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Abstract

Dataset bias in manually collected datasets is a known
problem in computer vision. In safety-critical applications
such as autonomous driving, these biases can lead to catas-
trophic errors from models trained on such datasets, jeop-
ardizing the safety of users and their surroundings. Being
able to unpuzzle the bias in a given dataset, and across
datasets, is an essential tool for building safe and responsi-
ble AI. In this paper, we present deepPIC: deep Perceptual
Image Clustering, a novel hierarchical clustering pipeline
that leverages deep perceptual features to visualize and un-
derstand bias in unstructured and unlabeled datasets. It
does so by effectively highlighting nuanced subcategories
of information embedded within the data (such as mul-
tiple but repetitive shadow types) that typically are hard
and/or expensive to annotate. Through experiments on a
variety of image datasets, both open-source and internal,
we demonstrate the effectiveness of deepPIC in (i) singling
out errors in metadata from open-source datasets such as
BDD100K; (ii) automatic nuanced metadata annotation;
(iii) mining for edge cases; (iv) visualizing inherent bias
both within and across multiple datasets; and (v) capturing
synthetic data limitations; thus highlighting the wide vari-
ety of applications this pipeline can be applied to. All clus-
tering results included here have been uploaded with image
thumbnails on our project website - https://alchemz.
github.io/unpuzzle_dataset_bias/. We rec-
ommend zooming in for best impact.

1. Motivation

Bias is an inherent and unavoidable property of manually
collected datasets. One of the most common forms in which
bias shows up in manually collected datasets is a skewed
representation of certain elements and/or geo-locations that
are easier to collect data for. For example, one of the largest
and most diverse datasets, BDD100K [43], has only 0.2%
of its annotated objects as motorcycles with a 238:1 ratio
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Figure 1. Automatic identification of images with incorrect meta-
data (left) in both open-source and internal datasets using deepPIC.

between the total number of car and motorcycle instances.
For an object detection algorithm, such biases can skew the
results towards the prominent object classes such as cars,
resulting in low class-wise accuracy and poor generaliza-
tion performance in the real-world [7, 34]. In this paper,
we focus exclusively on identifying bias in vision data per-
taining to safety-critical automotive applications, thus lay-
ing the first step towards mitigating bias.

Prior research aims at mitigating bias by improving neu-
ral network architectures [12, 35–37], training procedures
[2, 4, 7, 42] and augmenting datasets [14, 18, 30]. To the
best of our knowledge, there is no reliable method avail-
able to effectively visualize the amount and type of bias
in image datasets. Such a method would be highly instru-
mental in targeted bias mitigation through purposeful data
collection/augmentation as opposed to relying on the com-
pletion of at least one full model development and testing
cycle for the identification of failure modes from existing
data gaps. In the case of image datasets, estimating bias
on an image pair level is analogous to measuring percep-
tual similarity. Humans are effortlessly adept at gauging
perceptual similarity between two images. However, there
isn’t a concrete mathematical understanding available of the
underlying mechanisms used by humans for this task. Re-
cently, Zhang et al. [45] showed that deep perceptual sim-
ilarity metrics, relying on image features from neural net-
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Figure 2. Schematic of the hierarchical clustering pipeline, deepPIC

works such as SqueezeNet [16], AlexNet [20] and VGG-
16 [33] trained on a variety of vision tasks, significantly
outperform classical metrics, such as Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index (SSIM) [41],
in effectively measuring human perceptual similarity.

Taking inspiration from their findings, this paper
presents a novel two-stage hierarchical clustering pipeline
called deepPIC i.e. deep Perceptual Image Clustering,
that leverages deep perceptual features like ImageNet [31]
trained VGG-16 [33] activations and Learned Perceptual
Image Patch Similarity (LPIPS) [45] to segregate unlabeled
datasets into semantically meaningful clusters, with distinct
inter- and intra-cluster semantic signatures. Typical meta-
data accompanying open-source datasets, e.g. BDD100K,
captures high-level environmental conditions and scene se-
mantics well, such as time of the day (daytime, night,
dawn/dusk) and scene type (highway, city street etc.). How-
ever, it fails to capture the more nuanced semantic cate-
gories such as dominant shadow types and shape within
daytime, varying traffic densities within night, gradual
changes in image contrast and/or brightness etc. In Sec-
tion 2 and Section 3.1, through experiments on multiple
open-source and internal datasets, it is demonstrated that
deepPIC is highly effective in segregating and/or organiz-
ing a variety of datasets into salient and nuanced subcat-
egories of information, which would otherwise be too ex-
pensive and time-consuming to annotate.

The impact of such a clustering scheme is highlighted
by applying it to multiple applications of immense practical
use for computer vision and machine learning practitioners
such as: (i) nuanced metadata annotation (in Section 3.1)
which in turn can aid informative sampling for building ef-
fective training and test sets; (ii) automatic identification of

incorrect metadata annotations (in Section 3.2); (iii) mining
for edge cases (in Section 3.2); (iv) identifying and visual-
izing inherent dataset bias across different datasets (in Sec-
tion 3.3); and (v) visualizing domain gap between real and
synthetic datasets (in Section 3.4) as a proxy metric for re-
alism and a guiding beacon for improving photorealism of
synthetic datasets [13]. Section 4 will discuss key limita-
tions of deepPIC, followed by a conclusion in Section 5.

2. Hierarchical Clustering Using deepPIC
In this section, an overview of the proposed two-stage hi-

erarchical clustering pipeline, deepPIC, is presented. Fig. 2
provides a detailed schematic and Alg. 1 and Alg. 2 provide
the pseudocode for the first and second clustering stages.

2.1. Design Considerations

The first stage of high-level semantic clustering is per-
formed in the feature space of the deepest FC 4096 layer of
ImageNet pre-trained VGG-16. The specific choice of the
ImageNet pre-trained VGG-16 backbone is inspired by its
use in the construction of “perceptual losses” in prior work
on neural style transfer [11,21], image synthesis [8] and im-
age super-resolution [19]. In all such works, features from
multiple intermediate layers are tapped into for the compu-
tation of perceptual losses. In contrast, deepPIC intention-
ally taps into features from the deepest FC 4096 layer only.
This is because in the first clustering stage of deepPIC, the
goal is to cluster based on high-level semantics only; and in
any deep convolutional network, features from the deepest
layers provide the highest level of abstraction [44].

The second stage of low-level clustering is performed
using LPIPS with an AlexNet backbone. LPIPS was in-
troduced by Zhang et al. [45] as a linearly calibrated (on
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the Berkeley Adobe Perceptual Patch Similarity (BAPPS)
dataset) and more effective variant of perceptual similarity
as compared to those using non-calibrated backbones. The
specific choice of AlexNet versus other networks such as
VGG or SqueezeNet follows the recommendation in [45]. It
is also important to note that LPIPS taps into features from
multiple intermediate layers and not just the deepest layer,
as is the case in deepPIC stage 1. Such a setting aligns well
with the stage 2 goal of low-level/nuanced semantic cluster-
ing.

In both stages, post deep feature extraction, Pairwise
Controlled Manifold Approximation (PaCMAP) [40] is
leveraged for dimensionality reduction and visualization
of the data structure in a two-dimensional map. This is
followed by the use of Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [10, 32] for auto-
matically segregating data points into clusters. We chose
PaCMAP over other dimensionality reduction methods such
as t-Distributed Stochastic Neighbor Embedding (t-SNE)
[38] and Uniform Manifold Approximation and Projection
(UMAP) [3], since PaCMAP is known to preserve both lo-
cal and global structures.

2.2. Algorithm Description

In deepPIC stage 1 as described in Alg. 1, for a given
set of N images, I, a resizing operation is first performed
to satisfy the input layer requirements for ImageNet pre-
trained VGG-16 (line 1). This is followed by FC 4096 fea-
ture extraction (line 2) to get the feature set V. PaCMAP
dimensionality reduction is then performed on V to obtain
a two-dimensional mapping T1 (refer line 3). Following
the recommendations in [40], learning rate is kept fixed at
1 and the number of neighbors is set as 10 if N < 10, 000
or as 10 + 15(log10 N − 4) if N > 10, 000 . The PaCMAP
step is followed by the use of DBSCAN to obtain cluster
labels C1 (the superscript 1 denotes stage 1) for the visual-
ized data structure in T1 based on the Euclidean distance
between clusters (line 4). More specifically, we use the
sklearn.cluster.DBSCAN [27] implementation with
epsilon = 0.05 and min samples = 15 chosen empir-
ically based on two main criterion: (i) semantically mean-
ingful; and (ii) visually distinct cluster segregation.

Algorithm 1 deepPIC Stage 1
Input: A set of N images, I : {Ii ∀ i ∈ [0, N)}
Output: JSON mapping each image to its perceptual space

coordinates and assigned cluster
1: Ii ← resize(Ii) ∀ i ∈ [0, N) ▷ Resize to 224× 224
2: V : {Vi ∈ RN × R4096} ← vgg16(I)
3: T1 ← pacmap(V) ▷ T1 ∈ RN × R2

4: C1 : {C1
k ∀ k ∈ [0,K), C1

−1} ← dbscan(T1)

Fig. 3 shows the deepPIC stage 1 output, C1, for 5000

2 DBSCAN Clusters From Stage 1
Overlayed With BDD100K Provided Metadata

1

0

Day Cluster 

Night Cluster

!""

!#"

Figure 3. deepPIC stage 1 output (C1) for 5000 BDD100K im-
ages. Note automatic segregation of day and night images into two
distinct clusters, as corroborated by the time of the day metadata
and sample images from each cluster (bottom).

images randomly sampled from the BDD100K training set.
Note the automatic visual segregation of night and day im-
ages into two distinct clusters, C1

0 and C1
1 respectively

(subscripts 0 and 1 denote the cluster labels), as corrobo-
rated by the BDD100K-provided time of the day metadata.
Sample images from each cluster are shown at the bottom.
In developing and testing deepPIC on multiple datasets, it
was observed that while C1 is sufficient for (i) obtaining
high-level semantic clustering such as the day-night split
in this case; and (ii) for effectively analyzing data struc-
ture and diversity in simple datasets; delving deeper into
the intra-cluster spread is often beneficial in obtaining more
fine-grained semantic segregation. This is where the hierar-
chical nature of the pipeline comes in.

Algorithm 2 deepPIC Stage 2

Input: C1 from Stage 1; Set of N images I
Output: JSON mapping each image to its perceptual space

coordinates and assigned cluster
1: for k = 0; k < K; k = k + 1 do ▷ For all clusters in C1

2: Jk ← {Ii ∀ i ∈ [0, N) that got clustered in C1
k}

3: Lk ← lpips(Jk) ▷ Extract LPIPS score for each image
pair: Lk ∈ R|Jk| × R|Jk|

4: T2
k ← pacmap(Lk) ▷ Perform PaCMAP visualization:

T2
k ∈ R|Jk| × R2

5: C2
k ← dbscan(T2

k) ▷ Assign Mk cluster labels
6: end for

For each cluster C1
k ∈ C1 from stage 1, Alg. 2 performs
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deepPIC Stage 2 Output
for the “Night” cluster from Stage 1
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Figure 4. C2
0, i.e. deepPIC stage 2 output for BDD100K im-

ages assigned to C1
0 (night cluster) in Fig. 3, overlayed with scene

metadata. Note the shift from highway/residential to city as we go
from left to right. The increase in traffic density from left to right
is also shown using sample images (bottom).

a second clustering operation leveraging the LPIPS score.
When performing DBSCAN at this stage, we scale the
min samples value of 15 (used in the first stage) to [2, 15]
based on the cluster population of C1

k. The epsilon value
is chosen heuristically between 0.05 and 0.40. Fig. 4 shows
C2

0, i.e. the output of the second clustering stage (denoted
by the superscript 2) as applied to night cluster C1

0 in Fig. 3.
Note that while DBSCAN is unable to further segregate the
visualized map into distinct sub-clusters, the hierarchical
clustering step is still beneficial in organizing all the night
images into continuous, semantically evolving trends. For
example, the BDD100K scene metadata scatter plot (top) in
Fig. 4 shows a transition from lower traffic density highway
(blue dots) and residential scenes (green dots) in the left,
to busy city street scenes (orange points) in the right. Sim-
ilar insights were obtained from the output of the second
clustering stage applied to the daytime cluster C1

1 in Fig. 3
(included in our project website).

3. Applications

3.1. Pseudo Metadata Annotation

A straightforward application of deepPIC is metadata an-
notation. Consider an internal parking dataset comprising
of 641k images from 7 different parking lots, denoted as p1
- p7 from here on for brevity. p1 - p4 are open parking lots,
in close proximity to each other. p5 - p7 are indoor park-

0 1 2 3

Environment Indoor Outdoor Outdoor Outdoor
Time of day Day/Night Day Day Day

Lighting Low Overcast Bright Bright
Shadow Car Car Car Car
Ground Concrete Asphalt Asphalt Cracked

Lane Color Yellow Yellow Damaged Damaged

0 1 2 3Cluster No.

Figure 5. deepPIC stage 1 cluster (C1) uses 2000 images collected
from an internal parking dataset. Note indoor garage data formed
C1

0, which is segregated from those clusters containing images
captured from outdoor parking lots (C1

1, C1
2, and C1

3). This split
is corroborated by the manually labeled outdoor (cool color dots
denoting p1 - p4) versus indoor (warm colored dots denoting p5 -
p7) scene metadata.

ing garages from geographically similar areas as p1 - p4. A
fleet of Sedan vehicles mounted with four cameras was used
to collect this data, mostly during daytime. Sample parking
images included in the paper have been blurred to ensure
no personally identifiable information, such as license plate
and pedestrians, are visible. For illustrating pseudo meta-
data annotation on this dataset, 2k out of 641k, i.e. 0.3%
images were sampled uniformly from all 7 parking lots.

As described in Section 2, deepPIC, in the first cluster-
ing stage, segregates high-level scene semantics. This is
followed by a second clustering stage that delves deeper
into more nuanced semantics. Fig. 5 shows the deepPIC
stage 1 output for the 2k parking images. The three clus-
ters on the left half of the scatter plot (C1

1, C1
2, and C1

3)
comprise mainly of outdoor open parking lot images. The
remaining cluster, C1

0, is notably distanced from the rest of
the clusters and comprises of images from indoor garages.
The different parking structures between indoor garages and
open parking lots naturally create different lighting condi-
tions and ground textures, which jointly contribute to the
distinct cluster segregation. To annotate this dataset with
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more nuanced meta information, we present the deepPIC
stage 2 clustering results for C1

1 from Fig. 5 in Fig. 6. Here,
all clusters comprise of images from the same domain of
outdoor parking lots. However, sub-clusters 3 and 4 are dis-
tinct from the rest of the clusters due to the presence of clear
skies as opposed to cloudy weather. On taking a closer look,
images assigned to these sub-clusters are also distinct due to
the presence of a large, hard cast ego vehicle shadow in the
image. A more detailed pseudo metadata annotation table
is provided on the bottom. The annotation tables in both
Fig. 5 and Fig. 6, with the aid of deepPIC, were generated
by an engineer within a few minutes. Performing the same
task manually would have taken hours.

0 1 2 3 4

Cluster No.

Environment Outdoor Outdoor Outdoor Outdoor Outdoor

Viewpoint Left Rear Mixed Right Left

Weather Overcast Overcast Overcast Sunny Sunny

Shadow 
Type

Occlusion 
shadow

Occlusion 
shadow

Occlusion 
shadow

Ego vehicle
shadow

Ego vehicle 
shadow

Ground Asphalt Asphalt Asphalt Asphalt, Snow Asphalt, Snow

Lane Color Yellow(Y) Y, Damaged Y, Damaged Not Visible Not Visible

Background Mall Mall Mall Building Building

0 1 2 3 4

Figure 6. deepPIC stage 2 clustering on C1
1 creates 5 sub-clusters

with distinct metadata segregation: sub-clusters 0, 1 and 2 have
overcast skies while 3 and 4 have sunny skies and a strong ego-
vehicle shadow.

3.2. Verifying Existing Metadata Annotation And
Extracting Corner Cases

In this section, we will demonstrate the effectiveness of
deepPIC in: (i) singling out errors in metadata accompany-
ing well-known open-source (BDD100K and CULane [25])
datasets and an internal parking dataset (refer Section 3.1);
and (ii) mining for edge cases for vision tasks.

Recall the deepPIC stage 1 clustering output for
BDD100K overlayed with time of the day metadata in
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Figure 7. (Top) Edge cases mined using deepPIC from the
BDD100K stage 1 night cluster, i.e. C1

0 in Fig. 3 and (Middle)
from the day cluster, i.e. C1

1. (Bottom) Edge cases mined from the
CULane stage 1 day cluster.

Fig. 3. Note that C1
0 (right) comprises mainly of images

clustered as night by appearance, corroborated by the heavy
presence of red dots that denote images labeled night in the
BDD100K provided metadata. Similarly, C1

1 (left) com-
prises mainly of images clustered as day by appearance,
again corroborated by the heavy presence of orange dots
that denote images labeled daytime in the BDD100K pro-
vided metadata. One can notice few red dots in the day clus-
ter and few orange dots in the night cluster. Parsing for these
inconsistencies resulted in a total of 26 images that are la-
beled daytime in the BDD100K provided metadata json but
get clustered in the deepPIC night cluster; and 27 images
that are labeled night in BDD100K metadata but get clus-
tered in the deepPIC day cluster. On taking a closer look
at these images, we found several that had indeed been in-
correctly annotated for time of the day, as shown in Fig. 1.
The rest were correctly annotated but are interesting cor-
ner/edge cases, as shown in Fig. 7. The top row shows day-
time edge cases such as an airport pick up/drop off scene;
tunnel/underpass scenes; and strong glare. The middle row
shows night edge cases such as a scene with multiple bright
yellow cabs on a snow covered street; a late sunset scene
with bright glare from the sky and traffic lights; a white van
in close proximity covering most of the image; and a well
lit tunnel scene.

Repeating a similar analysis on 2000 images sampled
from the CULane test set (because metadata is provided
only for the test set), we found 43 images that were in-
correctly labeled as day in the provided metadata (or more
specifically, not labeled as night since there is only a night
category in the provided time of the day metadata). On tak-
ing a closer look at these 43 images, we again found quite
a few that were captured at night but not labeled as night
(shown in Fig. 1) and the rest were interesting corner/edge
cases such as dark tunnel scenes or indoor parking environ-
ments (shown in Fig. 7 bottom row).

For the internal parking data described in Section 3.1,
Fig. 5 shows the deepPIC stage 1 output overlayed with
metadata annotation that was available for outdoor parking
lots (p1 - p4) versus indoor garage (p5 - p7). Note that C1

1

and C1
2 mostly comprise of cool color dots which denote
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images labeled as outdoor parking lots. However, in both
clusters, there are some warm color (red) dots. On taking
a closer look at these inconsistencies, we found images that
had been incorrectly labeled as indoor garage data. Sample
images are shown in Fig. 1.

To summarize, deepPIC is effective in automatically
identifying incorrect metadata annotations by leveraging in-
consistencies between data clusters formed via deep percep-
tual similarity and manually assigned metadata labels.

3.3. Visualizing Inherent Dataset Bias

Datasets collected for the same task, when collected in
silos, tend to display an inherent bias, as highlighted fa-
mously by Torralba et al. [34] through their Name That
Dataset experiment in which a 12-way linear SVM classi-
fier was trained to successfully distinguish between 12 ob-
ject recognition datasets. For autonomous driving datasets
in particular, this inherent bias is mostly a consequence
of the fact that it is quite hard to collect data across ge-
ographical locations and with diverse environmental con-
ditions.Applying deepPIC stage 1 clustering using Alg. 1
to a randomly sampled mix of 5 popular open-source lane-
detection datasets - ApolloScape [15], BDD100K, CULane,
Mapillary [22] and TuSimple [1] - is highly effective in
confirming this inherent dataset bias (see Fig. 8). Out of
the 5 chosen datasets, BDD100K is known to be the most
diverse given the large scale, crowd-sourced data collec-
tion methodology adopted by its creators. This character-
istic is corroborated by the fact that the red dots, represent-
ing BDD100K images are intermingled with dots of other
colors representing all other datasets. Similarly, given the
small size and low diversity in geo-locations, time of the
day and weather types in the TuSimple dataset, it stands
out, well segregated from all other datasets, as the purple
cluster on the right. Overall, the cluster separation shows
the inherent bias across public lane datasets.

3.4. Visualizing Sim-to-Real Gap

Given the time and cost intensive nature of real-world
data collection coupled with the fast-paced developments
in gaming engine based simulation [9, 28], Generative
Adversarial Networks (GANs)-based image style transfer
[17, 21, 26, 46] and neural rendering [23, 24]; synthetic data
augmentation is now widely being leveraged for the cre-
ation of richer, more diverse training sets for supervised
learning based downstream vision tasks in real-world in-
dustrial settings (see Refs. [5, 18] and Tesla’s AI day an-
nouncement1). However, in the absence of reliable metrics
for quantifying the sim-to-real gap between generated and
real datasets, synthetic data augmentation may end up hurt-
ing model performance rather than improving it [17]. In this
context, another salient application of deepPIC is to use it

1https://youtu.be/j0z4FweCy4M?t=5715
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Figure 8. Visualizing inherent dataset bias in open-source lane de-
tection datasets. (Top) Stage 1 clustering output from deepPIC
applied to 10000 images from 5 different datasets. (Bottom L-R)
Sample images from ApolloScape, BDD100K, CULane, Mapil-
lary and TuSimple.

to visualize the sim-to-real gap, as perceived by deep con-
volutional neural networks. Fig. 9 highlights one such vi-
sualization of a mix (10k images) of real, simulated and
sim-to-real GAN translated images (equally split) from an
internal parking dataset. Sample images of each type are
also shown in the same figure. The simulated images were
generated using an in-house Unreal Engine-based simula-
tion tool. The sim-to-real GAN translated images were gen-
erated by applying a sim-to-real model based off [17, 21]
and trained from scratch on the given real and simulated
datasets. Fig. 9 shows C1, i.e. DBSCAN clusters for the
PaCMAP visualization of ImageNet pre-trained VGG-16
features for the full set of 10k images, overlayed with the
source of each image (among real, simulated and sim-to-
real GAN). 17 clusters are obtained with epsilon = 0.05
and min samples = 15. Top highlights include: (i) sim
(orange) and real (blue) data points are non-overlapping in-
dicating a high sim-to-real gap; (ii) sim-to-real (green) data
points bridge the gap between real (blue) and sim (orange)
data points showcasing a successful domain-translation of
the sim (orange) images. Such a tool is ground-breaking
in finding novel, application-centric ways of identifying the
sim-to-real gaps in any dataset.

4. Discussion
4.1. Limitations

Lack Of Semantic Distinction Across Nearby Clus-
ters: Fig. 10 zooms into the deepPIC stage 1 output for the
internal parking dataset described in Section 3.1 to illustrate
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Figure 9. Visualizing sim-to-real gap using C1, i.e. stage 1 output
from deepPIC applied to an equally split mix of 10k real, simu-
lated and sim-to-real GAN translated parking images. The gradual
progression of realism between the three sets of data confirms the
efficacy of the data augmentation steps. Bottom rows show sample
real, sim and sim-to-real images.

the lack of a meaningful semantic segregation across nearby
clusters, particularly where smaller clusters are separated
around a large cluster. In this case, C1

0 and C1
2 consist of

images that are semantically similar to the images in C1
1

and would perhaps be better placed within C1
1. Such leaked

cluster formations, consisting of a small set of images, can
require human-in-the-loop intervention.

LPIPS compute challenges: As described in Section
2, deepPIC Stage 2 clustering leverages the LPIPS score
for computing perceptual similarity between pairs of im-
ages. This step scales as O(N2) where N is the number
of images and is a significant compute bottleneck in scaling
deepPIC to large-scale datasets. Future work will investi-
gate LPIPS’ derivatives that retain its desirable properties
in terms of capturing perceptual similarity while also being
computationally less expensive.

4.2. Quantitative Analysis

Quantifying clustering effectiveness: Existing metrics
such as Rand Index (RI) [29], Adjusted Rand Index (ARI)
[39], Normalized Mutual Information (NMI) and Adjusted
Mutual Information (AMI) [6], although excellent metrics

1

0

2

1

2

3

Figure 10. stage 1 output (C1) from an internal parking lot dataset
of 10000 randomly sampled images. Note that the segregation of
images shows how smaller leaked clusters can form around a large
cluster, that may not be semantically meaningful or significant.

to capture the effectiveness of any clustering method, re-
quire ground truth labels. Thus, they are not applicable as-
is to deepPIC, since its focus is on providing pseudo meta-
data annotations for datasets which have little/no labels. On
the datasets for which some level of meta-data annotations
are available as ground truth, we ran additional experiments
to quantify the clustering effectiveness of deepPIC. Fig. 3
shows the deepPIC stage 1 output for 5k BDD100K images.
It is visually clear that deepPIC does a great job at automat-
ically segregating day and night images into two distinct
clusters. Since BDD100K provides time of the day meta-
data, we used it as ground truth to provide a quantitative
comparison with prior clustering methods. Table 1 shows
that deepPIC outperforms all prior methods that cluster in
the pixel space.

Method RI ARI NMI AMI
deepPIC Stage 1 0.90 0.80 0.74 0.74

PaCMAP† + DBSCAN 0.88 0.76 0.68 0.68
PaCMAP† + K-means 0.88 0.76 0.69 0.69

PCA + DBSCAN 0.44 0.00 0.01 0.01
PCA + K-means 0.89 0.79 0.72 0.72

Table 1. Quantitative comparison with prior clustering methods
for BDD100K. Higher values are better. PaCMAP† refers to
PaCMAP with the default PCA initialization [40]

A similar comparison was done for the results shown in
the Fig. 5 of the deepPIC stage 1 output for 2k images from
the internal parking dataset. Here also, deepPIC does a great
job at segregating indoor garage images from open parking
lot images. For quantifying this result, we leverage inter-
nal meta-data annotation for indoor garage versus outdoor
parking lots. As shown in Table 2, deepPIC significantly
outperforms other clustering methods. The difference be-
tween deepPIC and prior methods is greater in this exam-
ple because of the greater challenge posed by an indoor vs.
outdoor segregation task, as opposed to the relatively lower
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challenge posed by the day vs. night segregation task in the
previous example of BDD100K.

Method RI ARI NMI AMI
deepPIC Stage 1 0.98 0.96 0.93 0.93

PaCMAP† + DBSCAN 0.51 0.01 0.01 0.01
PaCMAP† + K-means 0.58 0.16 0.26 0.26

PCA + DBSCAN 0.51 0.00 0.00 0.00
PCA + K-means 0.59 0.19 0.26 0.26

Table 2. Quantitative comparison with prior clustering methods
for Parking dataset. Higher values are better. PaCMAP† refers to
PaCMAP with the default PCA initialization [40]

It is worthwhile noting that note that such comparisons,
even though quite promising in establishing the superiority
of deepPIC over other clustering methods, is limited in its
ability to quantify the effectiveness of deepPIC in clustering
unorganized datasets for downstream applications, such as,
pseudo annotations; identifying incorrect annotations; iden-
tifying dataset bias; visualizing sim-to-real gap; and so on.

Quantifying Dataset Bias: As shown in Sections 2
and 3, deepPIC is highly effective is visualizing and under-
standing dataset bias. However, bias quantification remains
unaddressed. With the current pipeline, proxy bias quan-
tification metrics can be derived from the number and den-
sity of clusters. For example, deepPIC stage 1 on simpler,
less diverse datasets, such as the internal object detection
dataset described in Section 3.1, results in a large number of
sparse and distinct clusters, as shown in Fig. 5 and Fig. 6. In
contrast, when applied to a much larger and diverse open-
source dataset such as BDD100K, deepPIC results in fewer,
denser clusters, with strong semantic evolution within the
cluster, as shown in Fig. 3. Thus, a natural next step to-
wards bias quantification would be to quantify such trends
to highlight bias.

4.3. Task Specific Bias

For the analysis presented in this paper, ImageNet-
trained VGG-16 (deepPIC Stage 1/Alg. 1) and LPIPS with
an AlexNet backbone, also trained on ImageNet (deepPIC
Stage 2/Alg. 2), are used to derive the deep perceptual fea-
tures for clustering. As shown in Section 3, both these back-
bones are highly effective in visualizing underlying seman-
tic and perceptual structure in image datasets. However, a
strong case can be made for replacing these generic back-
bones trained for object detection with task specific back-
bones. For example, when analysing and curating datasets
for the task of lane detection, it would be interesting to
compare the output of deepPIC with the VGG-16 and/or
AlexNet backbones replaced with a pre-trained lane detec-
tion model such as Spatial CNN (SCNN) [25] for the ex-
traction of deep perceptual features. For the lane detec-
tion task, this could help highlight task-specific bias such as
dominant lane marker types, lane marker condition, ground

types etc. Thus, such an analysis could help provide deeper
insights into dataset bias by combining the task model and
the dataset itself.

4.4. deepPIC Informed Sampling

When working with production-scale datasets for auto-
mated driving perception tasks, comprising of millions of
images, the kitchen sink approach of annotating and learn-
ing from all available data is not only expensive, but also
highly susceptible to overfitting. A naive alternate is to ran-
domly sample smaller subsets. However, random sampling
can result in loss of under-represented scenarios and edge
cases. Future work will investigate the use of deepPIC in-
formed sampling as an alternate to random sampling in such
scenarios for effective training and test set curation.

5. Conclusion
Dataset bias can creep into an AI/ML pipeline at various

development stages, in many cases, implicitly. Being able
to unpuzzle that bias in a given dataset and across datasets
is a powerful tool. With the proposed hierarchical clus-
tering pipeline, deepPIC, this paper presents a novel data-
centric way to leverage deep perceptual features and simi-
larity metrics such as ImageNet trained VGG-16 activations
and LPIPS, to understand inter- and intra-cluster relation-
ships in unstructured image datasets. Rich and insightful
visualizations are obtained using PaCMAP. This method,
showcased on diverse vision datasets, works very well in
exposing pseudo metadata annotations which are confirmed
by a human-in-the-loop. Nuanced annotations can thus be
obtained at a much lower overall cost. The tool has been
designed to identify dataset bias, both natural and due to
human induced errors. While not meant for directly build-
ing machine learning models or deploying models in cus-
tomer facing applications, deepPIC is designed to be used
offline as a visual template for inspecting and interpreting
the analysis of data used in development of machine learn-
ing models. In fact, the tool can be used to detect biases and
erroneously represented data that can be harmful/sensitive
for end-user applications. This, along with other wide vari-
ety of detailed applications, are presented to emphasize the
broad spectrum of benefits that can be derived. We are ex-
cited about this work laying the foundations for further tech-
niques for understanding and eventually mitigating dataset
bias, ultimately building responsible AI.
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