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Abstract

Rendered images have been used to debug models, study
inductive biases, and understand transfer learning. To
scale up rendered datasets, we construct a pipeline with 40
classes of images including furniture and consumer prod-
ucts, backed by 48,716 distinct object models, 480 envi-
ronments, and 563 materials. We can easily vary dataset
diversity along four axes—object diversity, environment,
material, and camera angle, making the dataset “pro-
grammable”. Using this ability, we systematically study
how these axes of data characteristics influence pretrained
representations. We generate 21 datasets by reducing di-
versity along different axes, and study performance on five
downstream tasks. We find that reducing environment has
the biggest impact on performance and is harder to re-
cover after fine-tuning. We corroborate this by visualizing
the models’ representations, findings that models trained on
diverse environments learn more visually meaningful fea-
tures.

1. Introduction
Large datasets of naturally occurring images have been

critical for computer vision [3, 4, 17]. However, natural
data is limiting for some scientific questions, as researchers
cannot exert fine-grained control over specific aspects of
the image distribution (e.g. diversity of materials, lighting,
etc.). To address these limitations, researchers have used
rendered images to create controlled experiments, study-
ing inductive bias [31], model debugging [14], and transfer
learning [19].

Most rendered datasets constructed for these purposes
are small-to-medium scale, comprising either synthetic
shapes [31] or a limited collection of realistic shapes [14,
29]. Recently, Mishra et al. [19] constructed a pipeline
to generate large rendered datasets for pretraining, backed

by 2.3k object models and 140 materials. We complement
this work with a larger collection of realistic object models
and materials—48.7k models with 563 materials and 480
environments. Using optimized renderers, we produce a
system—A3D—that can generate a dataset of 200, 000 im-
ages in under a day on a small CPU cluster.

Object

Material

Environ-
ment

Camera

Figure 1. Axes of variation for A3D.

We first check that our rendered images are diverse and
realistic enough to be used for pretraining. We generate
a base dataset of 200k rendered images, and compare to
pretraining on 200k images from ImageNet. On average
across 5 downstream tasks, our rendered images provide
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Figure 2. The pipeline used for the experiments. In this example, the dataset is programmed to reduce half the object diversity, while
keeping the full diversity from material, environment and camera.

Dataset Name Objects Materials Envir. Classes
A3D (Ours) 48,716 563 480 40
Task2Sim [19] 2,322 500 — 237
3DB [14] 19 7 408 16

Table 1. An overview of the diversity of unique objects, materials,
environments, classes, and total number of images in A3D and
other synthetic image datasets.

85% of the performance boost that ImageNet does (rela-
tive to a randomly initialized model). This suggests that
rendered images induce meaningful learned representations
for pretrained models.

We then leverage the programmable nature of our dataset
to measure the effects of different training distributions on
the visual representations learned by neural network mod-
els. We render multiple training datasets with different data
distributions by reducing the data diversity along each axis:
object, environment, material, and camera angle. By train-
ing the same architecture on these different distributions,
we can isolate the effect that diversity along each axis has
on downstream task performance.

We compare our base dataset—which is maximally di-
verse along each axis of variation—to several less diverse
datasets that contain only a subset of camera angles, mate-
rials, environments, or object models. Unsurprisingly, mod-
els trained on these less diverse datasets generalize poorly
to the base distribution.

More surprisingly, training on less diverse data often
does not affect the usefulness of pretrained representations.
For instance, while removing camera angle variability re-
duces validation accuracy by over 30%, it reduces the av-
erage downstream task accuracy by less than 0.7%. The

main exception is environment diversity, which does affect
downstream task performance.

To further investigate these findings, we visualize the
learned representations of each model. While most mod-
els produce similar visualizations, those trained on un-
diverse environments differ and are typically less seman-
tically meaningful. Together, our findings illustrate the
advantage of programmable datasets—by creating well-
controlled experiments, we can better understand important
phenomena such as the role of data in pretraining.

To summarize, 1) we developed a programmable
pipeline for generating high quality rendered images that
can be used for pretraining; 2) we generated large datasets
of rendered images with rich data on object diversity, mate-
rials, environments and camera angles; and 3) we system-
atically studied how these characteristics affect model be-
havior. Beyond our current study, programmable datasets
are a promising approach to study other scientific topics in
machine learning, such as how the training data affects out-
of-distribution generalization or reliance on spurious cues.

2. Related Work

Representation learning. Usually operationalized as “pre-
train then fine-tune”, representation learning has driven sig-
nificant progress in deep learning. To improve our under-
standing of pretraining, recent work has focused on quan-
tifying dataset quality and diversity, its effect on learned
representations, and the importance of certain dataset fea-
tures for specific tasks [10,26,30]. Most previous work uses
naturally occurring data and is therefore only able to vary
the number of classes and overall dataset size (since fine-
grained attributes like texture are not annotated). Hendrycks
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et al. construct a natural image dataset annotated with cam-
era angle and other metadata, but use it to study OOD ro-
bustness rather than pretraining [8]. The most closely re-
lated work is Mishra et al. [19], who also use synthetic data
to study pretraining. Our work mainly differs by provid-
ing more diverse objects and materials, and systematically
studying the effect of these on the learned representations.

Synthetic image datasets and pipelines. Given that
large image datasets are costly to collect, synthetic image
pipelines have proven to be a useful alternative for various
computer vision tasks, and several frameworks for photo-
realistic scene synthesis and multi-modal physical simula-
tion have been developed [6,16,29]. Prior work has created
large-scale datasets of indoor scenes, by taking 3D models
of furniture and varying their location within room environ-
ments [15,18,25]. Our work expands the availability of pho-
torealistic images by introducing new classes beyond furni-
ture (such as consumer products and vehicles), and utilizing
more diverse and numerous environments and textures.

Probing model behavior with synthetic images. Re-
searchers have exploited synthetic image pipelines to ex-
ert fine-grained control over image attributes such as back-
grounds, lighting, textures, etc. [14, 19]. Prior work has
shown that models trained on real images are often biased
towards some specific image cues, such as textures, colors,
and object pose [1, 7]. These biases have been used to con-
struct adversarial attacks on models [5, 11]. Among these,
our work is the first to systematically study the effect of
fine-grained attributes such as materials, object models, and
environments on pretrained representations1.

3. A3D: Data Collection and Rendering

In this section, we walk through the A3D rendering
pipeline and the data sources for our experiments.

3.1. Rendering

The A3D renderer is based on an unbiased physically-
based path tracing CPU renderer [24]. It can be deployed
in the cloud, allowing us to easily scale up the generation
of large synthetic image datasets. A3D produces an image
from 3D objects in mesh formats with specified physically
based materials, lighting environments, and camera angles.
We describe each axis further below.

Objects models. Similar to other rendering pipelines, our
3D object models are represented as polygonal meshes. We
use 48,716 objects in 40 classes from ShapeNet. The mod-
els are preprocessed to avoid artifacts as described in Sec-
tion 3.2. The full list of classes and total number of objects
in each class can be found in supplemental materials.

1In principal, it should be possible to study this with the pipeline in
[19], but they do not appear to do so.

Materials. We curated a large library of physically-based
material presets, commonly used in industry products such
as Autodesk Fusion 360 and Revit. The material library
consists of 563 materials across the categories of metal,
wood, plastic, stone, fabric, glass and paint, suitable for the
object classes in ShapeNet.

Environments. We use a collection of 480 high dynamic
range environment map images from Poly Haven (poly-
haven.com). The environments include diverse indoor and
outdoor backgrounds as well as different lighting condi-
tions.

Cameras. We set a fixed distance from the camera to the
object and center the object. The renderer supports changes
of camera azimuth angles.

3.2. Source of Objects and Mesh Repair

Our 3D object models come from ShapeNet core v.2 [2].
We chose this dataset as it has a large number of realistic
3D models, representing many different classes of objects,
aligned to have the same orientation. Out of 56 classes
in ShapeNet Core v.2, we selected the 40 most numerous
classes to use in our experiments. These include models
of various man-made objects, such as furniture (chairs, ta-
ble, sofas, etc.), consumer products (clocks, bottles, laptops,
etc.), and vehicles (trains, airplanes, motorcycles, etc.). In
total, we use 48,716 different object models.

ShapeNet is curated from public online repositories and
existing research datasets. As such, many of the 3D models
in the dataset violate simple physics (manifold constraints,
etc) and cannot be properly rendered with path tracing en-
gines. Some models do not have the current physical dimen-
sions, which creates additional challenges when adding ma-
terials as many materials depend on the scale of the object.
The following section discusses in more detail the process
used to address the above issues.

Mesh Repair. The original ShapeNet meshes are not suit-
able for physically-based rendering as they have flipped
triangles, overlapping triangles, non-manifold edges, and
other common issues with mesh models. Using the meshes
as provided results in broken renderings, as shown in Fig-
ure 3a. These issues are not specific to ShapeNet and affect
other datasets as well [28].

To fix these mesh issues, we process all meshes with
ManifoldPlus, a tool for generating clean surface meshes
[9]. ManifoldPlus uses a voxelization approach that fixes
all aforementioned issues, as shown in Figure 3b. This mesh
repair step alters object geometry in some minor ways, es-
pecially in areas with sharp corners, but the changes are
generally not visible in the final rendering. To address the
issue of missing units of measurement, we normalize the
scale of all models to a 1m cube. This ensures that rendered
textures do not contain unpredictable artifacts and remain
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(a) Original ShapeNet meshes

(b) Fixed meshes

Figure 3. Example renderings made using the original ShapeNet
meshes (a), compared to the same meshes rendered after mesh re-
pair (b).

(a) Original (b) Scaled

Figure 4. Example renderings showing a mesh with no scaling
factor (a), compared to the same mesh rendered after scaling (b),
which accentuates the texture of the wooden material.

within a reasonable scale range. The effect of this scaling is
shown in Figure 4.

4. Programmable Datasets
A key advantage of rendered data is that we can flexibly

control the data distribution by exploiting metadata infor-
mation. To showcase these advantages, we generated a base
training set and validation set with full variation, as well as
4 sets subsampling along each of the four axes of variation,
and 1 singleton set.

4.1. Axes of Variation

We defined four axes of variation for our dataset, corre-
sponding to the four main rendering parameters consumed
by the A3D pipeline: camera (azimuth) angle, material, en-
vironment, and object model. By controlling the range of
these four axes we can programmatically render datasets
with varying levels of diversity. We first set aside 10% of
the models in each class for use in the validation set, which
is sampled according to the same distribution as the base
training set. We then construct a base training set and mul-

tiple subsampled training sets as described below.

4.2. Base Training Set and Validation Set

The base training set samples from the full range of val-
ues across all four axes: -90◦ to 90◦ for camera angles, all
563 materials across 7 categories (see Section 3.1 for de-
tails), all 480 environments, and all 48, 716 models. This
allows for billions of possible combinations, from which
we sample 5000 from each of the 40 classes. The training
set contains 200, 000 images in total.

The validation set is sampled separately from the same
distribution as the base training set, with 500 images from
each class, and 20, 000 in total.

4.3. Subsampled Training Sets

To study the influence of the four axes of variation, we
created 20 subsampled training distributions, each also con-
taining 200, 000 rendered images. We create each dataset
by reducing the range of eligible values in one particular
axis down to 1

2 , 1
4 , 1

8 , 1
16 and single. We subsample hierar-

chically, so the environments in the 1
4 -environment condi-

tion are a strict subset of those in the 1
2 -environment condi-

tion. The specific subsampled distributions are as follows:

Object models. Object models are sampled uniformly at
random in each class. For example, the table class has
8, 436 object models. The base training set samples uni-
formly among 8, 436 objects. The 1

2 -object training set
randomly chooses 4, 218 objects, and uniformly samples
among them. The other axes (materials, environments, and
camera angles) are sampled the same way as in the base
training set.

Material. To generate a material, we first choose a category
uniformly at random, then select a material within that cat-
egory. Each subsampled datasets contains all 7 categories
of materials (fabric, glass, metal, paint, plastic, stone, and
wood), but subsamples materials within each category by a
factor 2, 4, 8, or 16.

Environment. We subsample the full set of environments
by factors of either 2, 4, 8, or 16.

Camera angles. Camera angles are uniformly sam-
pled from the range −(90/N)◦ to (90/N)◦, for N ∈
{2, 4, 8, 16}.

4.4. Singleton Training Sets

In addition to subsampling, we consider a more extreme
restriction where an axis is fixed to a single value. For cam-
era, the angle is fixed at 0◦. The single environment is fixed
to kloppenheim from Poly Haven, a field with the sky dur-
ing the day. The material is light gray plastic. The single
object training set uses one object from each class for ren-
dering.
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Dataset Train Test Classes
CIFAR-10 [13] 50000 10000 10
CIFAR-100 [13] 50000 10000 100
Pets [23] 3680 3669 37
Flowers [20] 1020 6149 102
Birds [27] 5994 5794 200

Table 2. The number of classes and images in the train and test
splits of the datasets used for fine-tuning.

5. Data Characteristics and Model Behavior
In this section, we design experiments to study how dif-

ferent data dimensions influence the model behavior after
pretraining and fine-tuning. We then visualize different
models and discuss the results.

5.1. Experiments

As described in Section 4, we use our pipeline to render
the base training set, 16 subsampled training sets along the
four axes of variations, object, material, environment and
camera angle, and 4 singleton training sets. Each training
set contains 200, 000 images and 40 classes.

Pretraining. We pretrain a ResNet-50 and ResNet-18 on
each of these 21 datasets for the task of image classifica-
tion. For comparison, we also pretrain on a 200, 000-image
subset of ImageNet, and also construct an untrained, ran-
domly initialized network. These serve as upper and lower
bounds, respectively, for the performance of models trained
on our rendered images. All models are trained for 100
epochs with standard data augmentation at 224×224 px and
a cosine learning rate schedule using SGD with momen-
tum. We also compute validation accuracy, as measured on
our 20, 000-image validation set. This helps benchmark the
severity of different subsampled data distributions.

Fine-tuning. To evaluate our models’ representations, we
select five downstream tasks for evaluation: CIFAR-10 [13],
CIFAR-100 [13], Oxford Pets [23], Oxford Flowers [20],
and Caltech-UCSD Birds 2011 [27]. Table 2 shows the
number of classes, as well as the number of images used
for training and testing during fine-tuning. For compari-
son, we also fine-tuned on 2% of the A3D base training set
(4000 images), which is similar in size to the Birds, Pets and
Flowers training sets. For the downstream tasks, we train all
models by sweeping over learning rates of {0.1, 0.3} and
weight decays of {5e-4, 1e-3}, and report the best result.

5.2. Model Performance

Performance gain from pretraining. Among the five
downstream tasks, on Pets, Birds and Flowers, we see a
significant improvement of performance due to pretraining.
Training ResNet-50 from scratch with random initialization
gives 48.2% accuracy on average for the three datasets. Us-
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Figure 5. ResNet-50 results, showing how accuracy is most af-
fected by reduction of environment diversity.

ing a network pretrained on the A3D base set improves per-
formance by 30%, less than a 5% difference from pretaining
on ImageNet-200K, which contains 1,000 classes and (un-
like A3D) includes classes of pets, birds and flowers. See
Table 3 for detailed numbers.

On CIFAR-10 and CIFAR-100, for all models we ob-
serve only limited differences between the randomly ini-
tialized network and pretrained ones. This may be because
the CIFAR training sets are large compared to Birds, Flow-
ers, and Pets, so benefit less from the inductive bias of pre-
training (though the inductive bias should still help in the
limit [12]).
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Figure 6. ResNet-18 results, showing how accuracy is most af-
fected by reduction of environment diversity.

Effect of diversity. Along the object model, material and
camera angle axes, reducing diversity has little effect (< 1%
drop in average accuracy) even when we consider the most
restricted subsampled training sets (see Figure 5). The ex-
ception is environment diversity, where we observe a 3%
drop in average accuracy (across Pets, Flowers, and Birds)
as we reduce environment diversity seen during pretrain-
ing. The reduction is consistent across these three tasks,
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Train Data Val A3D Pets Flowers Birds C-10 C-100
Random — — 54.1 50.1 40.5 95.0 78.9
IN-200K — — 84.0 90.3 76.1 95.7 79.8
A3D Base full 83.2 — 81.7 87.7 69.4 95.5 79.7
Camera 1/2 73.5 79.9 81.7 87.7 69.1 95.4 79.6

1/4 61.8 78.1 82.7 87.1 67.8 95.3 79.9
1/8 54.2 76.5 82.7 87.0 68.2 95.5 79.7
1/16 50.5 75.6 82.0 86.9 68.8 95.4 79.7
single 46.8 75.1 82.5 87.2 68.0 95.4 79.7

Material 1/2 83.4 83.3 83.1 87.8 69.7 95.4 79.6
1/4 82.9 83.0 82.4 88.2 69.2 95.7 79.8
1/8 82.2 83.0 82.2 88.4 68.6 95.3 79.6
1/16 79.9 82.2 81.8 87.9 68.8 95.4 79.6
single 71.5 79.0 81.3 86.0 68.8 95.2 79.5

Environment 1/2 82.9 82.5 82.1 86.7 68.9 95.2 79.9
1/4 82.2 82.8 80.9 88.3 68.0 95.4 79.7
1/8 67.4 74.3 79.4 84.8 65.9 95.5 80.1
1/16 53.3 75.6 77.2 84.1 65.0 95.2 79.8
single 20.4 71.6 79.3 82.2 66.6 95.0 79.8

Object 1/2 81.6 81.6 82.0 86.7 70.0 95.6 79.8
1/4 79.2 79.6 81.6 86.7 69.9 95.4 79.9
1/8 75.4 79.6 81.5 86.8 68.6 95.2 79.3
1/16 70.7 78.8 82.1 86.6 69.0 95.4 79.7
single 46.9 74.3 82.3 86.7 68.0 95.5 79.9

Table 3. ResNet-50 Performance. The Val column reports accu-
racy of the pretrained model on the A3D base validation set. Other
columns report fine-tuning performance.
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Figure 7. Model performance decreases as reducing environments.
Different tasks have different sensitivity to environment reduction.

and the Flowers task is most sensitive: accuracy decreases
from 87.7% to 82.2% (See Figure 7 for details).

Comparison on A3D Base. Despite the small changes in
fine-tuned model performance, the pretrained models be-
have differently—the ‘Val’ column in Table 3 shows that
the base validation accuracy drops significantly when we
decrease diversity along any axis, with environments again
having the largest effect.

As a further check, we fine-tune our pre-trained models
on the full A3D base distribution and find that this signif-
icantly reduces the observed drop in most cases, but does
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Figure 8. Model performance on A3D validation set after fine-
tuning with a subset of A3D Base.

not always remove it. After fine-tuning, material reduction
influences the performance the least, and environment re-
duction influences the performance the most (see Figure 8).
With 1

8 of the environments, performance decreases close
to 10%. In comparison, 1

8 of materials and camera angles
have nearly no influence on accuracy, and 1

8 of objects has
a difference of less than 4%.

BirdBird Flowers Piano Jeep Car

Figure 9. Five evaluation images for model visualization.

5.3. Model Visualization

To further investigate how models are influenced by the
reduction of data diversity along each axis, we use model
visualization based on Olah et al. [21, 22] to build intuition
for what is happening inside the models. We use the Lucent
library, a PyTorch adaption of Lucid [22], for visualization.
We evaluated different pretrained ResNet-50 models before
and after fine-tuning on Pets on 5 unseen images (Figure 9).
We select 6 different positions (layers) in ResNet-50 for
evaluation. Half of the positions are after convolutional lay-
ers and half are after residual connections. We find consis-
tent results across different images, so in the figures below,
we use the bird picture as the main one to demonstrate how
the network changes after fine-tuning and after reduction
of data diversity along different axes. Due to the limits of
pages, we choose one convolution layer in Stage 2 and one
after residual connection position in Stage 3 to demonstrate
the results. More visualization examples can be found in
supplemental materials. The full set of results can be ex-
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Figure 10. Visualizing how model features change with material reduction.

plored as an online app 2.

A3D and ImageNet-200K. We compared the models
trained on ImageNet-200K and A3D Base before and after
fine-tuning (Figure 10). Before fine-tuning (see the “pre-
train” rows of images in Figure 10), a visual difference be-
tween ImageNet and A3D Base can be seen. In the earlier
convolutional layer (Stage 2, Block 1, Conv 2 Layer), the
bird cannot be distinguished from the background, whereas
after the residual connection (Stage 3, Block 1, After resid-
ual connection), the model trained on A3D can distinguish
the foreground, but cannot pick up animal features, such
as feathers or eyes, which are instead present in the Ima-
geNet model visualization. This is likely due to A3D having
fewer classes than ImageNet-200K, and lacking any animal
classes. After fine-tuning (see the “finetune” rows of im-
ages in Figure 10), the visualization from the A3D model
becomes significantly more similar to ImageNet-200K, es-
pecially for the later layers.

Material Reduction. The reduction of materials result
in significant visual differences on pretrained models, al-
though these differences become unnoticeable after fine-
tuning. Taking the single material model as an example

2https://github.com/whyzcandy/a3d/

(Figure 11), before fine-tuning, the model produces dotted
patterns with the same size across the visualization. After
fine-tuning, the dotted patterns disappear and instead, we
see curves and lines present also in models with more ma-
terials (Figure 10). This is consistent with what we find in
model performance (Section 5.2) – the reduction of materi-
als does not have significant impact on model performance
if the model is then fine-tuned on other data.

Environment Reduction. The models trained on diverse
environments learn more visually meaningful features. Af-
ter reducing environment diversity to 1

8 , we observe signif-
icant visual differences before and after fine-tuning (Fig-
ure 12). Once again we observe that the earlier convolu-
tional layers suffer more from reduction in diversity com-
pared to later layers.

6. Limitations and Future Work

We only visually inspect the model visualization results
with our current approach. Future efforts can increase the
total number of evaluation images and quantify the visual-
ization differences as in previous work [21].

The axes of variation in A3D could be extended. For
materials, A3D currently only supports assigning a single
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pretrain finetune
Evaluation 

image

Figure 11. Comparing single material models before and af-
ter fine-tuning after residual connections in Block 1, Stage 3 of
ResNet-50.

Stage 2, Block 1

Conv 2 Layer

pretrain

finetune

pretrain

finetune

Stage 3, Block 1

After residual conneciton

A3D full  1/8 env 1/16 env single env

Figure 12. Visualizing how model features change with environ-
ment reduction.

material per object due to the complexity of segmenting
and processing the 3D meshes. In the future, modifying
materials for individual components could increase mate-

rial diversity. For cameras, the camera manipulation could
be extended beyond azimuth angles and fixed distance. For
environments, lighting and backgrounds could be separated
to have finer-grained control over the datasets.

7. Conclusion
In this work, we develop the A3D pipeline for generating

large programmable datasets with specific object, material,
environment, and camera diversity. Using several unique
datasets generated with the pipeline, we study how data
diversity along four axes influenced pretrained representa-
tions. As an outcome, we find that the models trained on di-
verse environments learn more visually meaningful features
than the models with diverse materials, objects or camera
angles, pointing to the importance of environments for tasks
that require synthetic image generation.
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