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Abstract

Beyond possessing large enough size to feed data hungry
machines (eg, transformers), what attributes measure the
quality of a dataset? Assuming that the definitions of such
attributes do exist, how do we quantify among their rela-
tive existences? QOur work attempts to explore these ques-
tions for video action detection. The task aims to spatio-
temporally localize an actor and assign a relevant action
class. We first analyze the existing datasets on video action
detection and discuss their limitations. Next, we propose
a new dataset, Multi Actor Multi Action (MAMA) which
overcomes these limitations and is more suitable for real
world applications. In addition, we perform a biasness
study which analyzes a key property differentiating videos
[from static images: the temporal aspect. This reveals if the
actions in these datasets really need the motion information
of an actor, or whether they predict the occurrence of an
action even by looking at a single frame. Finally, we in-
vestigate the widely held assumptions on the importance of
temporal ordering: is temporal ordering important for de-
tecting these actions? Such extreme experiments show exis-
tence of biases which have managed to creep into existing
methods inspite of careful modeling. The dataset and code
is publicly available for research at '

1. Introduction

Video action understanding has been widely explored in
recent years in terms of action classification [3, 11, 13, 30,
34-37,40] and detection [8,9,15,18,21,21,22,26,38,42]
for a wide range of actions. Analyzing the videos for ac-
tion classification task involves feature extraction and pre-
diction on a video-level, with recent methods achieving

state-of-the-art performance [3, 11, 34]. Compared to ac-

Thttps://www.crev.ucf.edu/research/projects/mama-multi-actor-multi-
action-dataset-for-action-detection/
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Figure 1. An illustration of relative properties of datasets in activ-
ity detection. Size of the bubble corresponds to the no of samples
in the dataset. X axis: No of action classes. MAMA has more
classes [35] than standard detection datasets. Y axis: No of In-
stances. MAMA has a lot more actors, including crowded scenar-
ios. Finally, MAMA possesses 10x more samples.

tion classification, action detection is a harder task as it
requires the spatio-temporal prediction along with the ac-
tion class prediction for each action in the video. The in-
creased complexity in action detection has garnered more
interest recently with significant progress in various datasets
[15,18,23,26,39,42]. Spatio-temporal detection for action
requires datasets with frame-level annotations (bounding-
box, pixel-wise) which is costly to produce, resulting in lim-
ited datasets that can be used for this task. Current datasets
annotated for video action detection include dense frames
annotation (UCF101-24 [31], JHMDB-21 [17], UCF-Sports
[28], VIRAT [25], MEVA [5]) and sparse frames annotation
(A2D [41], DALY [39], AVA [12]), which is limited com-
pared to the vast action classification datasets due to higher
spatio-temporal annotation costs. A graphical comparison
of these datasets has been illustrated in Figure 1.

Datasets with dense spatio-temporal annotations have
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Figure 2. Each row shows samples from UCF101, JHMDB, AVA, and MAMA respectively. UCF101 (First Row): contains a single activity
instances per video. Most samples show an actor in far closer perspective than observed in real scenarios. JHMDB (Second Row): has
even lesser videos than UCF101. AVA (Third Row) Since most of the frames are annotated at 1 sec intervals, successive annotated frames
have significant differences in the actor motion. MAMA (Fourth Row): Shows even far off actors being annotated, in a crowded setting.

MAMA can possesses multiple activities per video.

bounding-box or pixel-wise annotation for each action/actor
for the entire duration of the action (UCF101-24, JHMDB-
21, VIRAT, MEVA), with most datasets being untrimmed.
While this gives better results on supervised methods, it is
costly to annotate all the frames. UCF101-24 and JHMDB-
21 are the two widely used dense annotation datasets for
action detection and have saturated with recent methods
performing exceedingly well [, 42]. VIRAT and MEVA
have larger untrimmed dense annotations from surveil-
lance videos which is significantly more costly to produce
compared to UCF101-24, but have low adoption in re-
search community since they make action detection harder
due to smaller actors, simultaneous multiple actions and
untrimmed long videos [6, 27, 44]. Sparse annotation
datasets (A2D, DALY, AVA) reduces annotation cost and
allows annotating more samples, however they are harder
to train for action detection task with current methods due
to not having sufficient temporal annotation for doing ac-
tion detection [10,11,26,39,42]. We analyze the properties
of these various datasets and bring to light their similarities
and differences in order to understand how action detection
can be improved as a whole. Each dataset provides different
context for the actions in them (eg. movie scenes, surveil-
lance, controlled lab, YouTube videos, sports clips), with
benefits and limitations for action detection generalization.

To better understand the importance of temporal anno-
tation along with spatial annotation for better action de-
tection, we analyze the effect temporal information has in
different datasets and evaluate properties such as temporal
aspect and order. It is observed that temporal information
has positive correlation for action classification [3, 13]. We

look into what type of relations temporal information has
for action detection task and provide insight into how each
dataset contributes to this task. To further improve action
detection in real-world scenarios, we introduce the MAMA
dataset. We aim to provide more real world scenarios with
multiple simultaneous actions, mitigating shortcomings of
prior detection datasets. In summary, we contribute via (1)
a new dataset addressing issues in existing datasets; (2)
study of temporal aspect and order for action detection in all
datasets; and (3) in depth analysis in similarities/differences
of all video action datasets.

2. Video action detection datasets

Initial research on video action understanding focused
on action classification where the task is to identify the ac-
tion in a short, manually trimmed video containing a single
action. Some of the popular action classification datasets
are HMDB [20], UCF101 [31], Sports-1M [19], Moments
in Time [24], TinyVIRAT [7, 33] and Kinetics [3]. An-
other action understanding problem that received interest is
the temporal action localization, where the task is to detect
the temporal extents of actions in a long untrimmed video.
ActivityNet [2], THUMOS [16], MultiTHUMOS [43] and
Charades [29] are some of the popular temporal action lo-
calization datasets. Compared to action classification and
temporal action localization, action detection is a harder
task and it involves finding both the spatial and temporal ex-
tents of actions in untrimmed videos. Some of the datasets
that provide spatio-temporal annotations required to address
this problem are UCF Sports [28], JHMDB [17], UCF101-
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Datasets UCF Sports | UCF101-24 | JHMDB MAMA
#Classes 10 24 21 35
Source Sports Sports Movies Surveillance
Resolution 690 x 450 320 x 240 | 320 x 240 | 1920 x 1080
Total Videos 150 3194 928 32726
Total Frames 10K 558K 32K 2. M
Avg. Video Length 5.8 sec 5.8 sec 1.4 sec 2.6 sec
Avg. Action Duration 5.8sec 4.5 sec 1.4 sec 2.6 sec
Total #Instances 154 4030 928 32726
Multi-Actor v v v v
Multi-Label X X X v
Annotation Type Boxes Boxes Pixels Boxes
Spatio-Temporal Ann. v v v v
Class Distribution Uniform Uniform Uniform Long-tail

Table 1. A relative comparison of datasets for brevity. Three columns from the left are grey because although they are standard datasets
in action-detection, they don’t meet the criteria for this biasness study. VIRAT/MEVA contain untrimmed videos. AVA only annotates
frames at 1 sec intervals, therefore it is not truly spatio-temporal in nature. Notice how MAMA exceeds in several statistics to all the other

datasets.

24 [31], AVA [12], VIRAT [25] and MEVA [5].

UCEF Sports consists of 150 videos from 10 action classes
and JHMDB contains a total of 928 videos with 21 action
classes. UCF101-24 consists of 3207 videos with annota-
tions for 24 action classes. These datasets provide annota-
tions for each frame, but contain smaller number of actions,
fewer number of video and with videos of shorter duration.
The widely AVA dataset contains 430 videos, each video of
length 15 minutes, and provides annotations for 80 atomic
actions. In this dataset, the annotations are not provided
for each frame but for a single frame at one seco nd inter-
vals. VIRAT provides annotations for 40 actions and con-
tains 118 videos in the train/validation set and 246 videos
in held-out test set. All the samples in this dataset are of
long untrimmed videos of varying length. MEVA consists
of 1056 videos, each 5 minutes long, with annotations for
37 actions. Videos in this dataset cover both indoor and out-
door scenes. In Figure 2 we show a sample frame from each
of the action detection datasets to highlight the differences.

2.1. Limitations

Commonly considered sources for building action detec-
tion datasets are videos of sport activities, movie scenes or
surveillance videos. Compared to videos of sport activi-
ties, action detection in videos from movies is much more
challenging due to variations in background, view point,
scale, and occlusion. However, most of the videos from the
movies have a narrow field-of-view and the focus is on the
actor/actors performing the action. Surveillance videos on
the other hand, have a wider field-of-view and the actions in
these videos can occur at different spatial locations. Apart
from the source, these datasets also vary in the type of ac-
tions, number of actors and the granularity of annotations.
The datasets UCF-Sports, UCF101-24 contain composite

actions (e.g., pole vaulting) with single actor and bounding
box annotations for each frame; AVA is focused on atomic
actions (e.g., stand) with multiple actors and provide bound-
ing box annotations for all the actors in a single frame at
every one second intervals; JHMDB contains both atomic
and composite actions with single actor and pixel-level an-
notations for every frame. VIRAT and MEVA have both
atomic and composite actions with multiple actors and pro-
vide annotations for every actor in each frame. Another as-
pect in which these datasets vary is the distribution of sam-
ples. While the small scale datasets (UCF Sports, UCF101-
24 and JHMDB) contain similar number of samples for each
class, the large-scale datasets (AVA, VIRAT, MEVA) have a
long-tail distribution. Please refer to Table 1, for a detailed
comparison of the datasets.

3. MAMA dataset

Most of the footage relevant for action detection comes
from CCTV cameras typically mounted at higher altitudes.
Naturally, the videos obtained are untrimmed which can
only be processed in chunks by existing action detection
models . However, the activities in such chunks are gener-
ally sparse, i.e. in most of the temporally sampled clips
of smaller durations, no activity occurs. [eg, very few
activities occurs in the night]. Therefore, we propose
MAMA dataset which generates shorter temporal crops
from untrimmed footage which are more realistic for mod-
elling, and yet sufficiently challenging.

To build the intuition for our dataset, we first explain the
temporal trimming protocol. Then, we explore the annota-
tion properties of our dataset, along with the relative com-
parison of difficulty of MAMA dataset over existing action
detection datasets. Finally, we discuss the evaluation proto-
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Figure 3. A Bar plot showing the relative instance counts of each of the activities in the MAMA dataset. The bar heights (# instances) are
shown in log scale.

col on our dataset which relies on standard detection based 3.2. Dataset Description

metrics. . . . .
Fig. 3 shows the relative ratios of 35 classes in the

MAMA dataset on a logarithmic scale. The most common

3.1. Temporal Trimming Protocol activity in the MAMA dataset is People Talking, with the

We model the problem of generating trimmed clips as least common being Closing Facility Door. One interesting
a variant of the classic scheduling problem. Given origi- aspect is that most of the activities lasting for longer time
nal untrimmed videos from VIRAT/MEVA dataset, we first durations are the ones which are more frequently observed.
generate the [start,end] intervals for each of the activities. The activities which are instantaneous (eg closing facility
A min heap is used to store the activities in ascending order door) are concentrated on the right end of the histogram.
of finish times. For each activity interval, activities last- Surprisingly, the distributions of complementary activities
ing lesser than 30 frames are dropped. If an activity lasts like Opening Facility Door and Closing Facility Door are
longer than 150 frames, we randomly generate a temporal not identical, which might be a source of bias.
crop between [30,150] frames. Finally, we utilize FFMPEG In Tab. 1, we show the statistics on the MAMA dataset.
to actually generate clips from untrimmed video based on MAMA consists of a total of 32726 video with 25837
given temporal slices. videos in the train split, and 6889 videos in the test split.

This simple, yet effective protocol guarantees that we The length of clips in the dataset ranges from 1 sec to 5 sec.

make a temporal crop, whenever an activity is just starting.
The lower constraint of 30 frame generates clips of ideal

3.3. Difficulty And Diversity in MAMA Dataset

length so that enough temporal changes could be captured Indoor/Outdoor scenes: MAMA dataset contains the
by a model. Varying lengths of clips in our dataset capture trimmed clips from both VIRAT/MEVA datasets. Due to
both the atomic actions like Opening a Car Trunk and long this, MAMA contains both indoor/outdoor scenes. Certain
term actions like Texting on a Cell Phone. We believe that indoor scenes like Baseketball Court are crowded, contain-
this should motivate the development of techniques which ing over 44 actors in a single frame. On the other hand,
attend to different length of temporal slices simultanoeusly the outdoor scenes are generally relatively sparse. During
based on whether an action is atomic/long term. the course of mapping the activities from VIRAT to MEVA

To maintain the fairness of our dataset, i.e. the partic- during the dataset construction, we dropped certain labels
ipants don’t synthetically rejoin temporal crops of a same like that of a Person Walking. Our belief is that an activity
video to learn more long term context, we anonymize and is characterized only when a person interacts with another
shuffle the generated clips using a rotating hex cipher. Fi- object/person. Activities like walking just involves a single
nally, we assign an 80/20 split of our generated clips using actor. So, our dataset will help models to learn to focus on
a weighed sampler for extreme multi labelled data. We en- activities of interest rather than just focusing on ’all’ tempo-
sure that the clips belonging to a same video footage go to ral movements in a video. We present some of the samples
only one of the splits. from our dataset in Figure 6.
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Figure 4. First Row: (X Axis) shows the possible areas of BBoxes w.r.t video frame in several action detection datasets. (Y Axis) shows
the normalized density of bbox occurences. Notice how MAMA's density is concentrated on the left, signifying that most of the bboxes
occupy lower resolution. Second Row: (X Axis): We plot the aspect ratios of the bboxes on a logarithmic scale. All the datasets follow a
gaussian distribution, but MAMA has lower variance. Hence MAMA dataset models low resolution conditions with higher probability. "

X axis has been scaled to 0.05 due to lower bbox aspect ratios.

Bounding Box Areas and Aspect Ratios: Figure 4a,
shows the relative distribution of the bbox areas with re-
spect to the frame area on a logarithmic scale. Most of the
samples in the MAMA dataset are constrained to < 2% of
the frame area. Concurrently, Figure 4b, shows the density
curve of the bounding box aspect ratios. While the bboxes
generally model a nice gaussian distribution, we observe
that the curve extends almost equally in both negative and
positive ranges. This shows that MAMA dataset contains
an almost equal no of wide and long objects.

3.4. Evaluation Protocol

We modify output channels of decoder in VideoCapsu-
leNet [£] to predict semantic segmentation volume for each
of the 35 activities in the MAMA dataset. Then, we run 3D
connected components on each of the activity’s volume to
isolate the 3D tubes corresponding to an actor temporally.
Components with temporal length less than 4 frames and
lesser than 20 pixel prediction per frame are dropped. Fi-
nally, we fit bboxes on per-pixel actor localization to obtain
frame wise detections.

Following the protocol as described in [18], we estimate
the fMAP at 0.5 ioU threshold. Then, linking is done tem-
porally to obtain the predicted tubes from the VideoCapsu-
leNet baseline. [£]. Finally, we estimate the spatio-temporal
overlap between predicted and ground truth tubes using 3D
ioU and report the vMAP. For classification accuracy, we
report balanced accuracy over 35 classes of the MAMA
dataset.

4. Analysing datasets

Actions from videos takes into account the position of in-
volved actors in space and time and their relation to the sur-
rounding during the action. From a detection perspective,

one key aspect is to understand how the actor changes with
respect to their surrounding in temporal dimension. We
look into how the temporal information can be influential
for understanding different actions from different datasets.

4.1. Importance of temporal aspect

First we analyze to what degree does action understand-
ing rely on the temporal aspect. Scene bias in videos is an
issue which questions the need of temporal aspect in video
understanding [4]. Certain actions can be guessed based on
the scene alone, which leads to a heavy scene bias during
learning. This can limit the use of such dataset for general-
izing action detection to real world videos. We evaluate how
important the temporal information is for actions across var-
ious datasets available for action detection.

4.2. Importance of temporal order

Along with scene bias, we also look into the importance
of the temporal order of the information in order to under-
stand the activity. While actions are based on how the ac-
tor moves in space and time, the temporal order of the mo-
tion can be essential to understand how important the scenes
from each dataset are to detect the actions. Getting this rela-
tion between temporal order and action understanding can
give insight into developing methods for better action de-
tection.

5. Experiments and results

We will briefly describe the statistics for datasets used in
our work to compare with the new dataset. Then, we discuss
recent approaches for activity detection, their limitations,
and our proposed modifications as well.
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Figure 5. Overview of the effect of temporal aspect for different datasets. We show the accuracy, f-mAP and v-MAP (@0.5 IoU) for

original, reversed and frozen samples across datasets.

Figure 6. Samples from the proposed MAMA dataset are illustrated. The video frames span both indoor/outdoor scenes and multiple
actors. MAMA is realistic due to extremely fine temporal changes in actor trajectory. Best viewed on screen.

5.1. Datasets

UCF101-24: The number of training and testing videos
in UCF101 is 2.2k and 900 respectively. The videos are
untrimmed and the resolution of videos is 320x240.
JHMDB-21: Total number of videos are approximately
900 which is divided into 2:1 for training and testing. Video
resolution is same as UCF101-24, however, the videos are
trimmed.
AVA: dataset cotains long untrimmed videos distributed
amongst 80 actions. The resolution of videos are 320x400.
MAMA: The train test split is 25.8k and 6.9k respectively.
The video resolution is 1920x1080.

For UCF101-24 and JHMDB-21, videos are resized to
224x224. For AVA, the frame size is 400x400. For MAMA
dataset, the input resolution is 256x256.

5.2. Approaches

VCN: [£] is an end-to-end 3d encoder decoder based ap-
proach. The features are extracted at multiple checkpoints
and its fed into the capsule routing algorithm. Video is clas-
sified from the output of encoder. To generate the localiza-
tion map, we upsample the encoder features also known as
activations. The ground truth vector is multiplied by the
activations to propagate the class information. However,

this approach works only if the output is binary, meaning
presence of a single action across the whole video. This
approach is not suitable on AVA and MAMA dataset.

STEP: [42] It progressively refines proposal using regres-
sion. Starting with rough estimate of proposals, the net-
work, updates the proposals with each iteration. It also tar-
gets to extend the bounding boxes in temporal dimension.
The architecture has two branch: Global branch that works
on spatio-temporal modeling of the whole input sequence
and a local branch that applies bounding box regression on
each frame.

VCN-MA: We extend the original work [£] from one chan-
nel to multiple channels. Since, we have 35 classes in our
dataset, we have in total 36 (35 activity classes + 1 back-
ground channel) channels. We also extended the spread loss
such that it’s applicable for multiple dimensions. [14] pro-
motes the activation of the target class to be far away from
the other classes by a margin factor. It does not ’force’ the
activations of the wrong classes to be far apart. We im-
plement a multi dimensional variant, where all logits cor-
responding to multiple ground truth action classes are far
away with significant margin, and retain this non-separation
behaviour in the rest.
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5.3. Evaluation metrics

We show performance on three metrics classification ac-
curacy, f-mAP and v-mAP. Given IoU value p, f-mAP met-
ric provides information about how many predicted frames
have atleast spatial overlap of p from the ground truth. Sim-
ilarly, v-mAP provides information about spatio-temporal
overlap for different values of IoU.

To further analyze across different video datasets, it’s im-
portant to ponder over how much scene bias is in the dataset,
and, how important is the temporal ordering of frames.
Thus, we perform two sets of experiments: 1) Freeze: We
record the performance by taking the center frame and re-
peating it for the total number of frames present in the origi-
nal video to analyze scene bias, 2) Reversal: We reverse the
order of frames along temporal dimension. Then, we mea-
sure the absolute (o — o ) and relative ((o — ¢ ) /o) drop
from the original scores for accuracy, f-mAP and v-mAP. o
for f-mAP calculation is shown in equation 1.
_ I‘=1(frr;ap > 0.5) a
where o 5 means it assigns 1 if IoU value is greater than
0.5 and n denotes the number of frames. fmap is defined in

equation 2. Ap and Agr means predicted area and ground
truth area.

70.5

|Ap N Agr|

2
|Ap U A(,"rl

fmap =

5.4. Results

After training VCN-MA for 100 epochs, we report ac-
curacy, fmap and vmap scores in Table 3. Additionally,
we evaluate classification performance on several datasets
in Table 2.

Further, we investigate scene bias and importance of
temporal ordering. Firstly, for scene bias, we see the most
absolute and relative drop in performance for f-mAP@0.5
for AVA dataset. For v-mAP@0.5, UCF101-24 has the most
absolute and relative drop. Since, the network backbone is
same, we reverse the order of frames. We flip the clip along
the temporal dimension and then compare the performance
with the original input. From Tables 4 and 5, we can see that
the relative drop in f-mAP@0.5 is most for UCF101-24. In
case of JHMDB-21, there’s no drop in performance for f-
mAP. We see the similar trend for AVA dataset as well. The
performance drop is 1.2% but relative drop in performance
is high.

Next, we analyze the class accuracy under different
types of evaluations. We look into top 10 classes with
highest score in normal evaluation. In UCF101-24 (Fig.
7), we see the drop in scores for frames freeze case,
when there’s a long interaction between actor and object
(e.g. polevault, biking, trampoline_jump, and
skateboarding). In JHMDB-21(Fig. 8), we see per-
formance drop specifically for activities that involves fast
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Figure 8. JHMDB-21 - Frame order class accuracy.

Dataset | UCF101-24 | JHMDB-21 | AVA" | MAMA"

Acc. | 832 | 343 | 212 | 41

Table 2. Performance comparison for classifiers trained on dif-
ferent datasets using I3D backbone. i: AVA - (STEP - I3D). ":
MAMA - (VCN-MA - I3D).

motion such as running and shooting bow in case of
freezing the frames. In AVA dataset, walking, driving
andswimming has almost zero accuracy in case of freezing
the frame. If there’s little or no motion, then the classifica-
tion accuracy is comparable with normal evaluation proto-
col for example sit, lie, stand, and watch. Figure 5
illustrates the relative comparison of freezing and reversing
the input frames on several datasets.

5.5. Challenges and Discussions

In this section, we list out several key challenges MAMA
dataset list out that corroborates to real-world scenarios:
Video resolution: Most of the video datasets are low reso-
lution, thus, action detection approaches are designed with
input size of 224 or 256 resolution. Resizing a 1920x1080
video to 224x224 leads to information loss which makes
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Figure 9. MAMA - Frame order class accuracy.
Dataset Order Acc f-mAP v-mAP
Original 93.4 74.0 75.1
UCF101-24  Freeze 81.2 61.7 60.9
Reverse 92.2  65.5 63.9
Original 38.8 68.2 68.4
JHMDB-21 Freeze 32.6 56.9 56.2
Reverse 38.1 68.1 66.7
Original 21.2 20.1 -
AVAT Freeze 7.7 74 -
Reverse 20.8 18.9 -
Original 9.2 04 0.1
MAMA? Freeze 8.1 0.1 0.0
Reverse 9.2 0.1 0.0

Table 3. Performance comparison for different types of frame or-
dering at f-mAP@0.5 and v-mAP@0.5. ': AVA results are shown
for illustration purposes only. *: MAMA is a challenging dataset,
and our baseline models yields low accuracy.

Dataset Order Acc f-mAP v-mAP
UCF101-24 122 12.3 14.2
Absolute JHMDB-21 6.2 11.3 12.2

solu AVA' 135 127 -
MAMA 1.1 0.3 0.07
UCF101-24 13.1 16.6 18.9
. JHMDB-21 16.0 16.5 17.8
Relative

AVA' 63.7 632 -
MAMA 12.0 75 -

Table 4. Absolute and relative drop in performance for scene
bias condition at f-mAP@0.5 and v-mAP@0.5.": AVA results are
shown for illustration purposes only.

proposed approaches to work efficiently on this dataset.
Class imbalance: Diving deeper into real-world sce-
nario, there’s always a huge class imbalance in activi-

Dataset Order Acc f-mAP v-mAP
UCF101-24 1.2 8.7 11.2
JHMDB-21 0.7 0.1 1.7

Absolute = yat 04 12 -
MAMA 0.0 0.3 0.08
UCF101-24 13 11.8 14.9
. JHMDB-21 1.8 0.0 2.4
Relative

AVAT 0.0 6.0 -
MAMA 0.0 75 -

Table 5. Absolute and relative drop in performance for temporal
reverse condition at f-mAP@0.5 and v-mAP@0.5. : AVA results
are shown for illustration purposes only.

ties. Some activities are more frequent than others. For
example, talking and texting are activities have a
higher frequency than activities such as close_trunk,
people_embrace, and, close_facility_door.
Instance separation: Existing datasets have been collected
under controlled number of instances. However, number of
instances vary by a good margin between an indoor scene
of a cafeteria vs an outdoor scene of a parking lot. A lot
of actors are concentrated in a smaller area vs less actors
spread over a large area.

6. Related work

[1] discusses the hierarchical organizations of activities,
specifically breaking down an activity into varying types
of behaviours exhibited by an actor. Motivated by this,
datasets like AVA [12], classify actions as ’atomic’ and try
to capture subtle changes in actor motion by annotating at 1
sec intervals. On the other hand, datasets like UCF101 [31],
JHMDB [17] perform annotations at finer spatio temporal
scales. However, such datasets do not capture the subtle
atomic actions. Simlarly, a lot of relevant work [32] [4] has
been done on detecting and removing bias by training net-
works on masked actor regions. However, understanding
the sources of bias in the context of action detection is a
relatively unexplored problem.

7. Conclusion

We have analyzed existing video datasets and shown
the importance of temporal aspects for action understand-
ing. Specifically, we have demonstrated how a detection
model behaves when the temporal information is frozen or
reversed. A reliable metric to compare datasets could be
to measure the relative drops of models across datasets on
several such properties. Furthermore, to contribute to the
ongoing research in action detection, we have presented a
new spatio-temporal dataset titted MAMA.

4918



References

(1]

2]

(3]

(4]

(5]

(6]

(7]

(81

(9]

(10]

(11]

(12]

(13]

Roger G Barker and Herbert F Wright. Midwest and its chil-
dren: The psychological ecology of an american town. 1955.
8

Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem,
and Juan Carlos Niebles. Activitynet: A large-scale video
benchmark for human activity understanding. In Proceed-
ings of the ieee conference on computer vision and pattern
recognition, pages 961-970, 2015. 2

Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6299-6308, 2017. 1, 2

Jinwoo Choi, Chen Gao, Joseph CE Messou, and Jia-Bin
Huang. Why can’t i dance in the mall? learning to miti-
gate scene bias in action recognition. Advances in Neural
Information Processing Systems, 32,2019. 5, 8

Kellie Corona, Katie Osterdahl, Roderic Collins, and An-
thony Hoogs. Meva: A large-scale multiview, multimodal
video dataset for activity detection. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 1060-1068, 2021. 1, 3

Ishan Dave, Zacchaeus Scheffer, Akash Kumar, Sarah Shi-
raz, Yogesh Singh Rawat, and Mubarak Shah. Gabriellav2:
Towards better generalization in surveillance videos for ac-
tion detection. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision, pages 122-132,
2022. 2

Ugur Demir, Yogesh S Rawat, and Mubarak Shah. Tinyvirat:
Low-resolution video action recognition. In 2020 25th Inter-
national Conference on Pattern Recognition (ICPR), pages
7387-7394. IEEE, 2021. 2

Kevin Duarte, Yogesh Rawat, and Mubarak Shah. Video-
capsulenet: A simplified network for action detection. In
Advances in Neural Information Processing Systems, pages
7610-7619, 2018. 1,2, 5,6

Alaaeldin El-Nouby and Graham W Taylor. Real-time end-
to-end action detection with two-stream networks. arXiv
preprint arXiv:1802.08362, 2018. 1

Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li,
Zhicheng Yan, Jitendra Malik, and Christoph Feichten-
hofer. Multiscale vision transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 6824-6835, 2021. 2

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 6202-6211, 2019. 1,2

Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Car-
oline Pantofaru, Yeqing Li, Sudheendra Vijayanarasimhan,
George Toderici, Susanna Ricco, Rahul Sukthankar, et al.
Ava: A video dataset of spatio-temporally localized atomic
visual actions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 6047—
6056, 2018. 1,3, 8

Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can
spatiotemporal 3d cnns retrace the history of 2d cnns and im-

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

4910

agenet? In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 6546-6555, 2018. 1,
2

Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix
capsules with em routing. In International conference on
learning representations, 2018. 6

Rui Hou, Chen Chen, and Mubarak Shah. Tube con-
volutional neural network (t-cnn) for action detection in
videos. In IEEE International Conference on Computer Vi-
sion, 2017. 1

Haroon Idrees, Amir R Zamir, Yu-Gang Jiang, Alex Gorban,
Ivan Laptev, Rahul Sukthankar, and Mubarak Shah. The
thumos challenge on action recognition for videos “in the
wild”. Computer Vision and Image Understanding, 155:1—
23,2017. 2

Hueihan Jhuang, Juergen Gall, Silvia Zuffi, Cordelia
Schmid, and Michael J Black. Towards understanding ac-
tion recognition. In Proceedings of the IEEE international
conference on computer vision, pages 3192-3199, 2013. 1,
2,8

Vicky Kalogeiton, Philippe Weinzaepfel, Vittorio Ferrari,
and Cordelia Schmid. Action tubelet detector for spatio-
temporal action localization. In Proceedings of the IEEE
International Conference on Computer Vision, pages 4405—
4413,2017. 1,5

Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas
Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video
classification with convolutional neural networks. In Pro-
ceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 1725-1732, 2014. 2

Hildegard Kuehne, Hueihan Jhuang, Estibaliz Garrote,
Tomaso Poggio, and Thomas Serre. Hmdb: a large video
database for human motion recognition. In 2011 Inter-
national conference on computer vision, pages 2556-2563.
IEEE, 2011. 2

Akash Kumar and Yogesh Singh Rawat. End-to-end semi-
supervised learning for video action detection. /IEEE confer-
ence on computer vision and pattern recognition, 2022. 1
Dong Li, Zhaofan Qiu, Qi Dai, Ting Yao, and Tao Mei. Re-
current tubelet proposal and recognition networks for action
detection. In Proceedings of the European conference on
computer vision (ECCV), pages 303-318, 2018. 1

Bruce MclIntosh, Kevin Duarte, Yogesh S Rawat, and
Mubarak Shah. Visual-textual capsule routing for text-based
video segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9942-9951, 2020. 1

Mathew Monfort, Alex Andonian, Bolei Zhou, Kandan Ra-
makrishnan, Sarah Adel Bargal, Tom Yan, Lisa Brown,
Quanfu Fan, Dan Gutfreund, Carl Vondrick, et al. Moments
in time dataset: one million videos for event understanding.
IEEE transactions on pattern analysis and machine intelli-
gence, 42(2):502-508, 2019. 2

Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cun-
toor, Chia-Chih Chen, Jong Taek Lee, Saurajit Mukherjee,
JK Aggarwal, Hyungtae Lee, Larry Davis, et al. A large-
scale benchmark dataset for event recognition in surveillance
video. In CVPR 2011, pages 3153-3160. IEEE, 2011. 1, 3



(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

Aayush J Rana and Yogesh S Rawat. We don’t need thou-
sand proposals: Single shot actor-action detection in videos.
In Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, pages 2960-2969, 2021. 1,
2

Mamshad Nayeem Rizve, Ugur Demir, Praveen Tirupattur,
Aayush Jung Rana, Kevin Duarte, Ishan R Dave, Yogesh S
Rawat, and Mubarak Shah. Gabriella: An online system for
real-time activity detection in untrimmed security videos. In
2020 25th International Conference on Pattern Recognition
(ICPR), pages 4237-4244. IEEE, 2021. 2

Mikel D Rodriguez, Javed Ahmed, and Mubarak Shah. Ac-
tion mach a spatio-temporal maximum average correlation
height filter for action recognition. In 2008 IEEE confer-
ence on computer vision and pattern recognition, pages 1-8.
IEEE, 2008. 1, 2

Gunnar A Sigurdsson, Giil Varol, Xiaolong Wang, Ali
Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in
homes: Crowdsourcing data collection for activity under-
standing. In European Conference on Computer Vision,
pages 510-526. Springer, 2016. 2

Khurram Soomro and Amir R Zamir. Action recognition in
realistic sports videos. In Computer Vision in Sports, pages
181-208. Springer, 2014. 1

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from videos
in the wild. arXiv preprint arXiv:1212.0402, 2012. 1,2,3,8
Enzo Tartaglione, Carlo Alberto Barbano, and Marco
Grangetto. End: Entangling and disentangling deep rep-
resentations for bias correction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13508-13517, 2021. 8

Praveen Tirupattur, Aayush J Rana, Tushar Sangam, Shruti
Vyas, Yogesh S Rawat, and Mubarak Shah. Tinyaction chal-
lenge: Recognizing real-world low-resolution activities in
videos. arXiv preprint arXiv:2107.11494, 2021. 2

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torre-
sani, and Manohar Paluri. Learning spatiotemporal features
with 3d convolutional networks. In Computer Vision (ICCV),
2015 IEEE International Conference on, pages 4489-4497.
IEEE, 2015. 1

Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recogni-
tion, pages 6450-6459, 2018. 1

Shruti Vyas, Yogesh S Rawat, and Mubarak Shah. Multi-
view action recognition using cross-view video prediction.
In European Conference on Computer Vision, pages 427—
444. Springer, 2020. 1

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 7794-7803, 2018. 1

Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia
Schmid. Learning to track for spatio-temporal action local-
ization. In Proceedings of the IEEE international conference
on computer vision, pages 3164-3172, 2015. 1

(39]

(40]

(41]

(42]

[43]

(44

—_—

4920

Philippe Weinzaepfel, Xavier Martin, and Cordelia Schmid.
Human action localization with sparse spatial supervision.
arXiv preprint arXiv:1605.05197, 2016. 1, 2

Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and
Kevin Murphy. Rethinking spatiotemporal feature learn-
ing: Speed-accuracy trade-offs in video classification. In
Proceedings of the European conference on computer vision
(ECCV), pages 305-321,2018. 1

Chenliang Xu, Shao-Hang Hsieh, Caiming Xiong, and Ja-
son J Corso. Can humans fly? action understanding with
multiple classes of actors. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

2264-2273,2015. 1

Xitong Yang, Xiaodong Yang, Ming-Yu Liu, Fanyi Xiao,
Larry S Davis, and Jan Kautz. Step: Spatio-temporal pro-
gressive learning for video action detection. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 264-272,2019. 1,2, 6

Serena Yeung, Olga Russakovsky, Ning Jin, Mykhaylo An-
driluka, Greg Mori, and Li Fei-Fei. Every moment counts:
Dense detailed labeling of actions in complex videos. Inter-
national Journal of Computer Vision, 126(2):375-389, 2018.
2

Lijun Yu, Yijun Qian, Wenhe Liu, and Alexander G Haupt-
mann. Argus++: Robust real-time activity detection for un-
constrained video streams with overlapping cube proposals.
In Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, pages 112-121, 2022. 2



