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Abstract

Recent years have seen the emergence of many new neu-
ral network structures (architectures and layers). To solve
a given task, a network requires a certain set of abilities
reflected in its structure. The required abilities depend on
each task. There is so far no systematic study of the real
capacities of the proposed neural structures. The question
of what each structure can and cannot achieve is only par-
tially answered by its performance on common benchmarks.
Indeed, natural data contain complex unknown statistical
cues. It is therefore impossible to know what cues a given
neural structure is taking advantage of in such data. In
this work, we sketch a methodology to measure the effect
of each structure on a network’s ability, by designing ad
hoc synthetic datasets. Each dataset is tailored to assess a
given ability and is reduced to its simplest form: each in-
put contains exactly the amount of information needed to
solve the task. We illustrate our methodology by building
three datasets to evaluate each of the three following net-
work properties: a) the ability to link local cues to distant
inferences, b) the translation covariance and c) the abil-
ity to group pixels with the same characteristics and share
information among them. Using a first simplified depth esti-
mation dataset, we pinpoint a serious nonlocal deficit of the
U-Net. We then evaluate how to resolve this limitation by
embedding its structure with nonlocal layers, which allow
computing complex features with long-range dependencies.
Using a second dataset, we compare different positional en-
coding methods and use the results to further improve the
U-Net on the depth estimation task. The third introduced
dataset serves to demonstrate the need for self-attention-
like mechanisms for resolving more realistic depth estima-
tion tasks.

∗This work was supported by grants from Région Ile-de-France.

1. Introduction
Deep learning has been characterized by significant ad-

vances in fields ranging from computer vision [35] to pro-
tein structure prediction [23]. However, neural networks
lack interpretability, and it is nearly impossible to predict
the performance of a given structure on a task. While most
of the effort is directed towards the explainability of the
models themselves, the possibility that a better understand-
ing of deep learning methods could come from better de-
signed datasets has received little attention. In this work,
we investigate this hypothesis by introducing a methodol-
ogy to enhance the impact of architectural choices and to
identify their flaws.

Datasets of natural images need to be huge in order to
capture the semantic complexity of the real world. While
such datasets are necessary to ensure generalization to real
world applications, their structure and information content
is fully out of control. The information given to the net-
work can be ambiguous, sometimes contradictory, and the
spatial interaction of features can be guided by hidden sta-
tistical dependences. It is therefore hard or impossible to
anticipate or explain the success or failure of a given net-
work structure. A second ambiguity resides in the fact that
each datum might not contain enough information to solve
the prescribed task. A third ambiguity resides in the input
itself: a plethora of semantic local and nonlocal cues coex-
ist within the same image, which makes it difficult for an
external observer to pinpoint the cause of success or failure
of a given network structure.

A better understanding of neural networks requires char-
acterizing their capabilities and linking them to their struc-
ture. To this end, we propose to train neural networks on
datasets where those ambiguities have been lifted. That
way, the success of a structure on a given task can only be
attributed to the structure having a certain property, and not
to some other uncontrolled statistics. Alleviating the three
sorts of ambiguities requires resorting to synthetic datasets.
In this work, we introduce a methodology to design such
unambiguous synthetic datasets to explore the properties of
neural networks.
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We illustrate this methodology on three datasets. First,
we design a depth estimation task - the Rectangle Depth Es-
timation (RDE) dataset - to assess the non-local properties
of the U-Net which, according to several authors [37, 55],
seems to be unable to exploit its large receptive field. In par-
ticular, we find that endowing the U-Net with nonlocal lay-
ers helps improve its nonlocal capability, especially when
a variant of the Lambda layer [4] is used. Then, observa-
tions of the failure cases of the resulting structure raise the
question of the positional encoding used within the Lambda
layer. This leads us to design a second dataset, which aims
at assessing the properties of the positional encoding. This
second task allows us to design a better positional encod-
ing method, which we successfully transfer to the first task.
Finally, we design a dataset to evaluate the ability to group
pixels with the same characteristics and share information
among them. In particular, we find that self-attention [46]
excels at this task.

The contributions of this paper are as follows:

1) We introduce a methodology to design synthetic datasets
to be used to evaluate networks’ properties. This allows
to investigate neural architectures to better understand their
capabilities. This methodology can be applied on any struc-
ture and for any data modality.

2) We apply this methodology to evaluate three different
network properties, namely: the ability to link local cues to
distant inferences, the translation covariance and the abil-
ity to group pixels with the same characteristics and share
information among them. For each property, a dataset is de-
signed. These datasets can be used to evaluate any structure.

3) The datasets are used to compare and discuss multiple
structures. The first dataset allows us to find a nonlocal
deficit in the U-Net and to partially fix it by adding nonlo-
cal layers in its structure. Then, the second dataset helps us
find a way to incorporate positional encoding in the Lambda
layer while ensuring translation equivariance. Finally, ex-
periments on the third datasets point out that self-attention
and variants excel at grouping pixels with the same char-
acteristics and share information among them. The conclu-
sions we draw on structures might lead to some improve-
ment when handling real datasets, but this is not the goal of
this paper. Rather, the proposed methodology may be used
to verify unambiguously the effect of each proposed neural
structure on ad hoc synthetic data.

All of our results can be reproduced in less than one day
on a single GPU. Both the code and dataset are available on
GitHub.

2. Related work
Multiple depth estimation datasets [8, 28, 50, 53] aim at

training networks for real applications. The RDE dataset
we introduce is a depth estimation task reduced to its sim-

Figure 1: Results of state-of-the-art networks on our depth
estimation problem, without retraining. First line: input
and ground truth. Second line: result of MiDaS [38], re-
sult of MergeNet [32]. The disappointing results of SOTA
networks on a visually unambiguous image show that these
networks are guided by hidden natural statistics, much more
than by nonlocal geometric reasoning.

plest form, where only the strictly necessary cues are left
for the network to understand the depth ordering of the
scene. Other synthetic datasets [36, 44] have been pro-
posed to analyze and quantify the effect of certain layers
or training methods, allowing one to discover effects that
would otherwise be impossible to unveil. Notably, syn-
thetic datasets are commonly used for image quality eval-
uation [26]. The Long-Range Arena [44] was introduced to
evaluate the long-range capabilities of Transformers [46].
While we share a similar objective, failure on such complex
classification tasks cannot be easily linked to structural de-
ficiencies. We aim at designing synthetic datasets for better
understanding structures and not only assessing them. The
Color Code dataset is used to assess variants of Transform-
ers, but both the RDE and the Centered Square dataset con-
sist of images of small size but too large for the quadratic
cost of Transformers. The RDE dataset shares similarities
with the dead leaves model [16] and builds images com-
posed of rectangles to create occlusion.

In particular, the approach described in [29] is close to
ours. The authors exhibit a property they want their net-
work to have and design simple synthetic datasets to evalu-
ate it. They find that their network does not have the prop-
erty and propose a change in structure to solve the issue. In
this work, we propose a generalization of this approach by
providing a methodology to reproduce those steps for other
properties. In [25], the authors also introduce a dataset to
exhibit a property their layer has, but competing approaches
do not. It can be argued however that the usage of noise

24891



introduces unneeded information and does not follow the
Occam razor criterion.

Different ways to improve the U-Net [39] have been pro-
posed in the literature. For instance, U2-Net [37] provides
a global receptive at each scale by including a U-Net at
each scale of the U-Net. This method is state-of-the-art for
figure-background segmentation. In [2] the receptive field
and the amount of processing are increased by a recurrent
network used at each scale of the encoder. We shall ac-
tually propose here a faster and lighter-weight approach by
leveraging non-local layers to attain global receptive field at
each scale. In [55] the authors identify a receptive field issue
with the U-Net. They propose to solve it by a novel struc-
ture processing all scales in parallel. The LambdaUNet [34]
uses the Lambda layer [4] in conjunction with the U-Net. It
keeps the Lambda layer in its local formulation, while we
shall change its receptive field to cover the entire image at
once. Notably, the authors of [49] introduced a network
called “Non-Local U-Net”. They use a so-called “non-local
layer” [48] similar to self-attention [46] to increase the re-
ceptive field of the U-Net. The resulting network is slow,
as it is based on an operation with quadratic time and space
complexity. In comparison, we shall explore a U-Net ar-
chitecture that can be combined with a variety of non-local
layers. The layers we choose to assess have a linear time
and space complexity and can be trained and evaluated on a
single GPU.

A wide variety of non-local layers have been proposed
in the literature. Many of them are based on self-attention
or “non-local networks” [48]. Some layers aim at mimick-
ing self-attention with a linear complexity [47, 41, 11, 52,
24, 22, 20, 54, 51]. We evaluated some of those layers but
were not able to make them converge on our task, or they
were exceedingly long to train. This suggests that they re-
quire heavy hyper-parameter tuning or the usage of multiple
convergence tricks. In this work, we explicitly chose to as-
sess easy-to-use and easy-to-train layers. Other non-local
layers [4, 5, 10, 12, 18, 19, 42, 56] do not try to mimic
self-attention. Any of them could be incorporated in our
architecture. We shall evaluate several of them.

Since its first introduction in [46], different approaches
have proposed different positional encoding methods. In
[6], it is pointed out that the positional encoding in its orig-
inal formulation is not translation covariant. The authors
propose to decorrelate the encoding of the absolute position
with the encoding of the relative position. Their findings
suggest that relative position alone is enough for some tasks
in NLP. The original position encoding is a predefined sinu-
soidal function, and some works have focused on improving
these functions [30, 14, 27]. Other approaches have been
developed, see [15] for an overview. In this work, we use
the Centered Square dataset to evaluate different positional
encoding methods to be used inside the Lambda layer to

ensure translation covariance.

3. The methodology
In this section, we describe the design requirements an

unambiguous dataset must fulfill to assess whether or not a
structure has a given property such as nonlocality, transla-
tion covariance, etc. Such requirements can only be fully
enforced in a synthetic dataset, namely:

Unambiguous ground-truth: There must be no contradic-
tory labels, no annotation problems nor cases where multi-
ple labels are valid for the same input.

Well-posedness: The input contains enough information to
solve the task. There must exist a reconstruction algorithm
able to deduce the exact ground truth from the input im-
age. In other terms, reaching 100% accuracy is theoreti-
cally possible. Note that, because of the inherent ambiguity
of natural scenes, this property is not attainable with natural
datasets.

Focus on a specific network’s property: The network must
be able to deduce the exact ground truth from the input im-
age only if it has the assessed property (such as nonlocality,
permutation invariance, etc.). So the cues given to the net-
work must be under full control, so that we know exactly
which cues the network can use. Note again that this prop-
erty is not attainable with natural datasets, as they contain
many statistical cues that help compensate for a structural
deficiency of the network.

In particular, we would like to stress out that an impor-
tant requirement is simplicity. The third property can only
be enforced if the dataset is as simple as possible.

In the following, we describe the three datasets we used
as an illustration of our methodology for, respectively, non-
locality, translation covariance and the ability to pass on
information to every pixel of the same color.

3.1. The Rectangle Depth Estimation dataset

The dataset consists in a depth estimation task where ob-
jects are replaced by simple rectangles. The rectangles can
overlap and occlude one another, creating a spatial organi-
zation that naturally puts objects of top of others. To com-
pute an unambiguous ground truth, our reconstruction algo-
rithm is based on three nonlocal cues: a) color similarity
(all rectangles are monochromatic, thus can be recovered
nonlocally); b) T-junctions, a local cue that propagates non-
locally; c) convexity, that leads to decide that a region oc-
cluded by another shape is to be inpainted as a convex shape
and is therefore underneath the occluding shape. A full de-
scription of the algorithm is available in the supplementary
materials. An example can be found in Figure 2.

The task that needs to be solved is closely related to real-
world depth estimation as it accurately reflects its main dif-
ficulties. When for example an object is partially occluded
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Figure 2: Top row: An example of image of the RDE dataset
and the associated ground truth. The brighter the color, the
higher the number of rectangles that are beneath it. Bottom
row: An example of image of the Centered Square dataset
and the associated ground truth with H = W = 64 and
w = 21.

by others, it is divided into several components and the net-
work must regroup the separated parts. This can only be
done by recognizing the same color and/or detecting edge
alignment.

To decide about the depth ordering, the network can only
rely on T-junctions and convexity. These local cues need to
be successfully detected and propagated at an arbitrary dis-
tance for understanding the geometrical organization of the
scene. Indeed, the distance can be arbitrarily large as there
is no upper limit on the size of the rectangles. Therefore,
the network cannot overfit on local information, whereas in
natural scenes it is easy for a network to differentiate, say,
a tree from the background sky. Whilst these could be in-
teresting priors, there is no guarantee that the network will
not associate a depth value to each position or texture. Our
dataset is designed so that it is not possible to associate a
local patch to an absolute depth. All cues provide infor-
mation about relative ordering between objects. The global
depth can only emerge via a coherent global integration of
these relative cues. In Figure 1 we show an example where
state-of-the-art networks trained on natural images seem to
heavily rely on local cues and natural statistics. We can for
instance see that the bottom of the picture always seems to
be brighter than the top, even though it makes no sense in
this case. Of course, these networks being trained on natural
data, it was to be expected that they would perform poorly
on work on our out of domain dataset. Nevertheless, this ex-
periment is interesting because it shows statistical priors on
the depth learnt. In our dataset, a failure cannot be attributed
to a misunderstanding of the objects caused for instance by

poor lightning conditions or noise. The dataset being fully
unambiguous and its ground truth recoverable from geo-
metric features in sight, failure can only be attributed to
a poor geometrical understanding. This allows one to as-
sess the ability for a network to compute non-local features
(or, for the case of the U-Net, to efficiently use the multi-
scale structure). This also suggests that any improvement
on this dataset should be reflected on other depth estimation
datasets.

3.2. The Centered Square dataset

This dataset is designed to assess the translation covari-
ance of a given positional encoding method. We use it to
find the best method to use inside our Lambda layer. The
input consists of an all-black H ×W image where a single
pixel is white. The associated ground truth is an all-black
image with a white square of width w centered around the
white pixel. The training set consists of all the positions for
the white pixel contained in the square of dimension H

2 ×W
2

located in the center of the image. The test set is composed
of all the other positions, except for the ones where the im-
age’s boundaries crop the ground truth square. This way,
the network only learns the reconstruction property in the
middle of the image and is evaluated on its ability to apply
this property everywhere in the image. A network can only
do it perfectly if it is translation equivariant. An example of
input and label is shown in Figure 2.

3.3. The Color Code dataset

One of the limitations of the RDE dataset is that it uses
10 fixed colors for the entire dataset i.e. for every image,
the 10 same colors are used to color the rectangles. We
made this choice so the network could focus on the non-
local reasoning, even if it implies overfitting on the fixed
colors to overcome occlusion. In particular, we found that
the baseline U-Net is not able to overcome occlusion even
in this simplistic scenario. In our attempt to progressively
bridge the gap between synthetic and real depth estimation,
the next natural step is to change the colors for each image.
In this scenario, a network must solve two tasks: first, it
must use local and nonlocal cues to find a mapping between
color and depth and secondly, it must pass on this depth to
every pixel of this color.

As the second task is difficult in itself, we decided to
study the performance of different layers on this task alone.
This leads us to the introduction of the Color Code dataset.
This third dataset aims to study the performance of a net-
work which, given a mapping between colors and codes,
must pass to every pixel the code corresponding to its color.
More formally, for each input k colors c1, . . . , ck are ran-
domly sampled. For each color ci, a code zi is randomly
picked. Then, a mapping σ : [[1, k]] → [[1, N ]] is sampled as
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well as a mask m ∈ {0, 1}N such that the input is given by

x =

(
cσ(1) . . . cσ(N)

m1 · zσ(1) . . . mN · zσ(N)

)
,

and the associated ground truth is

y =
(
zσ(1) . . . zσ(N)

)
.

In other terms, for some positions the code is given and for
others it is not. The goal of the network is to find where the
code associated with a color has been given, retrieve it and
propagate it to the right positions.

4. Non-Local U-Net
Our baseline for the depth estimation problem is a tradi-

tional U-Net [39] with concatenated skip connections. To
limit the number of parameters, we kept the width at each
scale constant and equal to 48 instead of doubling it after
each down-sampling. In accordance with [43], we observed
that this alleviated overfitting in multiple scenarios. The re-
sulting network had 871 729 parameters. With the multiple
skip connections and the hourglass structure, the U-Net is
known to be stable to a variety of learning rates and training
schedules. We modified this U-Net following the recipe of
[31]. This includes using GELU [17], LayerNorm [3] in-
stead of BatchNorm [21], 7 × 7 grouped convolutions, the
inverted bottleneck structure after each block [40] and Lay-
erScale [45].

To host nonlocal layers, we passed the input feature map
at each scale into a local module and a nonlocal mod-
ule. The two outputs were then concatenated, upsam-
pled/downsampled and passed on to the next scale. The lo-
cal module corresponds to the module of the original U-Net
and the nonlocal module is the nonlocal layer. We refer the
reader to Appendix A for further details.

All the networks we considered have five down-sampling
operations. The smallest feature map has a 4 × 4 spatial
extent. Therefore, the receptive field of the baseline U-Net
and all of its considered variants cover the entire image.

We tried four different non-local layers: the Lambda
Layer [4] (which is itself a variant of [9]), the Global Con-
text Layer [5], Global Average Pooling, Deformable Con-
volutions [56]. We chose these over others because they
could be applied at each scale and fit on a single GPU.

When it was not already the case, we embedded the non-
local layer with a PreNorm [33], skip connections and an
inverted bottleneck structure to process its output. We also
fixed stability issues when discovered. We found that these
simple tweaks led to stabler convergence and better results.
We modified the original Lambda layer to avoid using its
positional encoding, which has a quadratic time/space com-
plexity. More details can be found in Section and the sup-
plementary.

5. Experiments
5.1. Experiments on the RDE dataset

5.1.1 Metrics

We used three of the most commonly employed metrics for
Monocular Depth Estimation tasks [1, 7, 32, 38]: the Root
Mean Square Error (RMSE), the δ1.25 and the Ord metric.
We also used the generalization gap as an indicator of how
well the assessed networks generalize [13]. The RMSE was
defined by

RMSE(ŷ, y) :=

√
1

HW

∑
i,j

(ŷi,j − yi,j)2,

where ŷ is the prediction and y the ground-truth. The per-
centage of pixels with δ1.25 is given by

δ1.25 :=
1

HW

∑
i,j

1
{max

(
ŷi,j
yi,j

,
yi,j
ŷi,j

)
>1.25}

.

The ordinal loss consists in sampling 50,000 pairs of pixels
((i1, j1), (i2, j2)) and for each of those pairs, compute:

li =


+1, if yi1,j1/yi2,j2 ≥ 1 + τ

−1, if yi1,j1/yi2,j2 ≤ 1
1+τ

0, otherwise.

Using the same pairs, the equivalent quantity l̂ is computed
for the prediction. The ordinal loss is given by:

Ord :=
1

|P|
∑
i∈P

1{li ̸=l̂i}.

Finally, we define the generalization gap as the difference
between the value of the loss on the test set and on the train
set at the end of the training.

In practice, we used τ = 0.03 and all the networks were
evaluated using the same set of pairs of pixels when com-
puting the ordinal loss.

5.1.2 Results

Effect of ambiguity removal We trained the Non-Local
U-Net with different nonlocal layers on the RDE dataset.
This dataset was comprised of images of dimension 128 ×
128. Most images featured 10 rectangles. The dataset was
filtered so as to remove most ambiguous cases, e.g. when
T-junctions are hidden by another square or when rectan-
gle sides are aligned. As an illustration of the need for an
unambiguous dataset, we compare in Table 1 the perfor-
mance of the baseline network when trained on the unam-
biguous dataset and when trained on the same dataset but
where we did not remove the ambiguous cases. The net-
work trained on the unambiguous dataset is four times bet-
ter than its counterpart.

54894



Comparison We report in the upper part of Table 1 the
results of the different assessed nonlocal layers on the RDE
dataset. They show the Lambda layer yielding the best per-
formance for most metrics.

The deformable convolutions yielded the lowest perfor-
mance. This is most likely due to the fact that it has the
smallest width. Since this layer introduced a large number
of parameters, we had to reduce the width so it had a num-
ber of parameters close to the baseline. Its width was 21
when most layers had around 40 channels per feature map.

Overall, even the simplest non-local layer yielded a no-
ticeable improvement over the baseline U-Net. This sup-
ports the claim of [37] and [55] that the U-Net might be
more local than expected. It seems that the more sophisti-
cated the non-local layer, the better the results, which sug-
gests that further improvement could come from still better
nonlocal layers.

Although the U-Net has a global receptive field, the way
the information propagates inside it might be to blame. This
information is fused locally, step by step, in the way of a dif-
fusion process. This might explain why occlusions stop the
propagation of information from a piece of an occluded ob-
ject to another, as can be observed in Figure 3. See Section
6 for more details along with an illustration.

When observing the cases where our best network failed,
we observed that the network struggled in the case the T-
junctions between two rectangles are occluded. In this case,
the network needs to compute the spatial extent of each rect-
angle from the visible parts and understand that the exten-
sions overlap. See Figure 4 for an illustration. Failure to
handle such case suggests a problem with the positional en-
coding used within the Lambda layer, which leads us to the
Centered Square dataset.

5.2. Results on the Centered Square dataset

For this set of experiments, we used the Centered Square
dataset presented in Section 3.2 with H = W = 64 and a
square width of w = 21. The dataset was composed of 484
training images and 1,452 test images. We evaluated our
network by computing the IOU over the test set. Further
training details are given in the supplementary.

As the goal of this dataset was to evaluate the positional
encoding method, the network to be trained was reduced to
its simplest form. Indeed, using a multiscale structure could
bias the interpretation of the results. On this task, we trained
a network made of one 1 × 1 convolution, followed by the
Lambda layer using the positional encoding method being
investigated and by another 1× 1 convolution.

In NLP, the Transformer-based architecture almost ex-
clusively relies on positional encoding strategies to en-
code the relative and absolute positions of words in a sen-
tence. The original Lambda layer is inspired by the Trans-
former architecture but the original positional encoding of

Figure 3: An example of case where the U-Net without non-
local layers is not able to overcome occlusion. First line:
input, ground truth; second line: output of the baseline U-
Net, output of the Non-Local U-Net + Lambda + PE. To
solve this case, the network must propagate the depth infor-
mation it found on the left of the shape to the rest of the
shape, with the help of the information of color.

Figure 4: An example of case where the T-junctions be-
tween two rectangles are occluded. First line: input,
ground truth; second line: output of the Non-Local U-Net
+ Lambda, output of the Non-Local U-Net + Lambda + PE.
To solve this case, the network must compute the spatial
extent of the occluded rectangles and determine which is on
top. Incorporating a translation covariant positional encod-
ing in the Lambda layer partially solved these problems.

the lambda layer can be very costly in terms of both param-
eters and computations. Therefore, we decided to replace
it with the cosine positional embedding presented in [46].
Our first approach was to simply add the positional encod-
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Network # parameters Test loss ↓ Gen. gap ↓ Ord ↓ δ1.25 ↓ RMSE ↓
Baseline* 871 729 1.78 - 6.03 7.36 4.91
Baseline 871 729 0.72 0.36 1.79 1.98 1.95
Global Context 864 477 0.54 0.32 1.09 1.39 1.49
Global Average Pooling 883 049 0.60 0.31 1.47 1.51 1.71
Deformable 864 844 0.94 0.54 2.43 2.83 2.44
Lambda 871 945 0.28 0.14 0.47 0.64 0.82
Lambda + PE 871 945 0.25 0.15 0.50 0.58 0.77
Lambda + PE + TT 928 969 0.28 0.18 0.59 0.65 0.85

Table 1: Results on the RDE dataset. All metrics are multiplied by 100 for readability. The best reported results are in bold
and the second best is underlined. Note that the more sophisticated the non-local layer, the better the results. The model
marked with an asterisk (*) was trained on the ambiguous version of the training dataset and evaluated on the unambiguous
one. In particular, the reported test loss is the one computed on the unambiguous dataset.

ing to the input feature map and pass the result through
the Lambda layer. As pointed out in [6], this leaks the
absolute position of the pixel, which could be detrimental
for our task. We therefore decided to decorrelate the posi-
tional encoding from the rest of the layer by adapting the
method of [6] to the lambda layer. Formally, given a pre-
defined positional encoding P ∈ RC×N , an input feature
map x ∈ RCin×N and learnable matrices K ∈ RM×Cin ,
V ∈ RCout×Cin , Q ∈ RM×Cin , A ∈ RCout×M we compute

K̄ = SOFTMAXN (Kx) ∈ RM×N ,

λcontent = K̄(V x)T ∈ RM×Cout ,

λpos = AK̄PT ∈ RCout×C ,

ypos = λposP ∈ RCout×N ,

ycontent = λT
contentQx ∈ RCout×N ,

and the output of the Lambda layer is given by y = ycontent+
ypos. We refer to this method as “Decor.”. Finally, we noted
that the cosine positional encoding of [46] is of the form

Pc,n =

{
cos(wkn) if c = 2k

sin(wkn) if c = 2k + 1
,

and we investigated if another choice of the sequence
(wc)c∈[[1,C/2]] could yield better results. This led us to intro-
duce Fourier coefficients wc = 2πc/(2C), c = 1, . . . , C/2.
We refer to this method as “Fourier”.

In Table 2, we compare these methods with the use of
CoordConv [29] instead of regular convolutions within the
Lambda layer, and with the translation covariant version of
the positional encoding proposed in the original Lambda
layer with different widths R. Notably, we found that the
only truly translation covariant approaches were the one
that used the “Decor.” mechanism. In particular, using the
Fourier positional encoding alongside the “Decor.” mecha-
nism yields a perfect score on the dataset. We tested our

variant of the Lambda layer with this new positional encod-
ing method (Lambda + PE) on the RDE dataset. This mod-
ification moderately improved on the final performance as
reported in Table 1.

5.3. Results on the ColorCode dataset

For this set of experiments, we used the Color Code
dataset presented in Section 3.3. The input dimension was
N = 128, the number of different colors per input k = 10
and the proportion of masked inputs 50%. We trained our
networks with 20,000 training images and evaluated them
on a separate test set comprised of 10,000 testing images.
The results are presented in Table 3.

The spatial dimension of the input being low, we chose
to evaluate the smallest versions of the linear-cost approxi-
mation of the self-attention. As we only needed to investi-
gate layer capabilities, we reduced the trained networks to
their simplest form: a 1× 1 convolution, followed by three
instances of the assessed layer, followed by another 1 × 1
convolution. See the supplementary for more details.

The used metric was the mean accuracy of the masked
codes across the training dataset i.e.∑N

i=1(1−mi) · 1{zσ(i)=ẑi}∑N
i=1(1−mi)

,

where ẑ is the network’s prediction.
Notably, all self-attention variants perform on par. The

overall performance of the Transformer suggests that some
ambiguity was left in the dataset. This ambiguity was prob-
ably due to some colors not being easily distinguishable.
Humans would also fail in some cases as it is hard to tell
apart the 2563 different colors. The failure of the MLP-
Mixer on this task seems to indicate that multilayer percep-
trons are not always a good replacement for self-attention,
even if they are on image classification.
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Method # parameters Train IOU Test IOU
Cosine + Sum + QKV 182 018 98.70% 24.71%
Cosine + Sum + QV 182 018 98.67% 35.66%
Cosine + Decor. 182 018 84.78% 84.79%
Fourier + Decor. 182 018 100.0% 100.0%
CoordConv 184 066 80.71% 56.16%
Lambda (R = 7) 182 818 11.11% 11.11%
Lambda (R = 19) 187 810 19.50% 14.81%

Table 2: Results on the Centered Square dataset with input dimension H = W = 64 and square width w = 21. The best
reported results are in bold and the second best are underlined. The “Decor.” method is the most consistent as it performs
almost identically on the train and test sets.

Network # parameters Test metric
Transformer 2 373 379 99.87%
MLP-Mixer 1 979 011 69.77%
Nyströmformer-32 2 176 003 99.66%
Linformer-32 2 208 771 99.15%
Reformer-32 2 176 003 77.59%
Lambda 2 175 235 99.52%
Lambda + TT 2 569 987 99.85%

Table 3: Results on the Color Code dataset with N = 128
positions and k = 10 different colors for each input. In
particular, the Transformer seems to have reached the max-
imum possible metric on this dataset.

The only attention map computed in the Lambda layer
depends on the comparison between the input feature map
and a learned matrix. Inspired by the mechanism of self-
attention, we improved this attention map by switching the
learned matrix for a matrix computed based on the input
feature map. This amounts to iterating the Lambda layer
twice, yielding our variant named Lambda + TT. We refer
the reader to the supplementary for further details. On the
Color Code dataset, this slight modification of the Lambda
layer yields the second best performance. We tested this
layer onto the RDE dataset and surprisingly, we found a
decrease in performance as reported in Table 1. The lack
of improvement could be due to this additional mechanism
being not needed since there are only 10 colors in the entire
dataset. It could also be due to the fact it was trained for 50
epochs while it could have benefited from a longer training.

6. Limitations, conclusion and future works

6.1. Limitations

This work is about better understanding the properties of
neural structures. The goal of the methodology is to pin-
point the properties of each given structure. To this end,

we remove all the complex unknown statistical cues inher-
ent to natural images. The final goal is that, given a task to
solve, a practitioner will first identify the properties needed
to solve the task and will choose the components of the net-
work accordingly. This nonetheless raises several issues.
First, there is no guarantee that simple properties are easily
identifiable for every task. Secondly, there is no guarantee
that if we mix multiple structures with different properties,
the resulting structure will have the properties of its compo-
nents. Thirdly, even if we had managed to find a structure
with all of the desired properties, it might be that it doesn’t
transfer to natural images.

Furthermore, all of this work is constrained by the opti-
mization process: it might be that a structure that does not
work on a given dataset would yield a very good result if
trained using a different training recipe.

6.2. Conclusion and future work

We attempted to design synthetic datasets as tools to
compare and improve neural networks. Very controlled
datasets like RDE might play the role that was formerly
given in signal processing to the impulses that were fed
to a black box to obtain an impulse response. Here, the
goal is to keep interpretable results that link network struc-
ture changes to performance gains. We claim that such in-
terpretations can hardly be obtained with natural annotated
datasets.

We plan to expend RDE to more general scenes while
keeping its statistical neutrality. The current dataset does
not address the non-local problem of detecting the main col-
ors (the ten colors were fixed once and for all in the dataset).
We plan to vary the number of rectangles, then to authorize
more varied shapes, finally to endow them with textures, so
as to keep the synthetic dataset visually interpretable, sta-
tistically neutral, but ever closer in complexity to a natural
scene.
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