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Abstract

The emergence of data-driven machine learning (ML)
has facilitated significant progress in many complicated
tasks such as highly-automated driving. While much ef-
fort is put into improving the ML models and learning algo-
rithms in such applications, little focus is put into how the
training data and/or validation setting should be designed.
In this paper we investigate the influence of several data de-
sign choices regarding training and validation of deep driv-
ing models trainable in an end-to-end fashion. Specifically,
(i) we investigate how the amount of training data influences
the final driving performance, and which performance lim-
itations are induced through currently used mechanisms to
generate training data. (ii) Further, we show by correla-
tion analysis, which validation design enables the driving
performance measured during validation to generalize well
to unknown test environments. (iii) Finally, we investigate
the effect of random seeding and non-determinism, giving
insights which reported improvements can be deemed sig-
nificant. Our evaluations using the popular CARLA simu-
lator provide recommendations regarding data generation
and driving route selection for an efficient future develop-
ment of end-to-end driving models.

1. Introduction
Towards End-to-End Deep Driving: In recent years

there has been a steady trend towards higher automation
levels in applications such as autonomous driving. Tak-
ing a look at the representative development in this area,
past driving assistance systems have mainly been enabled
by classical image processing techniques, such as using the
Canny edge detector [8] with suitable post-processing to ex-
tract lanes and facilitate a lane keeping assistant [31]. Cur-
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Figure 1: General concept: We investigate which data one should
use to efficiently train and validate end-to-end driving models,
while previous works often focused on improving models and
learning methods. Blue parts in the figure identify components,
optimized by many other works (bottom) and our work (top).

rent systems [3] often still partially rely on such model-
based algorithms, but also make use of data-driven machine
learning models, e.g., for advanced environment perception
tasks such as scene segmentation [4, 12, 28], or behavior
prediction of traffic participants [25, 38]. Latest develop-
ments, however, envision end-to-end trainable deep driving
algorithms [6, 36] driven solely by high amounts of data
with high-dimensional sensor measurements as input and
driving signals as output as shown in Fig. 1. As data is one
of the main factors for such methods’ success, it is essential
to understand the influence of different data design choices.

Training of Deep Driving Models: The core idea of
end-to-end trainable driving algorithms [6] is to remove
hand-crafted intermediate representations as it is nearly im-
possible to design a complete set of features that are im-
portant for the driving functionality. Accordingly, such
end-to-end trainable models are supposed to learn an opti-
mal representation on their own, where the learning success
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is highly dependent on the chosen training data. Surpris-
ingly, despite this fact current works often rather propose
alternative datasets [17, 20, 43] instead of comparing the
effect of choosing different training data. Moreover, the
focus of current works is often rather on comparing dif-
ferent input/output representations [13, 41], learning meth-
ods [16, 26], or network architectures [24, 36], cf. Fig. 1,
bottom part. In this work, we provide analysis and rec-
ommendations regarding training data and its limitations
when keeping all other aspects of the deep driving model
and learning method fixed, cf. Fig. 1, top part.

Evaluation of Deep Driving Models: Regarding evalu-
ation of deep driving models, one can in general distinguish
between open-loop evaluation (e.g., as in [5, 22]), where
the model’s predictions are compared to those of an expert
in an offline fashion, and closed-loop evaluation (e.g., as
in [20, 17, 36, 13]) where the driving policy is deployed and
its driving quality is measured. While Codevilla et al. [15]
have shown that offline metrics correlate badly to driving
quality, it is still rarely investigated, which kind of closed-
loop evaluation setting is well-suited to measure driving
quality. In this work, we investigate a large variety of
closed-loop evaluation settings using the CARLA simula-
tor [20]. As a result, we provide guidance regarding a suit-
able validation design for end-to-end deep driving such that
the validation performance generalizes well to the test per-
formance, and a well-performing training checkpoint can
be chosen. Furthermore, the CARLA simulator is subject to
significant non-determinism such that evaluations cannot be
carried out in a deterministic fashion. This actually reflects
a real experimental setting quite well, where the same evalu-
ation can also never be deterministically executed twice. As
this phenomenon influences essentially all current works in
the field, we investigate this effect to derive insights as to
when a reported improvement is actually meaningful.

Contributions: To sum up, our contributions include
the following. Firstly, we investigate the effect of varying
amounts of training data on the final driving performance
of end-to-end deep driving models. Secondly, we provide
an analysis w.r.t the limitations of currently used training
data in the domain of end-to-end deep driving. Thirdly,
by correlation analysis, we provide recommendations for a
well-generalizing validation of driving models. Finally, we
investigate random seed dependency and non-determinism
in current end-to-end deep driving models, which provides
insights into the meaningfulness and comparability of re-
ported improvements in end-to-end deep driving.

2. Related Work
In this section we discuss related work on training and

evaluation of end-to-end deep driving models.
Training of End-to-End Deep Driving Models: The

initial work of Bojarski et al. [6] facilitated much research in

end-to-end deep driving. As their simple imitation learning
approach could not handle challenging urban driving sce-
narios, subsequent works proposed several improvements:
Firstly, more advanced learning methods were used. Some
important examples are the incorporation of navigational
commands by conditional imitation learning [16], the ap-
plication of reinforcement learning techniques [26, 44, 10],
and a two-stage training, where first a privileged expert
is trained whose knowledge is subsequently transferred to
the driving agent [11, 51]. Constrained highway scenar-
ios were even approached by inverse reinforcement learn-
ing [39, 42], where the reward is not manually designed but
optimized. Secondly, improved network architectures mak-
ing use of, e.g., long short-term memory units [48] or self-
attention [24] have been presented. Furthermore, multi-task
networks with auxiliary tasks [46, 50], in particular with
semantic segmentation [9] benefit the end-to-end driving
task. The fusion of different input modalities such as cam-
era and LiDAR has also been proposed [36]. Thirdly, dif-
ferent input and output representations have been proposed.
Cai et al. [7] show that a driving model can also be trained
based on LiDAR data, while other approaches replace the
direct steering and speed output by affordances [41] or way-
points [13] and a subsequent PID controller, or even a prob-
abilistic output [2]. Fourthly, the transfer of deep driving
models to real data has been investigated as many deep
driving models are trained and validated on simulated data
and generalize poorly to real data [33]. For example GAN-
based style transfer of real images to the virtual domain [32]
or the segmentation domain [49] has been proposed. Fi-
nally, some works aim at improved interpretability of deep
driving models by using the attention mechanism [47, 18]
or an intermediate semantic representation [40].

While many aspects influencing the training of end-to-
end deep driving have been thoroughly investigated, the in-
fluence of using different training sets has not been subject
to a structured investigation so far, which we address with
this work. Approaches introducing new datasets [17, 20,
43, 48] usually only compare different models on new data
but do not show the influence induced by different amounts
of training data. Other works investigate the usage of on-
line data selection techniques [35, 19] or the adaptation to
out-of-distribution scenes [21]. However, these works are
limited in their improvement as more online adaptation also
involves catastrophic forgetting [29] such that our recom-
mendations for training set design are a vital component
for well-performing driving policies. Moreover, we show
that one of the main limitations of currently trained driving
models is not the learning approach but the training data
generated by a far-from-optimal “expert” driving policy.

Evaluation of End-to-End Deep Driving Models: Ap-
proaches to end-to-end deep driving usually train their mod-
els using recorded driving sequences with corresponding
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driving actions from a human driver or an expert driving
policy. Datasets such as BDD [48] or Waymo [43] col-
lected in real environments often already provide a wide
variety of situations. However, evaluation of models in
a test car is usually not possible and neural simulators of
“real” data [27] still lack performance and diversity, such
that only the deviation between the predicted and the ground
truth action can be measured at each time step [5, 22]. No-
tably, Codevilla et al. [15] show that such offline metrics
correlate badly to actual driving quality. In consequence,
current research focus has shifted to virtual data [37, 20],
in particular to the CARLA simulator [20] providing flexi-
ble possibilities to test driving models in interaction with
complex and configurable environments. Accordingly, the
majority of current approaches report their performance on
the CARLA benchmarks CoRL2017 [20], NoCrash [17], and
the newly introduced Leaderboard [1], providing possibili-
ties to upload an agent policy for evaluation on unknown
test sequences. While many works present new datasets or
benchmarks, we provide recommendations for an efficient
validation design such that the measured performance gen-
eralizes well to an unknown driving test. As the driving
performance usually varies strongly during different train-
ing epochs, a good validation design also enables the selec-
tion of a well-performing model checkpoint which easily
improves the model’s final driving quality.

3. End-to-End Deep Driving
In the following, we introduce our investigated prob-

lem setting of end-to-end deep driving as well as the
TransFusermethod [36], used to approach this problem.

3.1. Problem Definition

Task Description: We investigate the task of point-to-
point navigation in an urban environment. The goal is to
drive from a starting point u1 ∈ R2 along a pre-defined
route uG

1 = (u1, ...,ug, ...,uG), defined by G 2D way-
points ug ∈ R2 towards an end point uG, while following
traffic rules and avoiding hazardous incidents in the interac-
tion with other traffic participants. These sparse locations
are given by the route definition as global GPS coordinates,
as is standard for the CARLA Leaderboard. We therefore
employ this approach also in our used CARLA v0.9.13.

Input and Output Representation: At each discrete
time instant t, the model has access to several input sig-
nals provided by sensor measurements Xt. Firstly, an RGB
front camera image xt ∈ IH×W×C with height H = 256,
width W = 256, number of channels C = 3, and I = [0, 1]
is available. Note that the camera images are extracted at a
resolution of 300× 400 pixels, which we crop to the region
of interest at resolution of 256×256, thereby also removing
artifacts at the edges. Secondly, a LiDAR point cloud con-
verted to a histogram pseudo-image vt ∈ IH×W×C′

with
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Figure 2: End-to-end driving method: The TransFuser
model predicts steering, throttle, and brake signals (bottom right)
from a camera image and a LiDAR bird’s eye view image (top left
and top right). Both inputs are encoded, the extracted features are
fused, and finally waypoints are predicted from a GRU-based net-
work, making use of the goal location. During training, a loss is
applied minimizing the difference between predicted and ground
truth waypoints (bottom left). During inference, the waypoints are
converted to control signals via a PID controller (bottom right).

C ′ = 2 channels in bird’s eye view (BEV) is available. To
generate the histogram pseudo-image, the point cloud is di-
vided along the ground plane such that the two channels
represent the histogram over the number of points at each
image location on/below and over the ground plane, respec-
tively. The underlying LiDAR point cloud is considered in
a region of 32m in front of the vehicle and 16m to each
side. From the BEV perspective, the 32m × 32m region
is divided into 256 × 256 blocks of equal size. Finally, the
next goal waypoint ug=g(t) can be used as additional input,
where g(t) yields the index g which is the desired next goal
waypoint at time instance t. Accordingly, the model input
is defined by Xt =

{
xt,vt,ug=g(t)

}
.

As output, the series of the next T waypoints wt+T
t+1 =

(wt+1, ...,wt+τ , ...,wt+T ) with wt+τ ∈ R2 of the car’s
future trajectory in BEV space shall be predicted. The cur-
rent position and orientation serve as reference coordinate
frame to the waypoint’s coordinates. The predicted way-
points are converted to steering, throttle, and brake signals
via a PID controller [11], expecting T = 4 waypoints by
default. Note that the model output, i.e., the series of way-
points wt+T

t+1 , is in close proximity to the ego-vehicle, while
the inputted goal waypoints uG

1 of the desired route are usu-
ally quite sparse and often further away from each other.

3.2. Method Description

End-to-end Driving Model: We choose the
TransFuser architecture [36] depicted in Fig. 2 for
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our experiments as it is one of the current state-of-the-art
models for end-to-end deep driving. The architecture
processes both camera image xt and LiDAR BEV pseudo-
image vt by modality-specific ResNet encoders [23].
At each intermediate feature resolution global context
information is exchanged between both encoders via
attention modules [45]. Thereby, both images are com-
pressed into 512-dimensional feature vectors, which are
added element-wise and passed to the waypoint prediction
network, cf. Fig. 2. This network first reduces the feature
dimensionality from 512 to 64 by fully connected layers.
Afterwards the network uses a GRU-based layer [14] taking
the goal location ug=g(t) as additional input and a subse-
quent linear layer to predict the differences ∆wτ between
two future waypoints such that wt+τ = wt+τ−1 + ∆wτ .
Note that the GRU-based layer uses its recurrent nature to
predict each difference ∆wτ by a separate forward pass
from wt+τ−1 (using wt = (0, 0) for the first forward pass).
The hidden state used in the first GRU layer forward pass
is initialized by the previously extracted 64-dimensional
feature vector. Subsequent GRU layer forward passes take
the previous one’s hidden state (=output) as initial hidden
state. For additional details we refer to [36].

Training by Conditional Imitation Learning: Follow-
ing many recent works [13, 15, 36], we employ conditional
imitation learning (CIL), where we aim at obtaining a driv-
ing policy π that is trained in a supervised fashion to imitate
the driving behavior of an expert policy π. The driving pol-
icy π takes the sensor measurements Xt as input and outputs
the future waypoint trajectory wt+T

t+1 such that

wt+T
t+1 = π (Xt) . (1)

For a certain time instance t, also the expert driving pol-
icy can be rolled out in the environment using the same
initial conditions as for the trainable driving agent. Then,
the expert’s driving decisions can be obtained which we
represent by a series of ground truth waypoints wt+T

t+1 =
(wt+1, ...,wt+τ , ...,wt+T ), wt+τ ∈ R2 in BEV space. To
optimize the driving model, we minimize the distance be-
tween the driving model’s output wt+T

t+1 = π (Xt) and the
expert policy’s output wt+T

t+1 using the mean absolute error

Jt = J
(
π (Xt) ,w

t+T
t+1

)
=

T∑
τ=1

||wt+τ −wt+τ ||1 (2)

as shown in the bottom left of Fig. 2. If we now reinter-
pret t as a sample index such that we consider a whole
dataset D = ∪R

r=1Dr consisting of R routes Dr ={
(Xt,w

t+T
t+1 ), t ∈ {1, ..., Nr}

}
of (possibly varying) length

Nr with sensor measurements and corresponding expert
driving decisions, we can optimize the model as

π∗ = argmin
π

E(Xt,w
t+T
t+1 )∼D

[
J
(
π (Xt) ,w

t+T
t+1

)]
, (3)

Town01 (Training/Validation) Town02 (Training/Validation)

Town05 (Testing) Town05 (Testing)

Figure 3: CARLA simulation environment: We show some exem-
plary images, collected in towns, used for training and validation
(top) and from the town used for testing (bottom).

to obtain the optimal driving policy π∗. In practice, we
implement the driving model using PyTorch [34] and train
it for 50 epochs using the AdamW optimizer [30] with a
learning rate of 10−4 and weight decay of 0.01.

Inference using a PID Controller: While the model is
trained to predict waypoints in BEV space, the final driving
actions are determined by an inverse dynamics model [11]
implemented as PID controller, cf. bottom right in Fig. 2.
Specifically, there are two separate PID controllers for both
lateral and longitudinal control, both taking the driving
model’s predicted future waypoints wt+T

t+1 as input. Ac-
cordingly, the longitudinal controller sets throttle and brake,
while the lateral controller sets the steering. Specific imple-
mentation details can be found in [36].

4. Training and Evaluation Setup
We conduct our experiments using the latest CARLA

v0.9.13. In the following, we describe our data gener-
ation process as well as our validation and test design.

4.1. Training Dataset Generation

Data Generation Concept: For training data, we fol-
low the protocol of [36] and roll out an expert policy in
CARLA, recording the observations Xt and corresponding
expert actions wt+T

t+1 at a frame rate of 2 fps. RGB images
are captured with a forward-facing camera at a resolution of
400 × 300 pixels and field of view (FOV) of 100◦. LiDAR
point clouds are captured with a ray-cast-based Velodyne
64 LiDAR at a rotation frequency of 10 fps at 10◦ upper
FOV and −30◦ lower FOV. Further, the handcrafted expert
policy used to generate wt+T

t+1 has access to privileged sim-
ulator information to avoid collisions and other infractions.

Route Design Considerations: The expert follows a
set of predefined routes (uniquely defined by sparse way-
points uG

1 ), during which the expert encounters several
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Table 1: Training set design: The datasets we use mainly differ in
the number of collected images and the number of used routes. We
also report the corresponding portions of the four most frequent
driving maneuvers (last four columns) given in (%). All train-
ing data Dtrain has been collected in CARLA Town[01-04,
06-07, 10], while CARLA Town05 is kept for testing.

training # images # routes follow go turn turn
set lane straight left right

Dtrain
100K 99,806 1762 69.8 11.3 6.9 10.3

Dtrain
160K 166,852 1903 71.5 10.2 6.9 9.5

Dtrain
220K 228,023 2901 69.5 11.4 8.2 9.1

(a) Long routes (L) (b) Short routes (S) (c) Tiny routes (T)

Figure 4: Validation and test route types: We show examples of
the different route types which the driving agent should drive along
during validation and testing. Long routes (L) usually progress
over many intersections and turns, while short routes (S) only
cover a few of these urban traffic sections. A tiny route (T), on
the other hand, only covers a single such section by design.

complex urban traffic scenarios. We collect training data
in seven different CARLA towns (cf. Tab. 1) ranging from
rural areas, residential districts to urban areas under sim-
ple ClearNoon weather conditions (cf. Fig. 3), as we
do not focus on investigations regarding weather domain
shift. Along a route, the expert is exposed to various pre-
defined randomly picked traffic scenarios, even some sce-
narios where other traffic participants do not adhere to traf-
fic rules. The expert navigates along two different route
types (cf. Fig. 4) in each town: Tiny routes (T) involve
a single traffic intersection or turn and are usually shorter
than 100 meters. Short routes (S) cover two or more in-
tersections, being typically 300 to 500 meters long. The
training dataset does not include long routes (L), which in-
volve complex routing with a total length of more than 1000
meters, as these are characterized by a large imbalance of
driving maneuvers towards “follow lane”. Accordingly, for
each town a set of tiny and short routes is generated. As we
investigate different amounts of training data, we ensured
that the distribution of driving maneuvers is approximately
the same for all collected datasets, cf. Tab. 1. Still, some
more variety regarding traffic scenarios is to be expected in
larger datasets, which can hardly be quantified.

4.2. Validation and Test Design

Validation and Test Design: For validation and testing,
the driving quality of the trained model is measured when

Table 2: Validation and test design: The validation and test set-
ups mainly differ in the number and length of their routes. We
also report the corresponding portions of the four most frequent
driving maneuvers (last four columns) given in (%). Moreover,
test routes Rtest are located in CARLA Town05, while validation
routes Rval are located in CARLA Town[01-04, 06-07].

evaluation # routes route follow go turn turn
routes type lane straight left right

Rval
160T 160 Tiny 45.3 19.2 17.7 16.7

Rval
80T 80 Tiny 45.1 15.2 20.9 17.5

Rval
22S,1 22 Short 75.4 7.7 9.4 6.9

Rval
22S,2 22 Short 72.4 10.7 9.1 7.3

Rval
11S 11 Short 80.1 4.5 8.7 6.2

Rval
12L 12 Long 78.3 10.3 4.2 6.9

Rval
6L 6 Long 77.5 10.3 3.5 8.4

Rtest 10 Long 77.9 11.2 4.9 5.1

driving along pre-defined routes. Note that such closed-loop
evaluation is only possible in simulation and differs signif-
icantly from many fields, where only the model predictions
on a single-image basis are evaluated in open-loop fashion.
We put emphasis on comparing the effect of using long,
short, or tiny routes depicted in Figs. 4a-4c, respectively,
for validation. We aim at a validation whose performance
generalizes well to the test performance. For testing, we
employ 10 long routes from CARLA Town05 as in [36].
Note that CARLA Town05 has not been seen during train-
ing and validation.

Validation Route Generation: For validation, we gen-
erate new routes as reported in Tab. 2 based on a method
proposed by [36]. First, intersections are located on the
map of a CARLA town based on the position of traffic lights.
Then for each route a start waypoint u1 and an end way-
point uG is sampled from the vertices of a square of size
100m × 100m centered around an identified intersection.
Based on these two waypoints, a trajectory is generated by
a global route planning algorithm as in [1] forming a sparse
sequence of route waypoints uG

1 . This technique typically
produces short or long routes with two or more intersec-
tions. Each passing of an intersection or turn in these routes
can be converted into a tiny route by selecting the start point
before the respective location and the end point afterwards.
A more detailed description of the route generation process
is given in [36]. After route generation, we remove dupli-
cates in the generated routes as the used algorithm does not
ensure a unique route design.

5. Experiments

In the following, we explain our evaluation methodology
for analyzing data design choices. Afterwards, we investi-
gate validation route and training data design.
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Figure 5: Driving scores DS measured at different epochs on dif-
ferent validation sets Rval

(·) , e.g., 12L represents Rval
12L, and on

the test set Rtest (identified by “Test”). Training is performed on
Dtrain

160K . We observe high variance in performance over the course
of training, making it difficult to identify the best driving model.

5.1. Evaluation Methodology

Driving Performance: We follow recent works [10, 13,
36, 44] in using the driving score DS ∈ [0, 1] as the main
metric to measure the driving performance of a model. As
outlined in Sec. 4.2, the validation of driving models is con-
ducted on a set of pre-defined routes. The driving score
considers two aspects regarding driving quality along these
routes: First, the route completion percentage RC ∈ [0, 1]
is calculated. Possible error cases lowering RC are, devi-
ations from the pre-defined route (i.e., route deviation), an
agent not taking any decisions (i.e., blocked agent), a route
not finished in time (i.e., route timeout), or off-road driv-
ing. Second, an infraction score IS ∈ [0, 1] considering
various traffic incidents is computed as defined in [1]. Con-
sidered infractions lowering IS are collisions with pedestri-
ans, other vehicles, and static elements, as well as running
red lights or stop signs. For our investigations regarding a
suitable validation design, we report the driving score as it
reflects the overall driving quality, which we aim at optimiz-
ing. For an in-depth analysis regarding limitations of cur-
rently used training data for driving models, we additionally
report statistics on all considered error cases.

Correlation and Generalization: During the course of
training, the driving score obtained on the test set may vary
significantly (black line in Fig. 5). As a consequence, we
would desire our validation to reflect these performance
changes well. As the optimal test driving score is usually
reached before the final training epoch 50, we train our driv-
ing models for 50 epochs, validate and test it every 5 epochs,
and compute the Pearson and/or Spearman correlation be-
tween the obtained driving scores. Moreover, we compute
the driving score on the test set using the optimal model se-
lected during validation to investigate the generalizability of
our validation to the test set. Note that we use this method-

Figure 6: Pearson correlation (upper left part) and Spearman cor-
relation (lower right part) between the driving scores measured on
various validation routes Rval

(·) , e.g., 12L represents Rval
12L, and the

test routes Rtest (identified by “Test”). R1 and R2 represent two
different random seeds. We also report correlations between the
validation loss “Loss” obtained as in [36] and the driving scores.

ology being aware of the test set performance only to find
out, which validation design has a good predictive power
for the performance obtained during testing.

5.2. Validation Route Design

Varying Driving Performance During Training: Start-
ing point for our data design investigations was the exper-
iment shown in Fig. 5. The driving score DS obtained by
the driving model on the test routes Rtest (black line) varies
strongly between 5 ... 35 for different training epochs. Even
towards the end of training there is no stable convergence,
which was a typical behavior in all of our experiments. Our
conclusion is that a good checkpoint selection is essential,
as the checkpoint after 50 epochs often turned out to per-
form poorly (cf. first row in Tab. 4).

Validation Performance Correlation: After this initial
observation, our goal was to find a good generalizing valida-
tion, as the test set performance is usually unknown. To get
an initial overview, we investigated the correlation between
the performance measured on several differently designed
validation routes (inducing similar computation complex-
ity) and test routes for a single training run in Fig. 6. Sev-
eral interesting insights are observable in this figure: First,
the offline validation loss (computed as in [36]) correlates
badly with driving performance DS on all validation and
test routes, which is expected, considering the results for
offline metrics from Codevilla et al. [15]. Second, the driv-
ing performance DS on test routes (Rtest) consisting of 10
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Table 3: Pearson correlation between the validation set perfor-
mance and the test set performance (given by the driving score).
We show results for different models trained on Dtrain

(·) (cf. Tab. 1)
and for different validation sets, i.e., all models were validated on
Rval

(·) (cf. Tab. 2), where R1 and R2 represent two different random
seeds. Best results in boldface, second-best underlined.

time per trained on
checkpoint Dtrain

100K Dtrain
160K (R1) Dtrain

160K (R2) Dtrain
220K

va
lid

at
ed

on

Rval
160T ∼ 5 h 0.26 0.68 0.30 -0.02

Rval
80T ∼ 2.5 h 0.13 0.43 0.40 -0.01

Rval
22S,1 (R1) ∼ 5 h 0.22 0.71 0.73 0.65

Rval
22S,1 (R2) ∼ 5 h 0.01 0.76 0.73 0.53

Rval
22S,2 ∼ 5 h 0.15 0.65 0.82 0.47

Rval
11S ∼ 2.5 h 0.03 0.73 0.76 0.51

Rval
12L ∼ 5 h 0.79 0.06 0.79 0.39

Rval
6L ∼ 2.5 h 0.22 -0.14 0.70 0.33

long routes correlates rather poorly to the validation perfor-
mance DS on 12 or 6 other long routes (Rval

12L and Rval
6L ). As

a reason we observed that for long routes, single events such
as a blocked agent have a comparably large influence on
the overall driving score as only few routes are considered.
Moreover, such events happen with different frequency on
different routes due to different difficulty level. Even on
the same route due to the non-determinism of the validation
and test simulations in CARLA, long routes are particularly
volatile in their performance variations across different val-
idations as can be seen from the Test or 12L curve in Fig. 5.
Short routes (Rval

22S,1) and in particular tiny routes (Rval
160T),

on the other hand, are usually (a bit) less volatile due to
the averaging over more routes. Third, in this initial exper-
iment we observe a high correlation between the validation
performance on a medium sized set of short routes (Rval

22S,1,
Rval

22S,2, and Rval
11S) and the test routes or the set containing

12 long routes (Rval
12L). Similar observations can be made

for tiny routes (160T and 80T), although they correlate a
bit worse when looking at the Spearman correlation. The
performance on the set of 6 long routes (Rval

6L ) has no high
correlation with any other validation performance, again un-
derlining the high performance variability of long routes.

Which validation routes should be used? To get more
conclusive evidence, which validation route design provides
the best predictive power towards test set performance DS,
we compare the correlation of the driving model’s perfor-
mance DS on different validation routes for models trained
on different training data in Tab. 3. We choose three sets
of routes, i.e., Rval

160T, Rval
22S,1, and Rval

12L, inducing simi-
lar computational complexity of 5 hours validation time per
checkpoint. We observe that tiny routes Rval

160T lead to a
rather poor correlation to the test performance (cf. Tab. 3,
first row). Comparing with Fig. 5, we suspect that tiny
routes are less informative for measuring the driving quality
as only a single traffic section needs to be solved per route,
which is often quite easy such that the driving score is con-

Table 4: Test driving scores given in (%) obtained on Rtest, hav-
ing used different validation sets. We show results for four dif-
ferent models trained on Dtrain

(·) (cf. Tab. 1). The model checkpoint
used to obtain the driving score has been selected using the valida-
tion set Rval

(·) (cf. Tab. 2) of the respective row. R1 and R2 represent
two different random seeds. We additionally show results when
testing the model after 50 epochs of training (“naive approach”),
using the model obtaining the lowest validation loss (“validation
loss”) and the result of the expert driving policy, which can be
interpreted as an upper performance bound (“expert perf.”). Best
results in boldface, second-best underlined.

trained on
Dtrain

100K Dtrain
160K (R1) Dtrain

160K (R2) Dtrain
220K

naive approach 8.9 26.3 17.5 15.8
validation loss 13.8 16.9 19.8 19.6

va
lid

at
ed

on

Rval
160T 13.4 32.7 13.7 26.3

Rval
80T 13.4 17.7 26.5 15.8

Rval
22S,1 (R1) 12.6 26.3 26.5 26.7

Rval
22S,1 (R2) 12.6 26.3 28.4 20.5

Rval
22S,2 12.6 32.7 28.4 26.3

Rval
11S 12.6 26.3 26.5 26.3

Rval
12L 22.3 26.3 28.9 30.8

Rval
6L 12.6 17.7 16.1 15.8

expert perf. 46.8 46.8 46.8 46.8

sistently high in this validation setting. In contrast, driv-
ing requires good driving behavior across many sections,
which is better captured by short or long routes shown by
the higher correlation values when using Rval

22S,1 or Rval
12L for

validation. Halving the validation time per epoch by using
just half the amount of routes only works reasonably well
for short routes, cf. results for Rval

11S in Tab. 3.
Looking at the obtained driving scores in Tab. 4, this

fact is confirmed when validating the model every 5 epochs
and choosing the best-performing checkpoint for testing.
First of all, we observe that the performance of the naive
approach in Tab. 4, which simply tests the driving model
obtained after 50 epochs of training is often quite low. Us-
ing the validation loss for model selection improves slightly,
however, independent of the used validation routes, the test
performance is almost always better or on par when us-
ing the checkpoint selection. Again we observe that tiny
routes Rval

160T tend to lead to poor driving scores due to the
rather weak correlation leading to a bad checkpoint selec-
tion. Well performing model checkpoints are usually se-
lected by short routes Rval

22S,1 and long routes Rval
12L, with

results much closer to the expert’s performance. However,
when halving the number of routes, the set Rval

11S still yields
high test performance, while Rval

6L produces rather poor re-
sults due to the aforementioned high volatility when using
few long routes. As conclusion, we would choose a large
number of long routes when having access to a vast amount
of computation resources. If one aims at efficient model
development, a medium-sized set of short routes (such as,
e.g., Rval

11S) provides a good trade-off between validation
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Table 5: Performance on different training sets: We report driving score DS, route completion RC, and infraction score IS for various
training sets containing a different number of samples. Values are given in (%) and higher is better. We also show the test performance of
the expert (“expert perf.”), used during generation of training data Dtrain. Results are averaged over three test runs. As we observed quite
some differences between different test runs, we also report respective standard deviations. We additionally report metrics regarding route
completion failures and infraction types in number of events per kilometer where lower is better.

training time per driving route route agent route off-road infraction collisions with collisions with collisions with running a running a
set epoch score completion deviation blocked timeout driving score pedestrians other vehicles static elements red light stop sign

Dtrain
100K ∼ 0.5 h 16.8±4.6 91.0±5.3 0.0±0.0 2.4±1.9 0.5±0.4 3.3±0.1 18±6 3.6±0.7 9.6±0.3 0.3±0.5 40.2±3.8 5.6±2.6

Dtrain
160K ∼ 1.0 h 28.8±2.6 80.7±3.3 0.0±0.0 6.7±2.1 0.3±0.5 2.1±1.0 37±2 2.3±0.5 6.3±1.6 1.2±1.0 24.6±1.4 3.5±3.0

Dtrain
220K ∼ 2.0 h 32.2±4.8 78.6±4.8 0.0±0.0 11.8±6.9 0.0±0.0 2.8±0.9 44±2 1.0±0.1 5.5±1.8 1.5±2.6 21.6±1.8 4.2±2.3

expert perf. - 46.8±7.2 83.4±4.2 0.0±0.0 5.6±2.9 0.0±0.0 0.0±0.0 60±8 1.0±0.9 8.2±2.9 0.0±0.0 8.6±3.2 0.0±0.0

time and driving performance as shown in Tab. 4. More-
over, when noting that the driving performance does not
improve anymore through further training, the training pro-
cess can be stopped, thereby reducing training time by well-
generalizing validation during training.

Effect of Non-Determinism: As we observed quite
some variance in the obtained driving performance, we
want to give insights into the effect of different validation
design choices. We provide results in Tabs. 3 and 4. First,
we simply repeated the validation on Rval

22S,1 using a differ-
ent random seed (R1,R2). The results regarding correlation
and driving score are similarly high but differ in quite a bit
in some cases. Similar observations are made when run-
ning the same training with a different random seed (Dtrain

160K

(R1) and Dtrain
160K (R2)) or when varying the chosen valida-

tion routes (Rval
22S,1 and Rval

22S,2). However, we observed that
simulations in CARLA currently cannot be run in completely
deterministic fashion such that the same evaluation result
can never be reproduced completely. This is actually sim-
ilar to an experimental setting in reality, where this is also
the case. Therefore, the standard deviation of results gives
important insights into the reproducibility of driving models
and the meaningfulness of reported results. Accordingly, it
should always be reported. For example, highly overlap-
ping standard deviation intervals might indicate a low prob-
ability that a reported improvement is actually significant.

5.3. Training Data Design

Which training data amount should be used? Accord-
ing to our results on a suitable validation, we now use the
validation on Rval

22S,1 to select a suitable checkpoint from
driving model trainings making use of different amounts of
training data. After a checkpoint has been selected the re-
ported results in Tab. 5 are obtained by averaging over three
test set evaluations. We also report corresponding standard
deviations for each result. We observe that increasing the
amount of training data samples Xt from 100, 000 (Dtrain

100K)
to 220, 000 (Dtrain

220K) significantly increases the driving score
probably due to the larger and more diverse data basis,
cf. the respective number of routes in Tab. 1. Interestingly,
with less training data, the driving model has a very high
route completion score but a rather bad infraction score.

With increasing data amount the driving agent apparently
learns to avoid hazardous traffic incidents (maybe there
have been more diverse examples in the training data avail-
able), which, however, also makes the route completion
more difficult. Training on approximately 160, 000 images
already seems to provide a good trade-off between perfor-
mance and complexity, while best results are obtained using
larger but computationally more expensive amounts of data.

Expert Performance Bound: Finally, we compare our
best results to the results of the CARLA expert. We note that
the route completion result is already similar to the expert’s
result for all trained models. Interestingly, even the expert
gets blocked (“agent blocked” in Tab. 5) quite often. As the
driving model is trained on data generated using the expert,
this behavior seems to transfer to some degree. We observe
a similar behavior for collision infractions. Not adhering
to rules imposed by signs or traffic lights shows a slightly
different behavior. The performance on these infractions
tends to improve with more data but is still much worse than
the expert result. Here, additional training signals might
be necessary. Still, overall we conclude that for a further
improvement of the driving model better data not generated
by a far-from-perfect expert is essential.

6. Conclusions

In this work we present recommendations regarding
training and validation data for end-to-end deep driving
models. Our results show that in the range of currently em-
ployed amounts of data, the driving performance still scales
with more data, but seems to be strongly limited by the
performance of the expert driving policy used to generate
the data. Further, we find that a medium-sized set of short
validation routes provides an efficient and (mostly) well-
suited validation w.r.t. generalization to unseen test data.
Finally, we observe that non-determinism still influences all
currently reported results on CARLA evaluations, showing
the need to report standard deviations in reported improve-
ments, in particular in the domain of end-to-end deep driv-
ing. We believe that our investigations will help researchers
to choose efficient setups for their training data and valida-
tion design, allowing to find better models for end-to-end
deep driving and to reach their goals in shorter time.
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