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Abstract

A false negative in object detection describes an ob-
ject that was not correctly localised and classified by a
detector. In prior work, we introduced five ‘false nega-
tive mechanisms’ that identify the specific component in-
side the detector architecture that failed to detect the ob-
ject. Using these mechanisms, we explore how different
computer vision datasets and their inherent characteristics
can influence object detector failures. Specifically, we in-
vestigate the false negative mechanisms of Faster R-CNN
and RetinaNet across five computer vision datasets, namely
Microsoft COCO, Pascal VOC, ExDark, ObjectNet, and
COD10K. Our results show that object size and class influ-
ence the false negative mechanisms of object detectors. We
also show that comparing the false negative mechanisms of
a single object class across different datasets can highlight
potentially unknown biases in datasets.

1. Introduction

Object detection is the task of identifying target objects
in an image, describing objects in terms of where they are
and what they are. It has become a significant topic of in-
terest within the computer vision community, with regular
advances in model architecture and training paradigms pro-
ducing detectors that perform increasingly well on bench-
mark datasets such as COCO [11]. However, object detec-
tors are still prone to failures, particularly when tested on
challenging data, e.g. poor lighting [23], atypical object
viewpoints [23], object occlusions [26], and unknown ob-
jects [14, 16, 17].

One specific type of failure in object detection is a false
negative. False negatives occur when an object detector
does not accurately detect an object that is present – either
by silently failing to detect the object’s presence entirely, or
by miscalculating the object’s location or classification. We
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Figure 1. False negatives occur when an object detector fails to
accurately describe an object’s location or classification. We in-
vestigate the phenomena of false negatives across five computer
vision datasets, comparing the false negative mechanisms elicited
by each dataset. To identify the false negative mechanism, we look
inside an object detector to find the component of the architecture
that failed to detect the object – for example, the detector’s Region
Proposal Network failing to propose the object as a region (top im-
age), the detector’s classifier confusing the object for an incorrect
class (middle image), or a poorly localised detection suppressing
a correctly localised detection during the detector’s NMS process
(bottom image).

show some examples of this in Figure 1. In prior work [15],
we introduced a set of five ‘false negative mechanisms’.
Contrary to previous work that described false negatives
based only on the output of an object detector [2] – treat-
ing the detector itself as a black box – we instead examined
inside the architecture of object detectors for the source of
failure. Using this approach, we proposed an algorithm for
identifying the specific component of the detector architec-
ture that failed and why.

This paper investigates how different datasets influence
the false negative mechanisms produced by an object detec-
tor. Focusing on two-stage and one-stage anchor-box object
detector architectures [10, 22], we quantify detector false
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negative mechanisms across five computer vision datasets –
COCO [11], Pascal VOC [5], ExDark [13], ObjectNet [1],
and COD10k [6]. We specifically analyse the changes in
distribution of false negative mechanisms across the differ-
ent datasets, as well as how dataset properties such as object
classes and object size influence the false negative mecha-
nisms elicited.

2. Background and Related Work

Quantifying Object Detection Performance On a
dataset of images, the primary metric used to summarise
object detection performance is mean Average Precision
(mAP) [5, 11]. mAP is the mean of the Average Precision
(AP) for each target object class, where AP is the area under
a precision-recall curve. The precision-recall curves calcu-
lates the number of ‘true positive’ detections, ‘false posi-
tive’ detections, and ‘false negative’ objects for each target
class. A detection is a true positive if it localises and cor-
rectly classifies an object that has not already been detected
by a previous detection. Localisation is measured by the
Intersection-over-Union (IoU) between the object bounding
box and the detection predicted box, and must be greater
than a specified threshold – typically an IoU of at least 0.5
is required [5,11]. If the detection does not meet this thresh-
old with any undetected objects of its predicted class, it is a
false positive. A false negative describes an object that was
not associated with a detection during the evaluation – i.e.
there were no detections with the correct class label and an
IoU greater than 0.5.

Categorising Object Detection Failures As established
above, the primary metric assessing object detection per-
formance is mAP. With the mAP metric, failures in object
detection can only be coarsely described as false positives
or false negatives. To further understand why a detection is
considered a failure, Hoiem et al. [8] introduced a categori-
sation for false positive detections.

More recently, Bolya et al. [2] built upon this categori-
sation to include categories describing false negative ob-
jects, also improving the generalisability of the categori-
sation to different datasets. Their work introduces TIDE,
which describes six categories for failures in object detec-
tors – classification errors (Cls), localisation errors (Loc),
classification and localisation errors (Cls+Loc), duplicate
errors, background errors, and missed ground-truth errors
(Missed GT). These failure categories can represent both
false positives and false negatives – in fact, a false nega-
tive failure can be a Cls, Loc, Cls+Loc, or Missed GT error.
TIDE [2] categorises false negatives by asking the question
– why didn’t the predicted detections capture the false neg-
ative object? This places the emphasis on the output of the
detector, and treats the detector as a black box.

In contrast, the false negative mechanisms introduced in
our prior work [15] – proposal process mechanism, regres-
sor mechanism, interclass classification mechanism, back-
ground classification mechanism, and classifier calibration
mechanism – focus on the detection process occurring in-
side the object detector. We describe these false negative
mechanisms, and how to quantify them, in Section 3. Com-
pared to TIDE, this approach explicitly identifies the spe-
cific component of the detector that failed.

Detecting False Negatives in Object Detection In the
last few years, a number of works have emerged introduc-
ing techniques that identify when an object detector fails
to detect an object [18, 19, 25]. These works focused on
exploiting a variety of signals for detecting false negatives
– temporal or stereo camera detection inconsistencies [19],
learning underlying biases in the objects that produce false
negatives [25], and relying on hand-crafted indicators of
false negatives in a detector’s feature maps [18]. However,
all works examined false negatives from the perspective of
autonomous driving, only examining datasets relevant for
this context [18, 19, 25].

3. Object Detector False Negative Mechanisms
In this section, we detail the five false negative mecha-

nisms introduced in our prior work, along with how they can
be identified [15]. We refer the reader to the prior work [15]
for additional explanation. The introduced false negative
mechanisms focus on the role of different architecture com-
ponents as observed from existing two-stage and one-stage
anchor-box detectors, including Faster R-CNN [22], Cas-
cade R-CNN [4], SSD [12], YOLOv2 [20], YOLOv3 [21],
and RetinaNet [10].

Proposal Process False Negative Mechanism: After ex-
tracting feature maps from an image, the detector identi-
fies image regions that may contain objects. This is han-
dled differently between two-stage and one-stage anchor-
box architectures. Two-stage architectures rely on fully
convolutional networks, known as Region Proposal Net-
works (RPN) [4, 22], to propose a set of image regions that
may contain an object. In this step, two-stage detectors de-
fine a dense grid of ‘anchors’ over the computed feature
maps and predict the ‘objectness’ scores and regressed an-
chor boundaries for each anchor. The anchors with the top-
k highest objectness scores, and their regressed bounding
boxes, are then output from the RPN as the initial set of
object proposals. Similar to two-stage detectors, one-stage
anchor-box architectures segment feature maps into a grid
of anchor boxes [10,12,20,21]. However, rather than using
an RPN to filter these anchor boxes into region proposals,
they instead treat every anchor box as a region proposal.
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A false negative can be produced if no object proposals
localise a given target object. We refer to this as a ‘proposal
process’ false negative mechanism. Without a proposal for
the object’s image region, later components in the detector
will not receive the features necessary to accurately classify
or localise the object. We identify this mechanism by com-
puting the IoU between the target object bounding box and
all object proposals, where an IoU of at least θloc is required
for an object to be considered localised. In a one-stage
anchor-box architecture, this is far less likely to occur than
in a two-stage architecture. For example, given a 640x480
image, a two-stage Faster R-CNN produces 1000 RPN ob-
ject proposals [22], whereas the one-stage RetinaNet pro-
duces 163206 anchor boxes [10].

Regressor False Negative Mechanism: To localise ob-
jects in the image, the object proposals computed in the
proposal process are extracted from the feature maps and
passed into the bounding box regressor. The bounding box
regressor is typically a small Fully Convolutional Network
[4, 10, 12, 20–22], and predicts changes, or offsets, to the
initially proposed bounding box from the prior step.

Assuming an object proposal localises an object, the re-
gressor should predict offsets that improve this localisation.
However, the regressor may produce offsets that reduce the
overlap of the bounding box with a target object. We refer
to this as a ‘regressor’ false negative mechanism. We iden-
tify this mechanism when there are no regressed bounding
boxes with an IoU of at least θloc with the target object box,
despite the presence of a proposal box that had localised the
object.

Interclass Classification and Background Classification
False Negative Mechanisms: Similar to the regressor,
the object classifier is typically a small Fully Convolutional
Network that intakes the features of each object proposal
[4, 10, 12, 20–22]. The classifier determines which class an
object proposal belongs to – distinguishing between the dif-
ferent target object classes and the background class. For
every object proposal, the classifier outputs a confidence
score for each target class and the background class, where
high confidence scores indicate the class the proposal be-
longs to. For all detectors, a minimum confidence score is
specified as a parameter of the detector, θcls. All proposals
with a target class score above this minimum score thresh-
old form a detection, which contains the target class label,
associated confidence score, and the refined bounding box
from the regressor.

While an object proposal may have localised an object,
the classifier can produce a false negative if it does not as-
sign a classification score above θcls to the correct target ob-
ject class. In some cases, the classifier can confuse an object
for another incorrect target class. We refer to this as an ‘in-

terclass classification’ false negative mechanism. Given the
classification scores of boxes that have localised the target
object, we identify this mechanism when the classifier as-
signed any incorrect target classes a confidence score above
θcls. In other cases, the classifier can fail by misclassifying
all proposals of the object as belonging to the background
of the image, i.e. the ‘background’ class. Assuming an
interclass classification mechanism has not been identified,
we identify this ‘background classification’ false negative
mechanism mechanism when all localised boxes of the ob-
ject are assigned a background class confidence score above
θcls.

Classifier Calibration False Negative Mechanism: Af-
ter the detector regressor and classifier refine the object
proposals into detections, there is often multiple overlap-
ping detections that jointly detect a single object with the
same predicted class label. Non-Maximum Suppression
(NMS) is an algorithm commonly used by object detec-
tors to suppress duplicate detections of a single object
[4, 10, 12, 20–22]. In a class-wise manner, NMS removes
low confidence detections that highly overlap with higher
confidence detections. The process relies on the best lo-
calised bounding boxes having the highest classification
confidence scores. If this assumption is not satisfied, a false
negative can be introduced when a correctly localised detec-
tion is suppressed by a detection that has not localised the
object, i.e. IoU less than θloc. We refer to this as a ‘classifier
calibration’ false negative mechanism, as it is ultimately the
fault of the calibration of the classifier’s confidence scores
– detections that better localise an object should be cou-
pled with higher confidence scores from the classifier. Prior
to NMS, we identify this false negative mechanism when
there is a regressed bounding box that localises the target
object with an IoU greater than θloc (correctly localised),
that also has a confidence score for the correct target class
above θcls (correctly classified), but it is not produced as an
output detection.

4. Experimental Setup

Following the approach of our prior work [15], we inves-
tigate the false negative mechanisms of two object detec-
tors: Faster R-CNN [22], and RetinaNet [10]. For both de-
tectors, we use the public implementation available via de-
tectron2 [24] and a ResNet50 [7] with Feature Pyramid
Network [9] backbone. For all experiments, detectors were
trained on COCO [11]. False negative objects are identified
when there is no detection with a minimum IoU θloc of 0.5
and a minimum confidence score θcls of 0.3 for the correct
object class.
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Microsoft COCO Pascal VOC ExDark COD10K ObjectNet

Figure 2. Example images from the five datasets tested.

4.1. Datasets

To investigate the role of datasets on detector false nega-
tive mechanisms, we test five computer vision datasets: Mi-
crosoft COCO [11], Pascal VOC [5], ExDark [13], COD10k
[6], and ObjectNet [1]. We detail each dataset and the test-
ing protocol below. We also show example images from
each dataset in Figure 2.

Microsoft COCO [11]: is the predominant benchmark
dataset for evaluating object detectors. We evaluate with the
‘val2017’ split of the dataset, which contains 4,952 images
featuring objects from 80 different object classes.

Pascal VOC dataset [5]: was the prevailing object de-
tection benchmark prior to COCO. Pascal VOC has 20 ob-
ject classes, all of which overlap with the COCO dataset
classes – plane, bicycle, bird, boat, bottle, bus, car, cat,
chair, cow, dining table, dog, horse, motorbike, person, pot-
ted plant, sheep, sofa, train and tv monitor. We evaluate
with all 17,125 images from the 2012 release of the dataset.

Exclusively Dark (ExDark) [13]: is a detection dataset
containing 7,363 images from low-light indoor and outdoor
environments. It includes 12 object classes – bicycle, boat,
bottle, bus, car, cat, chair, cup, dog, motorbike, person, and
table – which all are present in the COCO class list.

Camouflaged Object Detection (COD10k) [6]: is an
object detection dataset designed specifically to benchmark
detection of camouflaged objects. It contains a total of
10,000 images with 78 object classes across aquatic, fly-
ing, amphibian and terrestrial categories. We test all im-
ages with the 11 object classes overlapping with the COCO
class list – cat, dog, sheep, giraffe, human, bird, frogmouth,
heron, mockingbird, owl, and duck – which makes a total
of 932 images.

ObjectNet [1]: is a large real-world dataset for object
recognition where object backgrounds, rotations, and view-
points are random. The entire dataset contains 50,000 im-
ages and 313 object classes. We test with images from

Table 1. False negative rates on each dataset.

# Objects False Negative Rate (#)
Faster R-CNN RetinaNet

COCO [11] 36335 28.8% (10463) 32.7% (11872)
VOC [5] 40138 11.5% (4621) 12.1% (4874)
ExDark [13] 23710 28.5% (6749) 30.3% (7181)
ObjectNet [1] 2777 52.7% (1464) 45.4% (1260)
COD10K [6] 1124 37.5% (421) 38.5% (433)

17 classes that overlap with the COCO class list – bicy-
cle, bench, umbrella, tie, baseball bat, baseball glove, tennis
racket, banana, orange, chair, laptop, remote, keyboard, cell
phone, microwave, book, and vase – which makes a total of
2,777 images. While the original dataset only included an
object label for each image, [3] released bounding box an-
notations for the labelled object in each image, and we use
these in our evaluation.

5. Results
In this section, we investigate how different datasets in-

duce different false negative mechanisms from an object de-
tector, specifically observing how the class and size of the
dataset’s objects influence the failures of the detector.

5.1. Overall Dataset False Negative Mechanisms

First, we compare the overall distribution of false neg-
ative mechanisms for each dataset with Faster R-CNN and
RetinaNet in Figure 3. We also show the false negative rate
for each dataset in Table 1.

Consistently across the datasets, most false negatives are
due to the background classification mechanism (with the
exception of ObjectNet, see below) and negligible false neg-
atives are due to the regressor mechanism. Interestingly,
Pascal VOC and ExDark show very similar distributions of
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(a) Faster R-CNN False Negative Mechanisms

(b) RetinaNet False Negative Mechanisms

Figure 3. The influence of the datasets on the false negative mechanisms produced by Faster R-CNN (top) and RetinaNet (bottom).

false negative mechanisms. While ExDark features more
challenging illumination conditions than Pascal VOC, this
appears to instead have only induced an overall greater false
negative rate. We hypothesise that the similar mechanism
distributions of these datasets is due to the high overlap be-
tween their object classes.

There are also a number of noticeable discrepancies
across the datasets. Compared with the other datasets,
COCO elicits a greater number of proposal process false
negatives – in the following section, we link this to COCO’s
greater prevalence of small objects. For COD10k, there is
a greater proportion of background classification false neg-
atives compared to other datasets. This is a reflection of the
‘camouflage’ nature of the dataset, where objects blend into
the textures of the image background and pose a challenge
for the detector’s classifier.

Of all datasets, ObjectNet is the most dissimilar in the
distribution of false negative mechanisms. ObjectNet is tra-
ditionally an object recognition dataset rather than object
detection dataset [1] – it features a single target object very
prominently in the image (reducing the likelihood of back-
ground classification), while the unusual placements and ro-
tations of objects may lead to increased interclass classifi-
cation mechanisms.

5.2. Object Size and False Negative Mechanisms

In Figure 4, we compare the influence of the object size
on the false negative mechanism elicited from an object de-
tector. For both detector architectures and across nearly
all datasets, proposal process and regressor false negative
mechanisms are characterised by small object sizes – this
is intuitive, as small objects in an image may be more dif-
ficult for a Region Proposal Network to distinguish from
the image background or may not be represented by the de-
fault detector anchor boxes. This also explains the greater

number of proposal process false negatives for the detec-
tors on the COCO dataset, as when COCO was introduced,
a key distinguishing factor was an increase in small object
instances [11].

Interestingly, all datasets show a relationship between
larger objects and the interclass classification mechanism.
We hypothesise that larger objects (and thus larger bound-
ing boxes) are more likely to overlap with other objects in
the image – for example, a table annotation often overlaps
with chairs, bowls, cups, etc. – which may result in im-
age regions with features for conflicting object classes, thus
leading to an interclass classification false negative.

5.3. Object Class and False Negative Mechanisms

In Figure 5, we visualise the false negative mechanisms
elicited by each class in the COCO dataset, where differ-
ences in colour indicate differences in the class-specific
false negative mechanism distributions. We also indicate
and sort classes from left to right based on number of
false negatives – it’s worth noting that results calculated for
classes with only a handful of false negatives (to the right
of the figure) may not be statistically significant.

While most object classes follow the overall trend of
COCO’s false negative mechanisms, there is evidence of
some class-specific false negative behaviour from the detec-
tors. For example, while most Faster R-CNN false negatives
on COCO are due to background classification mechanisms,
for class ’bench’, the majority of false negatives are due
to the proposal process mechanism, and for class ’sheep’,
most false negatives are due to the interclass classification
mechanism. Contrary to the majority of other results we
present, these class-specific trends do not necessarily gener-
alise across the detector architectures – for RetinaNet, false
negatives from class ’sheep’ have mostly background class
mechanisms, and few interclass classification mechanisms.
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(a) Boxplots of the distribution of object pixel area for each Faster R-CNN false negative mechanism.

(b) Boxplots of the distribution of object pixel area for each RetinaNet false negative mechanism.

Figure 4. The influence of false negative object size on the false negative mechanisms produced by Faster R-CNN (top) and RetinaNet
(bottom). For each dataset, we also show the total distribution of object sizes. Note that outliers are not shown in the boxplots.

(a) Faster R-CNN class-specific false negative mechanisms on the COCO dataset.

(b) RetinaNet class-specific false negative mechanisms on the COCO dataset.

Figure 5. The influence of the object class on the false negative mechanisms produced by Faster R-CNN (top) and RetinaNet (bottom)
when tested on COCO. For each class, we show the distribution of false negatives across the five mechanisms, as well as the total number
of false negatives reported.

5.4. Class-specific False Negative Mechanisms
Across Datasets

Given the observed class-specific distributions of false
negative mechanisms, we then compare these class-specific
distributions across the datasets for shared object classes in
Figure 6. We find that some object classes consistently in-
duce a specific false negative mechanism distribution, re-
gardless of the dataset – e.g. class ‘boat’, ‘bottle’ and ‘chair’
in Faster R-CNN, and class ‘bird’, ‘boat’, ‘bottle’, and ‘per-

son’ in RetinaNet. However, other classes show dataset-
dependent differences to the false negative mechanism dis-
tributions. In some cases, this is consistent with the proper-
ties of the dataset – e.g. for Faster R-CNN, class ’person’
in COD10k has a greater number of background classifica-
tion mechanisms, as expected given the camouflage nature
of the dataset. However, other differences in class distri-
butions are not so clearly linked to dataset properties – e.g.
for both detectors, the Pascal VOC dataset induces a greater
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(a) Faster R-CNN class-specific false negative mechanisms across the datasets.

(b) RetinaNet class-specific false negative mechanisms across the datasets.

Figure 6. The influence of the dataset on the class-specific false negative mechanisms produced by Faster R-CNN (top) and RetinaNet
(bottom). For each class and dataset (with minimum 40 false negatives per class and dataset), we show the distribution of false negatives
across the five mechanisms.

number of background classification mechanisms for class
‘bus’ than COCO or ExDark. This may indicate the pres-
ence of other dataset biases that are not clearly identified or
easy to observe from the data.

6. Conclusion
In this paper, we investigated how the properties and

characteristics of different computer vision datasets influ-
ence the false negatives of an object detector. Our results
highlighted a number of insights into the relationship be-
tween data properties and false negatives from a detector –
namely the relationship between object size and false neg-
ative mechanisms, and the presence of class-specific trends
in the false negative mechanisms produced by a detector.

The overarching goal of this work is to enable future re-
search into object detectors that are robust to false negatives.
Given our observations that the testing data properties in-

fluence why detectors fail, we conclude that future develop-
ment of object detectors should be tightly coupled with an
understanding of the testing data characteristics. Addition-
ally, we showed that comparing the false negative mech-
anisms for a single class can reveal discrepancies across
datasets. Some of these discrepancies may be linked to the
known and reported characteristics of the dataset (e.g. a
camouflaged dataset eliciting more background classifica-
tion false negatives), however others are not immediately
intuitive or explainable. In future, this could be used as a
tool for further investigating the presence of unknown bias
in datasets.
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