationship subset
2 may seem to indicate a significant leap in performance,
though we also understand that this leap is very much ex-
pected as the class labels are better balanced and much
fewer. That being said, it’s interesting to see that even an
off the shelf scene graph generator can perform quite well
as a spatial preposition predictor when given the right data.
In our opinion the more interesting result is that of relation-
ship subset 1. This experiment showed some improvement
in recall with the reorganized 50 relationships, but that im-
provement is not as significant as we would have expected.
Relationship subset 1 cleaned up edge cases and some of
the more ‘vague’ predicates of the original 50, but the per-
formance improvement seen was relatively small.

We analyze the existence of inverse relationships in the
predictions of the scene graph generators and show a subset
of the results in Figure 7. In this analysis, we tallied what
inverse relationships are found by the scene graph generator
for each of the correctly recalled ground truth relationships.
In other words, if a ground truth relationship is correctly
found by the generator in its top K relationships under a spe-
cific setting, we find whether an inverse relationship is also
being predicted(whether it exists in the ground truth or not).
This yielded some interesting findings on what inverse rela-
tionships the generator is learning. For example, in the case
of the original 50 predicate classes, the predictor seemed
to find a strong inverse relationship between predicates ’of’
and ’has’, as well as ’on’ and ’has’. Both of these pairs are
likely a result of a symmetric possessive relationship that
is getting encoded (e.g. wing of bird/bird has wing or car
has wheel/wheel on car). This is likely due to the formula-
tion of stacked motif networks [20] which honed on certain
repeated ’subgraphs’ in the ground truth. In the case of re-
lationship subset 2 of spatial predicates, some inverse rela-
tionships are more prevalent(such as the large class of ’on’
having an ’under’ inverse relationship 15% of the time),
however other incorrect relationships also show up (such
as ’behind’ being its own inverse).

If anything the results of both of our experiments seem
to indicate that there is still much to be done in the field of
scene graph generation even outside of the dataset domain.
Stacked motif networks [20] are an impressive approach to
generating scene graphs, that managed to push the field for-
ward by paying attention to the underlying data. Since then,
a few other works have taken interesting approaches as well.

Original Relationships Relationship Subset 1 Relationship Subset 2
above above above
across across -
against against -
along along -
and - -
at - -
attached to attached to -
behind behind behind
belonging to - -
between between -
carrying carrying -
covered in covered in -
covering covering -
eating - -
flying in in inside
for - -
from from -
growing on growing on on
hanging from hanging from on
has has -
holding holding -
in in inside
in front of in front of in front of
laying on laying on on top of
looking at - -
lying on laying on on top of
made of - -
mounted on mounted on on
near - -
of - -
on on on
on back of on back of on top of
over over above
painted on painted on -
parked on parked on on top of
part of - -
playing using -
riding riding on top of
says - -
sitting on sitting on on top of
standing on standing on on top of
to - -
under under under
using using -
walking in walking in inside
walking on walking on on top of
watching - -
wearing wearing -
wears wearing -
with - -

Table 1. A breakdown of the relationships used in each of our 3
experiments. A ‘-’ means the relationship from the original set
was removed entirely. Italicised text is used to indicate that a rela-
tionship has been kept but its label was modified.

For instance, segmentation grounded scene graph genera-
tion [6] demonstrates the utility of moving away from solely
bounding boxes for scene graph generation and shows that
even mask annotations obtained via zero-shot transfer can
improve scene graph generation performance. Grounding
consistency [3] on the other hand demonstrated how a lack
of negative training examples in the data and the reliance on
recall alone in the evaluation led most scene graph predic-
tors to learn very biased representations.

5. Conclusions

In this work we explored the lack of representation of
both sides of symmetric relationships in the VG dataset,
which likely resulted from the asymmetric spatial represen-
tations humans (and thus human labellers) exhibit. This
means that inverse relationships such as ‘above’ and ‘un-
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Model Detector Relationship Set Predicate Classification Scene Graph Classification Scene Graph Generation
mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

VCTree [13] VGG-16 [11] Original 50 Relationships (Reported in [6]) 14.0 17.9 19.4 8.2 10.1 10.8 5.2 6.9 8.0
MOTIF [20] RESNeXt-101-FPN [17] Original 50 Relationships (Reported in [6]) 14.1 18.0 19.4 8.0 9.9 10.6 5.8 7.7 9.0

MOTIF [20] RESNeXt-101-FPN [17]
Baseline
(Original 50 Relationships) 12.0 15.4 16.7 5.9 7.2 8.9 4.8 6.1 7.2

MOTIF [20] RESNeXt-101-FPN [17]
Relationship Subset 1
(Less Vague
36 of Original Relationships)

17.4 21.2 22.6 8.5 10.2 10.7 5.8 7.7 8.9

MOTIF [20] RESNeXt-101-FPN [17]
Relationship Subset 2
(Spatial Prepositions

20 of Original Relationships)
46.1 55.7 59.1 22.2 25.9 27.1 14.4 18.8 21.6

Table 2. The results of our three experiments with different VG200 predicate subsets. Our code implementation was adapted by starting
with the implementations of [6, 12].

above
behind has

holding in

in front of
near of on

riding
sitting on

standing on
under

with

above (74.0)

behind (1389.0)

has (11930.0)

holding (1389.0)

in (1783.0)

in front of (62.0)

near (1547.0)

of (8220.0)

on (27760.0)

riding (329.0)

sitting on (234.0)

standing on (11.0)

under (260.0)

with (125.0)

0.00 0.00 0.22 0.00 0.00 0.00 0.15 0.00 0.08 0.00 0.00 0.00 0.01 0.00

0.00 0.11 0.03 0.00 0.02 0.01 0.35 0.00 0.07 0.02 0.01 0.00 0.01 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.29 0.00 0.00 0.00 0.00 0.00

0.01 0.04 0.00 0.00 0.10 0.01 0.05 0.02 0.18 0.00 0.00 0.00 0.03 0.01

0.00 0.03 0.25 0.10 0.02 0.00 0.01 0.02 0.06 0.00 0.00 0.00 0.01 0.16

0.00 0.37 0.05 0.03 0.00 0.00 0.08 0.00 0.03 0.00 0.00 0.00 0.00 0.00

0.00 0.15 0.07 0.01 0.00 0.00 0.34 0.00 0.05 0.00 0.00 0.00 0.00 0.04

0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.46 0.02 0.00 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.09 0.03

0.00 0.25 0.01 0.00 0.00 0.00 0.05 0.00 0.04 0.00 0.00 0.00 0.03 0.10

0.00 0.26 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.02 0.06

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.02 0.02 0.12 0.02 0.00 0.00 0.00 0.00 0.67 0.00 0.00 0.00 0.01 0.02

0.00 0.00 0.00 0.00 0.26 0.00 0.10 0.01 0.57 0.00 0.00 0.01 0.00 0.02

(a) Selected inverse relationships from the original predicate model.

above
behind

in front of
inside on

on top of
under

above (326.0)

behind (3189.0)

in front of (352.0)

inside (6410.0)

on (57368.0)

on top of (2129.0)

under (834.0)

0.02 0.06 0.04 0.02 0.15 0.00 0.36

0.00 0.19 0.19 0.07 0.13 0.03 0.04

0.00 0.53 0.06 0.00 0.07 0.02 0.01

0.00 0.06 0.02 0.04 0.43 0.00 0.07

0.00 0.04 0.01 0.10 0.11 0.00 0.15

0.00 0.20 0.01 0.00 0.04 0.00 0.11

0.23 0.05 0.01 0.02 0.52 0.02 0.01

(b) Inverse relationships from the model trained with only spatial
prepositions (relationship subset 2).

Figure 7. Inverse relationship proportions in the scene graph pre-
dictors trained on different data subsets evaluated on the predicate
classification task using the top 50 predictions. The numbers in
parenthesis indicate the number of correctly recalled instances of
each predicate, the numbers in the grid are the portion of those re-
called instances that had an inverse relationship with the column
predicate class (whether that relationship was in the ground truth
or not).

der’ are not encoded in the dataset, and could potentially
be used as a measure of generalizability of models or to
improve performance. We also discussed the topological
and directional configurations exhibited by relationships in
the Visual Genome Dataset and showed how overloaded
predicate classes(such as ‘on’) exhibit topological vague-
ness which may confuse trained models. An interesting av-
enue for future exploration is a compositional analysis of
the objects and relationships in the VG dataset. It would be
quite interesting to see how well hierarchical relationships
hold and whether more conceptual understandings can be
garnered by utilizing a combination of language, topology
and a heirarchy of parts.
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