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Abstract

Object detection is a classical problem in computer vi-
sion, and the vast majority of approaches require large an-
notated datasets for training and evaluation purposes. The
most popular representations are bounding boxes (BBs),
usually defined as the minimal-area rectangle that encom-
passes the whole object region. However, the annotation
process presents some subjectiveness (particularly when
occlusions are present), and its quality might get degraded
when the annotators get tired. Comparing BBs is crucial for
evaluation purposes, and the Intersection-over-Union (IoU)
is the standard similarity metric. In this paper, we provide
theoretical and experimental results indicating that the IoU
can be strongly affected even by small annotation discrep-
ancies in popular datasets used for object detection. As a
consequence, the Average Precision (AP) value commonly
used to evaluate object detectors is also influenced by an-
notation bias or noise, particularly for small objects and
tighter IoU thresholds.

1. Introduction
Object detection is a classical problem in computer vi-

sion and have greatly benefited from deep learning in the
past years [12]. Training and evaluation datasets are grow-
ing larger and larger, and performing a thorough qualita-
tive evaluation is unfeasible. As such, the development of
quantitative performance metrics is crucial for evaluating
and comparing different object detectors.

Training and evaluation of object detectors strongly rely
on comparing the annotated object representation with the
output of the detector. The most popular object representa-
tion is a bounding box (BB), which is the “smallest” rect-
angle that fully contains the object, where minimization is
typically based on area. Within BB representations, axis-
aligned rectangles – also called Horizontal Bounding Boxes
(HBBs) – are the most common choices, and HBB annota-
tions are present in popular datasets containing daily ob-
jects such as Pascal VOC 2012 [3] and Microsoft COCO

2017 [11]. HBBs are easy to annotate, and they require
only four parameters, such as top-left and bottom-right co-
ordinates. In the more generic case, Oriented Bounding
Boxes (OBBs) also include a rotation angle. However, us-
ing OBBs involves additional challenges, such as the choice
of a suitable parameterization that does not generate ambi-
guities, which is also related to the choice of the detector
itself [30]. There has been an increasing interest in OBB ob-
ject detection, and a few datasets provide OBB annotations,
such as FDDB [8] (for face detection)1, ICDAR 2015 [9],
MLT 2017 [17] (for text spotting) and HRSC 2016 [14],
DOTA (v1) [27] (aerial/satellite images).

Although annotating HBBs or OBBs might seem easy
and straightforward, it is not an entirely objective task. The
definition of a BB itself for objects with strong partial occlu-
sions is not trivial: should we annotate only the main visible
portion or a BB comprising all object parts, regardless of
their size? Furthermore, annotation tools typically involve
drag-and-drop interfaces, which tend to generate annotation
errors – hopefully of only a few pixels. To illustrate possi-
ble ambiguities or errors in annotated HBBs (AHBBs), we
select some images that present both HBB annotations and
segmentation masks, which allows us to compute the HBB
estimated directly from the masks (SHBBs). Fig. 1 shows
the RGB images and the corresponding segmentation masks
with SHBBs overlaid in green and AHBBs in blue for a few
samples in VOC 2012. In Fig. 1a, the AHBB comprehends
both visible and “guessed” portions of the inner bike; the
SHBB, on the other hand, relates only to the upper-central
part of the bike. Fig. 1b illustrates a recurrent issue in VOC
2012: the object is partially occluded, and the segmentation
mask presents more than one connected component with the
body and hands, yielding a wide SHBB; the AHBB, how-
ever, relates only to the body. Fig. 1c shows an example
where the AHBB annotator considered only the body of the
cat with a small offset on the top-right corner, but the seg-
mentation annotator also marked the tail. In all these ex-
amples, the IoU value between the AHBB and SHBB fell

1Annotations in FDDB are actually ellipses, which are mapped to
OBBs.
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(a) IoU = 0.47

(b) IoU = 0.38

(c) IoU = 0.38

(d) IoU = 0.74

Figure 1. Examples of HBB annotation ambiguities and discrep-
ancies in VOC 2012.

below 0.5. Finally, Fig. 1d shows an example that seems
to indicate human-center bias or annotation noise regarding
the actual limits of the object.

Regardless of the object parametrization (HBBs, OBBs,
or even full segmentation masks) and the annotation pro-
cess, the Intersection-over-Union (IoU) [4] has been the de
facto standard for comparing two shapes. A detection with
region Ωdet is considered correct if IoU(Ωdet,Ωgt) ≥ T ,
where Ωgt a GT region and 0 ≤ T ≤ 1 is a threshold.
Increasing the value of T forces a tighter match, and the
value T = 0.5 was used in [4] for evaluating HBB object
detectors. The standard in [11] is to compute several thresh-
olds T varying from 0.5 to 0.95 in steps of 0.05, which pro-
vides overlap estimates with different tightness constraints.
However, the choice of T is arbitrary, as discussed in [20].
In fact, a few evaluation protocols, such as the birds-eye-

view object detection in the KITTI dataset [6]2 explores
per-category thresholds: 0.7 for cars, and 0.5 for pedestrians
and bicycles. Based on the IoU and the acceptance thresh-
old T or a set of thresholds as in [11], the per-category Av-
erage Precision – computed based on precision and recall
rates [4] – and the mean Average Precision (mAP) over all
categories are commonly used as the overall performance
metric.

In this paper, we perform a critical analysis to evaluate
how BB uncertainties might impact the IoU and, conse-
quently, the AP values that are used as default metrics to
compare HBB and OBB object detectors. Since we are not
aware of datasets containing object annotations of different
humans, we perform our analysis by considering datasets
that present both segmentation masks and BB annotations.
Our results indicate that even sub-pixel discrepancies might
considerably lower the IoU values, particularly for smaller
objects. We hope our findings serve as basis for further re-
search and critical analysis on the blind use of IoU and AP
metrics for evaluating object detectors.

2. Related Work

The availability of annotated datasets is crucial for train-
ing and evaluating deep learning in a variety of tasks,
ranging from image classification to object detection and
instance segmentation. In most applications, the actual
“ground-truth” itself is not objective, and datasets provide
the view of one or several human annotators.

Even before the deep-learning boom, the generation and
consistency check of human annotators was a concern. Mar-
tin et al. [15] proposed an image segmentation dataset anno-
tated by different people. They noted that although the an-
notations were semantically consistent, human annotations
for the same image vary in terms of granularity.

Misra and colleagues [16] evaluated the problem of
“human-centric” annotations, in which the inherent subjec-
tivity of the task affects the annotation process. They con-
sidered these labels noisy and proposed a deep network for
decoupling the human reporting bias from the correct vi-
sual information in image tagging applications. Some pa-
pers evaluated bias and annotation errors – or “issues” – in
large image classification datasets. Tsipras et al. [23] evalu-
ate the annotation bias in large image classification datasets
such as ImageNet [1], and how the creation process of the
dataset might induce biases. They point out the presence
of images with multiple valid labels and ambiguous classes,
such as missile/projectile. Similar findings about class am-
biguity were also reported in [18, 19] for ImageNet, which
might affect quality metrics based on top-1 accuracy.

Rezatofighi et al. [20] presented a generic discussion on
performance evaluation metrics for tasks such as object de-

2http://www.cvlibs.net/datasets/kitti/
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tection and instance segmentation. They mention the draw-
back of IoU for disjoint regions, which is null regardless of
their distance, and advocate for the use of the Generalized
IoU [21] to overcome this issue. They also point out the
effect of the IoU (or GIoU) acceptance threshold T to com-
pute AP-related metrics, and show that order rankings of
consolidated approaches for object detection and instance
segmentation can change considerable when T changes.

Hall et al. [7] proposed a probabilistic representation
of HBBs where the top-left and bottom-right corners are
modeled as 2D Gaussian distributions, allowing the defini-
tion of a “probabilistic” HBB. A similar approach was pre-
sented in [25], where the authors also define a Jaccard IoU
that compares two probabilistic boxes, which inherently ac-
counts for the uncertainty of the compared HBBs.

Our works goes in the direction of [20] and evaluates the
effect of IoU thresholds on the accuracy of object detectors.
However, we focus on the “quality” of HBB annotations and
how uncertainties impact the IoU value for popular datasets.
We highlight the importance of the triangle inequality for an
evaluation metric d as presented in [20]. If GTr is the real
(noise-free but unknown) ground-truth, GTa is a (noisy or
biased) ground-truth annotation and Det is a detected HBB,
then

d(Det,GTr) ≤ d(Det,GTa) + d(GTr,GTa). (1)

If we have an estimate for the annotation noise/bias
d(GTr,GTa), then Eq. (1) provides an upper bound for the
actual distance d(Det,GTr) based on the observed distance
d(Det,GTa).

3. Evaluating dataset self-consistency for
HBBs

The main concept behind the term bounding box is that
the box should entirely contain the object under consider-
ation. Although this concept might be clear for fully vis-
ible objects, partial occlusions either in the middle of the
object or its extremities might generate annotation ambigu-
ities. Since we are not aware of datasets containing HBB
annotations from different humans to the same object, we
“emulate” the human error considering datasets that provide
both HBB annotations and segmentation masks.

COCO 2017: (will be called simply COCO from now on)
provides both segmentation masks and AHBBs for a va-
riety of objects in 80 different categories. As mentioned
in [11], AHBBs are obtained directly from the polygonal re-
gions that define segmentation masks, which are stored in a
sub-pixel level and hence so does the segmentation-induced
HBBs, called SHBB here. On the other hand, typical anno-
tations for AHBBs are performed by humans that directly
draw on the images, and usually consist of integer pixel co-
ordinates, as in VOC [4].

In this first experiment, we “emulate” an ideal human
annotator that is able to generate AHBBs with integer co-
ordinates that best match the segmentation mask in COCO.
More precisely, we rounded the floating-point SHBBs co-
ordinates of COCO’s training set using a floor operator
for top-left coordinates and ceil for bottom-right to gen-
erate a bounding representation of the segmentation mask,
and analyze the IoU between the SHBB and the AHBB.

Figure 2 shows a per-category boxplot of the IoU values,
and we note that some categories are strongly affected by
these sub-pixel changes, such as car, traffic light,
birds, sports ball and book. This means that even
if an object detector can accurately mimic the SHBB an-
notations, which is the available information in COCO, the
AP values could be considerably degraded when compared
to the AHBB or vice-versa.

Although we noted that some categories are more af-
fected by HBB perturbations, the underlying reason is not
the category itself, but the size of the HBBs. The round-
off procedure generates per-coordinate absolute errors (x or
y) smaller than 1 pixel, and the effect on the IoU is highly
dependent on the dimensions of the HBB: if the width or
height is small, even such a small error might considerably
degrade the IoU. Figure 3 shows a category-agnostic scatter
plot of the IoU vs. the smallest SHBB dimension for all an-
notations in COCO (blue points), which indicates that the
IoU is related to the minimum SHBB dimension. In fact,
the Spearman order rank correlation coefficient for the scat-
ter plot is 0.9367 (with a numerically null p-value), which
indicates a clear monotonic relationship between the small-
est SHBB dimension and the IoU.

For the experiment with COCO, we can formally esti-
mate the effect of coordinate rounding-off on the IoU val-
ues. Let us consider that an SHBB with dimensions W ×H
is the ideal GT annotation and that the AHBB obtained by
the rounding-off procedure is the best realizable annotation
with integer coordinates. Let us also consider that the hor-
izontal (left and right) and vertical (top and bottom) offsets
used to round-off the SHBB, given by x = (x1, x2, y1, y2),
respectively, follow a uniform distribution U(0, 1). In this
case, the IoU between the SHBB and an AHBB of offset x
is given by

IoUx(W,H) =
WH

(W + x1 + x2)(H + y1 + y2)
, (2)

and the expected IoU value is given by

E[IoU(W,H)] =

∫
x∈R

IoUx(W,H)dx = f(W )f(H),

(3)
where R = [0, 1]4, and

f(x) = x

(
x ln

(
x(x+ 2)

(x+ 1)2

)
− 2 ln

(
x+ 1

x+ 2

))
. (4)
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Figure 2. Per-category Iou between AHBBs and HBBs generated from segmentation masks (SHBBs) in COCO.

Figure 3. Scatter plot showing the IoU between HBB/SHBB pairs
in COCO vs. the smallest SHBB dimension for COCO (blue).
Also shows the theoretical lower bound (red) and the expected IoU
value (yellow) considering only the smallest dimension according
to Eq. (4)

We can observe that E[IoU(W,H)] presents a separable
contribution of the width W and height H , both guided by
the same monotonically decaying function f . For the sake
of illustration, the plot of f is shown as the yellow curve
in Figure 3, overlaid with the scatter plot of the observed
IoU values in the experiment. Note that f relates to the ex-
pected IoU value for a single dimension, but we can also
compute a lower bound based on the smallest SHBB di-
mension. Given a minimum dimension d = min{H,W},
Eq. (2) indicates that the minimum IoU value is achieved
when H = W , (i.e., when the largest dimension equals the
smallest) and x = (1, 1, 1, 1), which is the largest possible
round-off error. In this case, the lower IoU bound is given

by d2/(d + 2)2, shown as a red curve in Figure 3. We can
see that some SHBB/HBB pairs get very close to this lower
bound.

As a final experiment with the COCO dataset, we evalu-
ate how the annotation discrepancies can affect the AP met-
rics used to evaluate object detectors. For example, let us
consider that the SHBBs are the observed annotations and
AHBBs are the actual annotations for COCO or vice-versa.
If a test image presents N objects, an ideal object detec-
tor would predict exactly N objects with their correspond-
ing categories at a perfect detection score of one and would
be able to regress the bounding box parameters according
to the observed annotations. Using the validation set of
COCO, for which we have GT annotations, we computed
the APT values for such ideal detector with the 10 thresh-
olds T suggested in [11] varying linearly from 0.50 to 0.95,
and evaluated the results for small, medium and large ob-
jects, which are separated by area thresholds of 322 and 962

as in the official evaluation tools of COCO. We also per-
formed a similar experiment using real detectors that were
trained with the SHBB annotations in COCO and evaluated
using both SHBB and AHBB annotations. Table 1 shows
that the ideal detector is not affected by sup-pixel discrepan-
cies at all IoU levels for large objects. However, for medium
and particularly for small objects, there is a strong IoU de-
crease for larger values of T , which is consistent with Fig-
ure 3. For the experiments with real object detectors, we
chose members of the EfficientDet [22]3 and YoloR [24]4

3Code and weights from https://github.com/google/
automl/tree/master/efficientdet

4Code and weights from https://github.com/WongKinYiu/
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Detector Small Medium Large
AP50 AP75 AP95 AP50:95 AP50 AP75 AP95 AP50:95 AP50 AP75 AP95 AP50:95

Ideal 100.0 / 99.60 100.0 / 93.46 100.0 / 13.63 100.0 / 82.38 100.0 / 100.0 100.0 / 100.0 100.0 / 77.15 100.0 / 97.66 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0
EfficientDet D0 24.87 / 25.34 11.54 / 11.62 0.20 / 0.15 12.53 / 12.86 61.01 / 61.01 41.58 / 41.85 1.52 / 1.55 38.61 / 38.76 72.60 / 72.67 58.37 / 58.34 6.27 / 6.52 52.59 / 52.72
EfficientDet D7 55.93 / 56.31 39.49 / 38.79 2.93 / 1.63 36.92 / 36.36 77.16 / 77.30 63.17 / 63.43 9.18 / 9.12 57.29 / 57.38 82.04 / 82.05 71.77 / 71.89 21.20 / 22.71 66.73 / 67.00

YOLO-R P6 56.02 / 56.58 40.73 / 39.22 2.48 / 1.60 37.04 / 36.22 76.02 / 76.12 63.10 / 63.00 9.34 / 8.32 56.85 / 56.52 79.95 / 79.97 72.08 / 72.31 21.92 / 21.51 65.96 / 65.94
YOLO-R W6 57.27 / 57.65 40.81 / 40.26 2.57 / 1.56 37.92 / 36.96 76.85 / 76.92 64.63 / 64.43 10.28 / 9.78 58.09 / 57.83 81.55 / 81.55 72.51 / 72.60 24.48 / 23.84 67.31 / 67.27

Table 1. APT values (%) for a different HBB object detectors in COCO trained with SHBBs and evaluated with SHBBs/AHBBs

models. We can observe that all detectors present small
AP50:95 (i.e., the mean of result from AP50 to AP95 vary-
ing the threshold in 5 units) variations when changing from
SHBBs to AHBBs for large and even medium objects, but
the detectors with the best results – Yolo-R P6 and Yolo-R
W6 – suffer some degradation in AP95 for medium objects.
For small objects, the APT values are more affected by the
annotation format used for validating the results, in special
for T ∈ {75, 95, 50:95}. In particular, Yolo-R W6 presents
the best AP50:95 results using SHBB annotations for small
objects, but is only the third-best when considering AHBBs.
It is also interesting to note that Efficiendet D0 presented
higher AP50:95 for small objects when using AHBBs. Our
experiments with COCO show that small and medium ob-
jects are more susceptible to subpixel errors, as expected.

VOC 2012: presents HBB annotations (AHBBs) for 20 dif-
ferent categories, and a subset of 2,913 images also presents
segmentation masks – we will refer to this subset simply as
VOC from now on. In fact, the annotation process for VOC
evolved in time, and more effort was put into generating and
checking segmentation masks [2]. Hence, VOC is an inter-
esting case study to check how consistent the HBBs gener-
ated automatically from the segmentation masks (SHBBs)
are with the manually annotated AHBBs. Unlike the pre-
vious experiment with COCO, the AHBBs are not derived
by rounding-off SHBBs, which might lead to discrepancies
larger than one pixel.

There is no tagging between the segmentation mask and
AHBB annotations in the dataset – in fact, the number of
objects in both representations does not match for 6 of the
2,913 images. For the remaining 2,907 images, we adopted
the following steps:

1. Compute the SHBB from each segmentation mask
present in the image

2. Perform a pair-wise matching between SHBBs and
AHBBs using the Hungarian algorithm [10], where the
cost matrix was the negative IoU value

3. Discard matches for which the category annotations
did not match (only two instances in the total)

4. Store the IoU values for each category in the dataset

yolor

Figure 4. Iou between annotated HBBs (AHBBs) and HBBs gen-
erated from segmentation masks (SHBBs) for VOC.

At the end of this process, we obtained a set of 6,909
pairs of matched SHBBs and AHBBs, along with the cor-
responding IoU. The per-category IoU distributions are
shown in Figure 4, and the overall IoU values are consider-
ably lower than in the experiment with COCO. For instance,
the median IoU values for class bottle is below 0.8, and
around 15% of the samples for this category present an IoU
lower than 0.5. This means that an ideal object detector
considering SHBB annotations would have an AP50 upper
bound of approximately 85% for this category when vali-
dated with AHBB annotations.

Similarly to the experiment with COCO, Figure 5 shows
a category-agnostic scatter plot of the IoU vs. the smallest
SHBB dimension for all annotations in VOC. Compared to
Figure 3, the IoU values for similar minimum dimensions
are more spread and with smaller values. This behavior is
actually expected, since the AHBB and SHBB annotation
discrepancies go beyond subpixel differences in VOC. The
AHBBs are not necessarily “bounding” representations of
the objects compared to the segmentation mask, as illus-
trated in Fig. 1b. AHBBs for objects with partial occlusions
are also not consistent: in some cases, the AHBB covers
only the central portion of the object, but in others, it does
encompass even regions of the object that are not visible
and were guessed by the annotator, as illustrated in Fig. 1a.
Nevertheless, we can still find an overall monotonic rela-
tionship between the IoU and the smallest dimension of the
SHBB in Figure 5: the Spearman coefficient was 0.79, with
a numerically null p-value.

For a better evaluation of the annotation discrepancies,
we consider that SHBBs are the ideal annotations and com-
pute the coordinate offsets (top-left and bottom-right) be-
tween the AHBB and the SHBB. Although these offsets
might reach hundreds of pixels for some images, approx-
imately 95% of them lie on the square region [−16, 16]2,
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Figure 5. Relationship between IoU and smallest SHBB dimen-
sion for VOC.

Figure 6. Offset between AHBBs and SHBBs for VOC.

shown in Fig. 6. If the AHBBs were indeed bounding rep-
resentations of SHBBs, the top-left offsets would be all
non-positive, and the bottom-right would be non-negative,
which is not true in Fig. 6. In fact, 73.46% of the offsets
satisfy ∆xtl ≤ 0 and ∆ytl ≤ 0, whereas 88.28% satisfy
∆xbr ≥ 0 and ∆ybr ≥ 0, with a total of 66.09% satisfying
all constraints for a bounding representation.

Since the discrepancies in VOC are larger than the sub-
pixel differences in COCO, we also expect a stronger APT

reduction when training object detectors using AHBBs and
evaluating using SHBBs (note that human-labeled HBBs
are provided for VOC, unlike COCO). Although only AP50

is suggested for VOC [4], we also evaluated more restric-
tive thresholds to evaluate the degradation. The results
shown in Table 2 indicate that even using T = 0.5 pro-
duces a 4% AP50 reduction w.r.t. an ideal detector, and
the degradation is over 22% when considering the COCO
AP metric. We also evaluated two popular HBB object
detectors, namely EfficientDet D0 [22] and SSD300 [13]
with ResNet50 backbone, both trained using the AHBBs
of the PASCAL VOC 2007 train set and validated with
AHBBs and SHBBs of the segmentation subset, for which
we can compute the SHBBs. In the least restrictive sce-
nario (AP50), there was an accuracy drop of approximately
2% for EfficientDet and SSD300, respectively. The accu-
racy drop becomes even larger for tighter IoU thresholds,
reaching 4.5% for EfficienDet and 6.3% for SSD300 when
AP75 is considered. When we consider AP50:95, the ac-
curacy drops for the two detectors are 7.6% and 9.3%, re-
spectively. It is also important to mention that recent ap-
proaches that propose novel localization loss functions for

HBB object detectors report relatively small APT gains for
VOC. For example, Distance-IoU [31] reports an AP75 of
56.34% for their loss vs. 54.74% using the IoU loss in the
Pascal VOC 2007 test set, which means a 1.6% improve-
ment. Such gain is considerably smaller than the 6.3% gap
shown in our experiments by just changing the GT annota-
tion. Results with VOC confirm that small objects are more
susceptible to errors, and disparities between the SHBB and
AHBB can harm or benefit the performance of detectors.

4. Evaluating dataset self-consistency for
OBBs

It is well known that HBBs only provide a coarse approx-
imation of the object shape (i.e., its segmentation mask),
particularly for irregular or articulated objects [11]. Even
roughly rectangular shapes might not be well represented
by HBBs when rotations are considered. For example, a
long and thin object with a 45◦ rotation will be represented
by a roughly square HBB, and rotating the same object by
90◦ yields the exact same HBB.

Oriented Bounding Boxes (OBBs) are becoming a pop-
ular alternative to HBBs, but their application is still lim-
ited mostly to niche applications such as text spotting (IC-
DAR 2015 [9] and MLT 2017 [17] datasets) and object
detection in aerial satellite images (HRSC 2016 [14] and
DOTA v1 [27] datasets). The visual OBB definition for
objects that present a naturally elongated format such as
words/sentences or ships is straightforward, but not so easy
for irregular squared/circular objects. On the other hand,
OBBs can be extracted automatically from segmentation
masks using algorithms that fit a minimum-area bound-
ing rectangle to the shape [5]. Here, we focus our anal-
ysis on the DOTA 1.0 dataset, which contains OBB an-
notations for several objects in 15 different categories,
and the segmentation masks provided in iSAID [26] based
on the same RGB images from DOTA v1 (called simply
DOTA from this point on for simplicity). We compare
the minimum-area OBBs extracted from the segmentation
masks (called SOBBs) with the manually annotated OBBs
(called AOBBs) using a similar strategy as the experiment
with VOC (iSAID typically provides more segmentation
mask annotations than AOBBs in DOTA), yielding a total
of 98k pairs of AOBBs/SOBBs.

Fig. 7 shows the per-category IoU distributions
comparing AOBBs with the corresponding SOBBs for
DOTA, and Fig. 8 shows a few visual examples (since
high-resolution images are used in DOTA, we show
here image crops illustrating only the object under
consideration). We note that categories with an in-
herently rectangular shape, such as tennis-court
(Fig. 8a), ground-track-field (Fig. 8b),
basketball-court, and soccer-ball-field
present large IoU values (median above 0.85). The IoU dis-
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Detector AP50 AP55 AP60 AP65 AP70 AP75 AP80 AP85 AP90 AP95 AP50:95

Ideal 100.0 / 96.05 100.0 / 94.85 100.0 / 92.96 100.0 / 90.76 100.0 / 87.74 100.0 / 84.03 100.0 / 78.54 100.0 / 69.90 100.0 / 55.66 100.0 / 27.78 100.0 / 77.83
Efficientdet 67.28 / 65.49 64.78 / 62.75 62.32 / 60.20 58.78 / 55.80 53.82 / 49.82 48.47 / 43.98 40.07 / 35.26 28.77 / 22.59 13.23 / 9.16 1.86 / 1.15 43.83 / 36.22

SSD300 63.02 / 61.52 61.23 / 59.16 59.49 / 56.87 56.70 / 53.42 53.29 / 48.25 48.12 / 41.87 38.99 / 32.02 26.38 / 19.52 9.66 / 5.48 1.12 / 0.44 41.80 / 32.53

Table 2. APT values (%) for a different object detectors in VOC trained with AHBBs and evaluated with AHBBs/SHBBs

Figure 7. Iou between AOBBs and OBBs generated from segmen-
tation masks (SOBBs) for DOTA/iSAID.

tribution for roundabout presented the smallest median
IoU value (0.533), and the main cause was inconsistency in
the segmentation annotation: in some cases, only the inner
part of the roundabout was marked (Fig. 8c), whereas in the
pavement around it was also included in the mask (Fig. 8d).
Furthermore, perfectly circular masks generate ambiguous
minimum-area bounding rectangles: any bounding square
with arbitrary rotation presents the same area, and changing
a single pixel in the mask can provide an artificially
dominant orientation for the SOBB. The AOBBs, on the
other hand, are drawn mostly as aligned OBBs (see Figs. 8c
and 8d), which helps explaining lower IoU values. The
circular issue also arises for storage-tank, as shown in
Fig. 8e. A related behavior appears for categories plane
and helicopter, which leads to a roughly square SOBB
as shown in Figs. 8f and 8g, respectively. The orientation
of the SOBB is rather arbitrary, and it depends on the
shape of the aircraft. However, the AOBB presents a
semantic orientation related to the main axis of the airplane
or helicopter. At first glance, the relatively small IoU
values for swimming-pool was a surprise, since we
might think of rectangular shapes. However, there are
many irregularly-shaped pools in the dataset for which the
orientation is rather arbitrary, as shown in Fig. 8h.

Unlike the experiments with HBBs, we do not expect
a clear monotonic relationship between the IoU and the
smallest OBB dimension. As mentioned before, the IoU
discrepancies between SOBBs and AOBBs are caused by
other factors as well: human-centered biased when inde-
pendently annotating segmentation masks or OBBs, and the
ambiguity when generating OBBs from the segmentation
masks, particularly for irregular shapes without a clear ori-
entation, which is highly related to the object category).
Nevertheless, we show a per-category scatter plot of IOU
vs. smallest OBB dimension in Fig. 9, and note that some
categories, such as plane, yield low IoU values even in

larger OBBs. We can also note several samples from dif-
ferent categories that present low IoU values and a small
SOBB.

Finally, we evaluate the impact of annotation discrepan-
cies for OBB object detection based on APT metrics for
ideal and real object detectors. Table 3 shows that the AP
degradation for DOTA/iSAID is even more evident than
VOC and COCO for HBBs. For an ideal detector, there
was an almost 11% AP50 accuracy drop, and the APT val-
ues decay rapidly as the IoU threshold gets more restric-
tive, reaching 48.9% for AP75 and a mere 5.6% for AP95,
with an AP50:95 of 51.6%. We also explored two SOTA
OBB object detectors: OBB-adapted RetinaNet [28] and
R3 Det [29] with ResNet50 (R-50) backbone, both trained
with the AOBBs in DOTA validated with both AOBBs and
SOBBs. In the least restrictive scenario (AP50), there was
an accuracy drop of approximately 12% and 9% for Reti-
naNet and R3det, respectively. The accuracy drop becomes
even larger for tighter IoU thresholds, reaching 31% for
RetinaNet and 27% for R3det when the AP70 is considered.
We can also note that the best detector for a given APT value
varies depending on the chosen evaluation format. For ex-
ample, RetinaNet performs better than R3det in AP60 using
AHBBs, but the opposite happens when considering SOBB
annotations for the same AP level. In a nutshell, the ex-
periments with OBBs indicate that discrepancies between
direct OBB annotations and OBBs induced by segmenta-
tion masks are deeper than HBB annotations, affecting also
objects with a roughly circular shape.

5. Conclusions
This paper presented a critical analysis of popular

datasets for HBB and OBB object detection, namely
COCO, VOC, and DOTA/iSAID, aiming to check the con-
sistency of bounding box annotations and segmentation
masks and how discrepancies affect the IoU and AP met-
rics. COCO does not present a set of human-annotated
HBBs (AHBBs), and they are directly derived from the
polygons that represent the segmentation mask (SHBBs).
To emulate annotation errors, we simply rounded off the
floating-point coordinates of the SHBBs and showed that
even sub-pixel discrepancies between AHBBs and SHBBs
can lead to strong IoU degradations, particularly for small
objects. VOC presents independent sets of AHBBs and
segmentation masks, from which we extracted the bound-
ing boxes SHBBs. Our experiments indicate that AHBB
and SHBB discrepancies might be due to minor annota-
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(a) IoU = 0.96 (b) IoU = 0.97 (c) IoU = 0.33 (d) IoU = 0.69

(e) IoU = 0.71 (f) IoU = 0.57 (g) IoU = 0.61 (h) IoU = 0.61

Figure 8. Examples of OBB annotations (AOBBs) in DOTA (red) and the minimum enclosing rectangle related to the corresponding
segmentation mask (SOBB, in blue).

Detector AP50 AP55 AP60 AP65 AP70 AP75 AP80 AP85 AP90 AP95 AP50:95

Ideal 100.0 / 89.30 100.0 / 84.53 100.0 / 77.84 100.0 / 68.31 100.0 / 58.78 100.0 / 48.87 100.0 / 38.23 100.0 / 27.53 100.0 / 16.81 100.0 / 5.56 100.0 / 51.58
RetinaNet 82.20 / 70.62 81.58 / 66.04 80.57 / 58.13 78.54 / 51.00 75.12 / 44.37 66.99 / 36.25 55.00 / 26.65 37.11 / 16.18 16.40 / 7.74 2.78 / 0.95 57.62 / 37.79

R3det 79.90 / 70.77 79.05 / 65.68 77.47 / 58.32 74.89 / 51.19 69.27 / 42.81 59.90 / 34.16 45.56 / 24.41 27.82 / 14.84 9.96 / 5.82 0.58 / 0.30 52.44 / 36.83

Table 3. APT values (%) for a different object detectors in DOTA/iSAID trained with AOBBs and evaluated with AOBBs/SOBBs

Figure 9. Scatter plot showing the IoU between AOBB/SOBB
pairs vs. the smallest SOBB dimension for DOTA/iSAID.

tion inaccuracies but also to human-centric views on ex-
actly what is considered the object of interest. As expected,
AHBB/SHBB discrepancies were larger than COCO, and
so was the IoU degradation. Finally, we considered the
AOBB annotations in DOTA, and generated a set of cor-
responding segmentation-induced OBBs (SOBBs) from the
related dataset iSAID. We observed that AOBB/SOBB dis-
crepancies were even higher than HBB datasets, in part due
to human-centric views (as in VOC) but also due to the ori-
entation ambiguity in roughly circular or irregularly shaped
objects that lead to approximately square boxes with no
clear orientation.

We also performed experiments by using ideal or real
HBB and OBB object detectors that are trained using ei-
ther annotated boxes or segmentation-induced boxes, and
evaluated using both representations. We observed non-
neglectable degradation of the AP metrics in the cross-
representation experiments (i.e., training with one represen-
tation and evaluating with the other), particularly for tighter

IoU thresholds and smaller objects. Although the AP degra-
dation arises even in sub-pixel annotation discrepancies, as
shown in the experiments with COCO, it is more evident
when the discrepancies are larger (experiments with VOC)
and even stronger when OBB representations are used (ex-
periments with DOTA/iSAID).

Our results indicate that the blind use of IoU (which im-
pacts the widely adopted AP metrics) for comparing bound-
ing boxes is dangerous, and results might be strongly af-
fected by annotation errors or human-centric bias – partic-
ularly for small objects. As well-noted in [20], available
annotations are only approximations of the actual GT: re-
quiring tight adherence to these approximations measured
by the IoU might not necessarily mean tight adherence to
the actual and unfortunately unknown GT. Given that anno-
tation errors affect boxes differently according to their sizes,
one alternative for validating object detectors would be to
adjust the IoU acceptance threshold based on the individual
BB dimensions: more flexible thresholds could be used for
smaller boxes, and more restrictive ones for larger boxes.
We also suggest that new datasets provide annotations of
multiple humans for the same images, allowing a more re-
liable estimate of inter-annotator discrepancies and their ef-
fect on the IoU of different categories and object sizes.

6. Acknowledgments

We thank the financial support from Conselho Nacional
de Desenvolvimento Cientı́fico e Tecnológico (CNPq), and
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Su-
perior (CAPES) – Finance Code 001, Brazil. We also thank
the Google Cloud Research Credits Program.

4820



References
[1] Jia Deng. A large-scale hierarchical image database. Proc. of

IEEE Computer Vision and Pattern Recognition, 2009, 2009.
2

[2] Mark Everingham, SM Eslami, Luc Van Gool, Christo-
pher KI Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes challenge: A retrospective. Inter-
national journal of computer vision, 111(1):98–136, 2015. 5

[3] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer
vision, 88(2):303–338, 2010. 1

[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-
lenge. International Journal of Computer Vision, 88(2):303–
338, June 2010. 2, 3, 6

[5] Herbert Freeman and Ruth Shapira. Determining the
minimum-area encasing rectangle for an arbitrary closed
curve. Communications of the ACM, 18(7):409–413, 1975.
6

[6] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE conference on computer vision and pat-
tern recognition, pages 3354–3361. IEEE, 2012. 2

[7] David Hall, Feras Dayoub, John Skinner, Haoyang Zhang,
Dimity Miller, Peter Corke, Gustavo Carneiro, Anelia An-
gelova, and Niko Sünderhauf. Probabilistic object detec-
tion: Definition and evaluation. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 1031–1040, 2020. 3

[8] Vidit Jain and Erik Learned-Miller. Fddb: A benchmark for
face detection in unconstrained settings. Technical report. 1

[9] Dimosthenis Karatzas, Lluis Gomez-Bigorda, Anguelos
Nicolaou, Suman Ghosh, Andrew Bagdanov, Masakazu Iwa-
mura, Jiri Matas, Lukas Neumann, Vijay Ramaseshan Chan-
drasekhar, Shijian Lu, Faisal Shafait, Seiichi Uchida, and
Ernest Valveny. Icdar 2015 competition on robust reading.
In 2015 13th International Conference on Document Anal-
ysis and Recognition (ICDAR), pages 1156–1160, 2015. 1,
6

[10] Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–97,
1955. 5

[11] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 1, 2, 3, 4, 6

[12] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie
Chen, Xinwang Liu, and Matti Pietikäinen. Deep learning
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