
What’s in a Caption? Visual Description Linguistic Patterns and Their Effects
on Models and Metrics

Supplementary Material

A. Datasets
We investigate four primary datasets in this work. An

overview of the datasets is given in Table S1.

MSR-VTT: The MSR-VTT (MSR Video to Text)
[XMYR16] dataset is a medium-scale open domain bench-
mark for visual description. It was originally collected us-
ing 257 YouTube search queries across 20 categories, with
118 videos collected for each query (41.2 Hours). The
dataset is annotated with 20 captions per video by 1,327
Amazon Mechanical Turk workers. Each video has a du-
ration between 10 and 30 seconds, with an average of two
shots per clip.

VATEX: The VATEX dataset [WWC+19] is a medium-
scale open domain video description benchmark, based on
a subset of the Kinetics-600 dataset for action recognition.
VATEX consists of 41,269 video clips, and each clip is an-
notated with 10 unique descriptive captions by 2,159 Ama-
zon Mechanical Turk workers.

MSVD: The MSVD (Microsoft Video Description)
dataset [CD11] is a small-scale open domain benchmark for
video description comprised of 1,970 YouTube clips of 4-
10 seconds each, collected by asking Amazon Mechanical
Turk workers to link a video, start time, and end time from
YouTube that depicts a specific, short action. Each video is
then annotated with an average of 41 ground truth descrip-
tions by 835 Amazon Mechanical Turk workers.

MSCOCO: The Microsoft Common Objects in Con-
text (MS-COCO) [LMB+14] dataset is a large-scale
open-domain benchmark for image description. MS-
COCO consists of more than 120,000 images of complex
scenes including people, animals, and common objects.
Each image is annotated with five ground truth descriptions.

B. Experimental Details
In this section, we present detailed experimental details

corresponding to our experiments. Along with these exper-
imental details, we make the code for our work available at
https://github.com/CannyLab/vdtk. Note that
numbers may differ slightly between the released code, and
our presented experiments due to the tokenization scheme.
For our released code, we use the Spacy3 tokenizer to com-
pute all metrics, as it is significantly more efficient in prac-

3https://spacy.io/

tice than the Stanford tokenizer4, however for academic pur-
poses, we compute the metrics with the Stanford tokenizer
to avoid tokenization shift. In most cases, the difference in
the metrics between tokenization methods is negligible (or
very small).

B.1. Motivation: Leave One Out Ground Truth Per-
formance

To generate an estimate of human performance on the
selected datasets, we use a procedure called “leave one
out” performance. Let a dataset D be composed of N
samples S0 . . . SN . For each sample Si, there may be
Ki possible reference captions, Ci

0 . . . C
i
Ki

. In order to
compute the leave one out performance of human sam-
ples for the dataset, we first select a hypothesis caption
Hi 2 {Ci

0 . . . C
i
Ki

}. We then compute the updated refer-
ence set Ri = {Ci

0 . . . C
i
Ki

}/{Hi}. In the case that Hi is
duplicated within Ri, we allow the duplicate to remain to
maximize the possible human score. In the case that there
is only one (or fewer) captions for a video, we drop those
captions from the computation. We then use the reference
sets R0 . . . RN and hypotheses H0 . . . HN to compute the
“leave-one-out” score for the dataset. Clearly, this is an es-
timate of the ground truth performance, as it is a random
sample of the possible “leave-one-out” hypotheses sets.
Because some of the metrics (particularly CIDEr) are

dataset dependent, it would be intractable to compute all
possible hypotheses sets. Instead of computing all possible
hypotheses sets, we perform 750 iterations of this sampling
procedure and use the mean of the iterations to achieve our
final “leave-one-out” estimates presented in the paper. We
found empirically that 750 iterations were sufficient across
all of the datasets to achieve a stable mean. The raw values
of the “leave-one-out” estimates are presented in Table S2,
alongside the state of the art results.

B.2. Motivation: Semantically Masked Leave One
Out performance

To test the performance of ground truths without semantic
information, we devised an experiment based on the leave-
one-out experiments above, however, focused on removing
semantic information. To compute this value, we select hy-
potheses as in subsection B.1, however for both the cap-
tions in the reference and the captions in the ground truth,
we replace any token identified by the Spacy part of speech

4https://nlp.stanford.edu/software/tokenizer.
html
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Dataset Domain Categories Videos Avg. Length Length (hrs) Annotations / Video Annotation Method

MSR-VTT open 20 10K 20s 41.2 20 AMT
VATEX open 600 42K - - 10 AMT
MSVD open 218 1970 10s 41 35.5 AMT

MS-COCO open - 120K - - 5 AMT

Table S1. An overview of the datasets that we analyze in this paper. All of the datasets are open-domain, with a focus on video description.
Additionally, each of the datasets include more than one ground truth description per video, which we use to validate the performance of
ground truth data, without collecting additional human results. Notably, all of these methods use AMT as their annotation method.

Dataset BLEU@4 METEOR ROUGE CIDEr

MSVD 0.453 (0.644) 0.370 (0.419) 0.689 (0.795) 1.038 (1.115)

MSR-VTT 0.209 (0.472) 0.247 (0.312) 0.487 (0.648) 0.426 (0.600)

VATEX 0.234 (0.342) 0.249 (0.235) 0.478 (0.503) 0.611 (0.576)

MS-COCO 0.152 (0.410) 0.228 (0.311) 0.438 (0.609) 0.788 (1.409)

Table S2. Raw leave-one-out score estimates for each of the
datasets (SOTA in parentheses).

Dataset BLEU@4 METEOR ROUGE CIDEr

MSVD 0.289 (0.453) 0.097 (0.370) 0.442 (0.689) 0.502 (1.038)

MSR-VTT 0.123 (0.209) 0.085 (0.247) 0.387 (0.487) 0.327 (0.426)

VATEX 0.132 (0.234) 0.201 (0.249) 0.391 (0.478) 0.511 (0.611)

MS-COCO 0.079 (0.152) 0.198 (0.228) 0.396 (0.438) 0.684 (0.788)

Table S3. Raw leave-one-out score estimates under semantic
masking for each of the datasets (Non-masked in parentheses).

analysis as a noun, proper noun, or verb with a unique mask
token. This means that this unique mask token will achieve
a 0 in any associated token-based metric, as it will not match
any semantic token in the ground truth. Table Table S3 gives
the full performance on each of the datasets in the masked
setup.

B.3. Caption Diversity: Token Metrics
In this work, we compute several metrics based on token-

level diversity, demonstrated in Table 1 from the main pa-
per. The number of unique tokens is equal to the num-
ber of tokens in the dataset as computed by the Stanford
PTB tokenizer. This number does not do any lemmatizing
or stemming, thus, is an upper bound for the vocabulary
complexity. We then compute three additional metrics, the
within-sample uniqueness, the between-sample uniqueness,
and the 90% head of the vocabulary. The within-sample
uniqueness corresponds to the percentage of tokens that are
unique within a sample - i.e. the percentage of tokens that
appear exactly once among the references for any particu-
lar image or video. We then average this number over all
of the samples to get the number presented in Table 1. The
between-sample uniqueness is a measure of the percentage
of tokens in each sample that are unique at the dataset level,
i.e. the percentage of tokens among the tokens in the refer-

Dataset Unique BS-Unique WS-Unique Head

MSVD 9455 1.21% 11.8% 944
MSR-VTT 22780 0.76% 21.55% 1636
VATEX 31364 0.33 % 24.87% 1363
MS-COCO 35341 0.22% 33.76% 824

Table S4. Vocabulary metrics for each of the datasets. Unique:
The number of unique tokens. BS-Unique: Average percent of to-
kens per description that are unique. WS-Unique: Average percent
of of tokens that are unique within a sample. Head: The number
of unique tokens comprising 90% of the total tokens.

ence set of a single sample that do not appear in any other
caption in the dataset. These per-sample numbers are then
averaged across the dataset to get the number presented in
Table S4. Finally, the 90% head corresponds to the number
of tokens that make up 90% of the mass of the total number
of tokens in the dataset. This is an approximate measure
of how long-tailed the distribution is. The 90% number
is selected empirically (further analysis could look at the
full cumulative distribution of the token counts). Table S4
replicates Table 1 from the main paper, however includes
between-sample token uniqueness.
We also compute many of the same metrics restricted to

counting nouns and verbs (as identified by the Spacy POS
tagger). Each of the above metrics is computed the same
way, however instead of considering all tokens, we consider
only tokens that are tagged as either nouns or verbs during
the computation of the metrics. Table S5 demonstrates the
full results of this experiment, plus an additional metric: the
average number of tokens per caption which also appears in
Table 2 in the main paper.

B.4. Caption Diversity: N-Gram Metrics
To explore the diversity of samples at an n-gram level, we

introduce two novel metrics, the Expected Vocab Size @
N (EVS@N), and the Expected Number of Decisions @ N
(ED@N). Both of these metrics measure the diversity of the
language at an n-gram level by exploring the properties of
an n-gram language model trained on the dataset. In this
section, we discuss the explicit definition of these metrics.
For all n-grams, we use an n-gram language model based
on tokens extracted with the Stanford PTB tokenizer. In all



Dataset WSNU BSNU WSVU BSVU NC VC NH VH NPC VPC TPC

MSVD 12.6% 1.9% 14.8% 1.5% 4985 1773 755 229 2.39 1.10 7.03
MSR-VTT 23.1% 1.2% 29.4% 0.8% 12697 3639 1512 293 3.28 1.32 9.32
VATEX 26.9% 0.67% 35.7% 0.3% 16670 4975 1161 338 4.37 2.10 15.29
MS-COCO 34.9% 0.41% 55.8% 0.2% 20155 4200 723 184 3.71 1.02 11.33

Table S5. Part of speech distributions for each of the datasets. DS: Dataset. WSNU: Within sample noun uniqueness. BSNU: Between
sample noun uniqueness. WSVU: Within sample verb uniqueness. BSVU: Between sample verb uniqueness. NC: Unique noun count.
VC: Unique verb count. NH: Noun head (90% of mass). V: Verb Head (90% of mass). VPC: Average number of verbs per caption. NPC:
Average number of nouns per caption. TPC: Average number of tokens per caption.

cases, we pad the references with [BOS] and [EOS] to-
kens to allow the model to handle the beginning and end
of the sequences. For WikiText-103, we create individual
reference sentences by splitting on ‘.‘ tokens, and pad each
of these references individually with [BOS] and [EOS] to-
kens.

B.4.1 Expected Vocab Size @ N

The EVS@N metric is a measure of how many n-grams do

not act as 1-grams in practice in the dataset. This measure
is computed by looking at the entropy of the next-token dis-
tribution of an n-gram language model. For a sequence
of words w0, . . . wn�1, we first compute the distribution
P (wn|w0, . . . , wn�1). If this distribution has 0 entropy (i.e.
it assigns all of the probability mass to a single next token),
then we consider this n-gram a “static n-gram”. If the en-
tropy is non-zero, then we consider it a “dynamic n-gram”.
The EVS@N can then be computed as the proportion of dy-
namic n-grams

EVS@N =
|dynamic n-grams|

|static n-grams|+ |dynamic n-grams|

This measures a set of effective n-grams in the data (i.e. the
size of the n-gram vocab), as it coalesces n-grams where no
decisions are made into a single logical unit.

B.4.2 Expected Decisions @ N

The ED@N metric is a measure of how many decisions an
n-gram language model has to make for a sequence of N
tokens. ED@N is a counting measure of the EVS@N - i.e.
how many dynamic n-grams are expected in a sequence of
length n. For a K � gram language model, this measure is
explicitly computed as:

ED@N = 1 +
N�1X

i=1

(1� EV S@K)(0) + (EV S@K)(1)

In this work, for the first token we use a 2-gram language
model (K = 2), for the second token we use a 3-gram lan-
guage model (K = 3), and for any additional tokens, we
use a 4-gram language model (K = 4).

B.5. Sample Diversity: Within Sample Diversity

We use several techniques to measure the within-sample
semantic diversity of the data. In all of these cases, the no-
tion of semantics is somewhat subjective. In this work, we
use a BERT-style embedding trained for sentence similarity,
called MP-Net [STQ+20] to embed each reference descrip-
tion as a 384-dimensional vector. We leverage the imple-
mentation in Sentence Transformers5, which is pre-trained
on over 1 billion sentence pairs.
Figure 2 measures the minimum within-sample distances,

i.e. it looks for the closest pair of references in each sample,
and plots the distance between them. Thus, for a dataset
of length N with a set of samples S0 . . . SN and captions
S0
i . . . S

Ki
i , this histogram plots the distribution over all de-

scriptions of
Hij = min

k 6=n
||Sk

i � Sj
i ||

In order to avoid obvious issues with repetition in the se-
mantics, we use only the unique set of captions in a sample,
as opposed to allowing for duplicates, which would force
Hi to zero for any sample with repeated captions (actually
exaggerating the effect in Figure 2. We don’t allow this
in order to avoid biasing our experiments to datasets such
as VATEX, which explicitly remove exact duplicates. Close
duplicates are not affected, as can clearly be seen by MSVD,
which contains a lot of semantic redundancy. Note that this
is a distribution over all references (as opposed to samples).
Another method of measuring semantic diversity is by

looking at the spread of the semantics in the sample. While
we use the literal variance of the within-sample pairwise
distance distribution in Figure 3, we can also look at other
measures of spread. Figure S1 demonstrates the differ-
ence (as a percent of the mean) between the mean of the
inter-sample distances and the closest inter-sample distance.
When this percentage is high, the descriptions are relatively
spread out for a sample, with clusters of descriptions that are
close together in semantic space. If the percentage is low,
the descriptions for a sample are well-distributed (mostly
equidistant) in the semantic space.

5https://huggingface.co/sentence-transformers/
all-mpnet-base-v2
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Figure S1. Plot demonstrates the difference between the closest
semantic vector, and the mean of the semantic vectors. In all cases,
the mean will always be further than the closest sample, however,
a low delta suggests a more equal spread of references, while a
high delta represents highly redundant samples.

Figure S2. Violin plot demonstrating the distribution of caption
novelty - i.e. how many captions in each sample are not exact
matches in the text space. As we can see, while the vast majority
of captions are novel in some datasets, in datasets like MSVD,
there some samples which have high exact redundancy.

Figure S2 gives a general overview for the video de-
scription datasets of the exact-duplicate distribution of
the descriptions. While most of the samples have high
within-sample uniqueness, there are some samples that are
highly redundant (and in the case of MSVD, have exact-
redundancy of as much as ⇠ 50%.

B.6. Dataset Diversity: Number of Ground Truths
To investigate how the number of ground truth metrics im-

pacts the computation of the metrics, we performed several
leave one out experiments as in subsection B.1 where we
restricted the size of Ri for each sample to a certain number
of references r by randomly sampling r elements without

replacement from the original reference set. This allows us
to measure the approximate performance of the methods if
the number of ground truths was reduced. The results of
this experiment are given in Figure S3. We can see from
Figure S3 that except for CIDEr, increasing the number of
ground truths increases the leave one out performance of
the metrics. In fact, we can see that in most cases, the per-
formance is nowhere near saturated, and collecting more
ground truths will allow metrics to better capture the se-
mantic variance of a scene. The standout among the group
is CIDEr, in which the score does not increase as we in-
crease the number of ground truths. This is primarily due to
the IDF component of the CIDEr score, which penalizes in-
creasing the number of tokens harshly. We can see that here,
as we increase the number of ground truths, the CIDEr score
decreases! This suggests that CIDEr is relatively robust to
adding more ground truth, however cannot capture as much
semantic variance as the other metrics, as the CIDEr score
does not materially account for new information from the
ground truth samples.

B.7. Concept-Diversity: Captions Required for
BLEU Score

One of the key experiments we perform is designed to mea-
sure the minimum number of captions from the training set
that are required to “solve” the test set of the dataset for a
particular BLEU score. We first compute a set of all hy-
pothesis descriptions from the training set. Then, for each
sample in the test set, we compute the BLEU@4 score us-
ing that hypothesis for every sample in the test set. In
the case of large datasets such as MS-COCO, which con-
tains 591, 435 unique hypothesis captions, this can be time-
consuming, even for the (relatively quick) BLEU@4 met-
rics. Each hypothesis thus has a score for each sample in
the test dataset. Finding the minimal core-set of captions
that covers this test dataset to a specified BLEU threshold
is a weighted set-cover problem, which can be solved to an
O(logN) approximation with a randomized rounding algo-
rithm [Vaz01], however, we found that it was sufficient to
use the greedy approximation algorithm for set cover, which
selects the caption which covers the largest number of new
samples at each iteration. Thus, the results in Figure 5 pro-
vide an upper bound on the possible number of captions
required.
Figure 5 plots the required number of captions to achieve

a BLEU@4 score of X (the value on the X-axis) on every
sample. Note that this requirement is more restrictive than
the plotted SOTA scores, which achieve a mean of X . Thus,
the effect of this figure may be even more dramatic than is
pictured. The reason for this discrepancy is we compute the
core-set using a greedy set cover, and due to our implemen-
tation details, it is difficult to terminate the cover efficiently
when a mean score is reached.



Figure S3. Performance of different metrics with respect to the number of ground truths considered in leave-one-out experiments. Raw
scores are normalized to a maximum of 1, so we can compare the different datasets on the same plot.

While our work only computes the core-set for BLEU@4,
we believe it would be interesting to see the numbers for
other metrics, however, with current implementations, it
may be intractable, as the computations require a full pair-
wise computation of the metrics between the hypotheses
and the test-set samples. Additionally, metrics such as
CIDEr which have dataset-wide effects would have to be
estimated, requiring several hundred iterations of this exper-
iment to achieve high-quality estimates of the performance.
It thus remains interesting (and important) future work to
explore how many captions are required to perform well on
any given dataset for other metrics.

B.8. Concept-Diversity: Feature Sets
To measure the diversity of the datasets at a concept level,

we look at how the ground truth captions overlap with the
label sets from common feature extractors. If we find that
this overlap is high, it suggests that features may have the
ability to bias the model along the classification lines of the
feature-extractor label set (since a lot of the time, the in-
formation extracted by the features is useful primarily for
segmenting data along feature class boundaries).

B.8.1 Computing Label-Set overlap

We discuss two methods for computing label-set overlap in
the main paper: exact match and fuzzy matching. Exact
match is implemented as a string substring: i.e. does the
label string appear as a direct substring of the caption. This
method provides a lower bound on the true conceptual over-
lap, as it does not account for misspellings (which are sur-
prisingly common in datasets such as MSR-VTT, and others
collected using AMT without additional review steps), and
other close matches. While this is a lower bound, it has
the benefit of not introducing false-positive matches (as any
match is guaranteed to be label overlap). We also discuss
the use of fuzzy matching, which we implement using the
fuzzywuzzy6 library for approximate string matching with
a threshold of 90. This library uses Levenshtein distance to
compute approximate matching, however introduces false-
positives which makes it difficult to analyze the overlap. In
all cases, the numbers in Table 3 represent the percentage
of samples that have at least one reference description that
has exact overlap with a label from the dataset.

6https://github.com/seatgeek/thefuzz
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We explore overlap on four common datasets for feature
extraction:

ImageNet-1K: [DDS+09] is a popular image classifica-
tion dataset consisting of 1K labels for object classifica-
tion ranging across a very wide variety of objects. We can
see this from the overlap scores in Table 3, which are rela-
tively high on almost all of the datasets. MSR-VTT is rela-
tively low, suggesting that it is one of the most open-domain
datasets among the datasets we explore.
Kinetics-600: [CNBH+18] is a popular dataset for action

recognition, which contains 600 activities. We can see that
the video datasets have a much higher overlap with kinetics,
but even though MS-COCO is an image dataset only, there
is still some overlap, suggesting that captions of static data
still contain human inferences about motion and activity.
MS-COCO: [LMB+14] is a dataset for object detection

(and also for visual description) containing object-detection
labels over 80 object classes from everyday life. Even
though COCO has a relatively restricted object set, we can
see that it consists of a set of very popular objects, as the
overlap is more than 50% for all captions. Additionally, it’s
interesting that the object labels for MS-COCO don’t al-
ways appear in the captions themselves (as the self-overlap
is only 92%).
Places-365: [ZLK+17] is a dataset for scene recognition,

consisting of 365 labels of scenes or settings for an image.
We find empirically that the overlap for places is likely low,
not due to a lack of descriptions of setting, but rather a lack
of wide coverage of the variance of settings in Places.

B.8.2 Feature-Set Core-Sets and BLEU@4 perfor-
mance

To directly measure how transferable descriptions are along
feature-extractor label axes, we explore the leave-one-out
performance of captions sharing the same feature label, but
from different samples in the dataset. The results of this
experiment using BLEU@4 scores are given in Table 4. In
order to compute the leave-one-out performance, we begin
by computing a set of reference captions Rc for each label
in each feature-extractor label set, drawing from the training
dataset. These concept-level reference sets consist of all
captions containing that label as an exact sub-string. Then,
for each sample Si with references Ri, we compute the set
of all concepts overlapping that sample’s references Ci. We
then compute the hypothesis set for sample Si as

Hi =

"
[

c2Ci

Rc

#
�
{Ri}

Next, for each hypothesis in Hi, we compute the BLEU@4
score for that hypothesis using ground truths Ri. The table
Table 4 reports the mean over all samples of the maximum
across Hi for each sample in the test set. The results of this
metric are clear - when you use the best caption from an-
other sample along feature boundaries, then these captions
are relatively transferable (and almost always outperform
samples from even the same sample).

B.9. Tools & Hardware
The experiments in this paper are computed using the met-

ric implementations provided by the MSCOCO evaluation
toolkit in order to compute numeric metric values that are
comparable with state of the art methods. In the experi-
ments in the paper, we use the Stanford PTB7 tokenizer
provided as part of the toolkit for tokenization and stan-
dardization. Unfortunately, because the MSCOCO toolkit
does not explicitly specify a tokenization scheme and most
works in video description do not subscribe to a standard
tokenization tool, we are unable to be certain that the met-
ric is consistent between our work, and the work presented
in the state of the art papers.
The experiments are run in parallel on a machine with

96 AMD EPYC 7B12 cores and 378 GB of RAM run-
ning on Google Cloud Platform. Notably, the caption
concept-overlap experiments require a very large amount
of compute, with this machine requiring almost 10 hours
to compute the BLEU score for the core-set concept over-
lap. We found scores such as METEOR [AL08] and SPICE
[AFJG16] to be computationally prohibitive (requiring sev-
eral months of sustained compute) for some of these exper-
iments, thus, we do not include those scores in this work.
We also do not report several modern metrics for this rea-
son - as a major downside to many of the automated metrics
that have recently been developed is their forward inference
speed (up to 1000s of times slower than the computation
of the BLEU score). A key area of future work is improv-
ing the computational performance of metrics, as this will
allow such metrics to not only be used for more detailed
analysis but will allow such metrics to be optimized di-
rectly using techniques such as self-critical sequence train-
ing [RMM+17].

7https://nlp.stanford.edu/software/tokenizer.
html
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C. Additional Qualitative Examples
Additional qualitative examples are selected at random from the datasets using a random number generator over the length of each dataset. Some randomly

selected samples are omitted due to explicit content in the visual data or descriptions (which is an additional cause for concern, but out of scope of the

current research).

Figure S4. Qualitative example of metrics presented in the paper. The blue description is a description with the minimum distance from
the sentence embedding mean, while the red description maximizes the mean BLEU@4 score to all other captions in the sample. Captions
are ordered from top to bottom by similarity to the mean caption embedding (See section 5).

Figure S5. Qualitative example of metrics presented in the paper. The blue description is a description with the minimum distance from
the sentence embedding mean, while the red description maximizes the mean BLEU@4 score to all other captions in the sample. Captions
are ordered from top to bottom by similarity to the mean caption embedding (See section 5).



Figure S6. Qualitative example of metrics presented in the paper. The blue description is a description with the minimum distance from
the sentence embedding mean, while the red description maximizes the mean BLEU@4 score to all other captions in the sample. Captions
are ordered from top to bottom by similarity to the mean caption embedding (See section 5).

Figure S7. Qualitative example of metrics presented in the paper. The blue description is a description with the minimum distance from
the sentence embedding mean, while the red description maximizes the mean BLEU@4 score to all other captions in the sample. Captions
are ordered from top to bottom by similarity to the mean caption embedding (See section 5).

Figure S8. Qualitative example of metrics presented in the paper. The blue description is a description with the minimum distance from
the sentence embedding mean, while the red description maximizes the mean BLEU@4 score to all other captions in the sample. Captions
are ordered from top to bottom by similarity to the mean caption embedding (See section 5).



Figure S9. Qualitative example of metrics presented in the paper. The blue description is a description with the minimum distance from the
sentence embedding mean, while the red description maximizes the mean BLEU@4 score to all other captions in the sample. Captions are
ordered from top to bottom by similarity to the mean caption embedding (See section 5). The visual content of this video is missing (as the
video has become private since the collection of the dataset), however we include the video as it is one of the randomly sampled instances.

Figure S10. Qualitative example of metrics presented in the paper. The blue description is a description with the minimum distance from
the sentence embedding mean, while the red description maximizes the mean BLEU@4 score to all other captions in the sample. Captions
are ordered from top to bottom by similarity to the mean caption embedding (See section 5).

Figure S11. Qualitative example of metrics presented in the paper. The blue description is a description with the minimum distance from
the sentence embedding mean, while the red description maximizes the mean BLEU@4 score to all other captions in the sample. Captions
are ordered from top to bottom by similarity to the mean caption embedding (See section 5).



Figure S12. Qualitative example of metrics presented in the paper. The blue description is a description with the minimum distance from
the sentence embedding mean, while the red description maximizes the mean BLEU@4 score to all other captions in the sample. Captions
are ordered from top to bottom by similarity to the mean caption embedding (See section 5).

Figure S13. Qualitative example of metrics presented in the paper. The blue description is a description with the minimum distance from
the sentence embedding mean, while the red description maximizes the mean BLEU@4 score to all other captions in the sample. Captions
are ordered from top to bottom by similarity to the mean caption embedding (See section 5).



Figure S14. Qualitative example of metrics presented in the paper. The blue description is a description with the minimum distance from
the sentence embedding mean, while the red description maximizes the mean BLEU@4 score to all other captions in the sample. Captions
are ordered from top to bottom by similarity to the mean caption embedding (See section 5).

Figure S15. Qualitative example of metrics presented in the paper. The blue description is a description with the minimum distance from
the sentence embedding mean, while the red description maximizes the mean BLEU@4 score to all other captions in the sample. Captions
are ordered from top to bottom by similarity to the mean caption embedding (See section 5).



Figure S16. Qualitative example of metrics presented in the paper. The blue description is a description with the minimum distance from
the sentence embedding mean, while the red description maximizes the mean BLEU@4 score to all other captions in the sample. Captions
are ordered from top to bottom by similarity to the mean caption embedding (See section 5).

Figure S17. Qualitative example of metrics presented in the paper. The blue description is a description with the minimum distance from
the sentence embedding mean, while the red description maximizes the mean BLEU@4 score to all other captions in the sample. Captions
are ordered from top to bottom by similarity to the mean caption embedding (See section 5).
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