Supplementary Materials
Investigating Neural Architectures by Synthetic Dataset Design

Adrien Courtois! Jean-Michel Morel, Pablo Arias
Centre Borelli, ENS Paris-Saclay
4 Av. des Sciences, 91190 Gif-sur-Yvette, France

adrien.courtois@ens-paris—-saclay.fr

1. Code and datasets

The code and the datasets are available to download at
this URL.

2. Description of the layers
2.1. Global Context Layer

This layer has been designed based on thorough exper-
iments on the Non-Local Networks introduced by Wang
[13], a network using a non-local operation resembling self-
attention [1 1]. They observe that the non-local operation of
[13] suffers a kind of mode-collapse where most of the at-
tention maps are equal. The Global Context Layer aims at
directly computing this shared attention map and alleviating
at the same time the quadratic cost.

We changed the original implementation by process-
ing the output by an inverted bottleneck and by using
GELU non-linearities and Layer Scale within each skip-
connection. We also extended the layer by introducing a
mechanism of head within the layer, but we didn’t use it in
this paper. The original layer reduces the number of chan-
nels of the input feature map before processing it. We kept
this mechanism and used a reduction factor of » = 2 as
suggested in the paper.

2.2. Global Average Pooling

To further highlight the need for non-locality, we chose
to assess the performance of the simplest non-local layer.
The most straight-forward way to aggregate cues from the
entire image is to compute the mean using a Global Average
Pooling layer i.e. a spatial mean of each channel indepen-
dently. This spatial mean is added to each spatial location
of the input feature map and is processed by an inverted
bottleneck with GELU non-linearities. Layer Scale and a
pre-normalization using a LayerNorm is also used.

*This work was supported by grants from Région Ile-de-France.

2.3. Deformable Convolutions

This candidate non-local layer has been intensively used
in the literature [5, 12]. It allows to break the usual rectan-
gular shape of the convolution kernel in a learnable fashion.
It results in sparse, continuous convolution kernels. Due to
the computational cost of this layer, we only used it one in
every scale of the encoder and the decoder. We used the
implementation of TORCHVISION. As for every nonlocal
layer, we processed the output with an inverted bottleneck,
we used skip connections with Layer Scale and GELU non-
linearities. The masks and offsets were computed using the
ConvNeXt block developed in [6].

2.4. Lambda Layer

The Lambda Layer was introduced for image classifi-
cation as a linear approximation of self-attention [11]. In
its original formulation, it is a local operation, applied on
23 x 23 patches of the input feature map. Part of this limita-
tion comes from a learned positional embedding whose size
scales quadratically with the spatial dimensions.

To apply this layer on the entire image, we replaced the
learned positional encoding by a non-learnable cosine em-
bedding [| |]. The input to the layer is pre-normalized be-
fore passed through the layer and the output is processed by
an inverted bottleneck with GELU non-linearities. We also
used skip connections with Layer Scale. Furthermore, we
fixed the amplitude problem highlighted in the original pa-
per by dividing the output by /C”, where C" is the dimen-
sion of K and Q. We set h = 4 and C’ = 16 as suggested
in the original paper.

This fix can be justified theoretically: in the Lambda
layer, we compute a scalar product between the lines of
Vx and the columns of Qx. At initialization, Q and V'
are initialized such that if z ~ A(0,1), then Vz,Qz ~
N(0,1). Now, if we consider X = (Xi,...,X,),
Y = (Y1,...,Y,) such that X;,Y; ~ N(0,1), then
E(X,Y)] = 0 and Var[(X,Y)] = n. This high vari-
ance introduces high amplitudes within the feature maps,

https://mega.nz/file/vNonGSTD#UFQbXY07A7sz3uyUmIq3dJvP8w4ASrIK10rheih-KPc

which makes for instability. Therefore, dividing the scalar
product by /n reduces the variance of the output and fixes
the instability.

2.5. LambdaTT

This layer is built on top of the Lambda layer described
in Section 2.4. First, let us recall the computations made
within the Lambda layer. Given three matrices (Q), K, V') €
RMXCin 5 RMXCin 5 RCuxCin and an input feature map
x € RE*N the lambda layer first computes an attention
map:

K = SOFTMAX N (K).

This attention map guides the computation of the subse-
quent features and is crucial for the generalization capa-
bilities of the layer. However, this attention map is com-
puted based on the similarity between the lines of K and
the columns of z. The matrix K being learned, the attention
map is necessarily guided by the statistics it learned during
the training process and because of that, the attention map
is not input-dependent enough. In the other hand, the idea
of the Lambda layer is to compute a matrix Acopent to be
applied to each spatial location of the input individually:

>\content = R(Vx)T7

_\T
ycontent -)‘contenth'

This matrix A¢oneent 1S largely input-dependent and therefore,
we propose to replace K by such matrix \:

K| = SOFTMAX v (K1),

Amask = Kl(le)T>
Ky = SOFTMAX § (Amask K2,
Acontent = [_(2(‘/2-/13)7'7

T
Yeontent = (/\content) Qz.

These computations define the LambdaTT layer. It amounts
to introducing two additional matrices K; € RM*C%n and
V; € RM*Cn and two additional computations which scale
linearily with the input’s dimensions.

This implementation can be seen as an iteration of the K-
mean algorithm: the barycenters are computed once within
Amask» the mapping of each datum to its closest barycenter is
done within K5 and Aconene contains the updated barycen-
ters.

3. Training procedures
3.1. Optimizer

We trained all of our networks with a custom optimizer
built on top of Ranger2l [I4]. It is a composition of
Positive-Negative momentum [15] with S = 1, AdaBelief

[18], decoupled weight decay [7], LookAhead [!7] with
a merge time of 5 and @ = 0.5, gradient centralization
[16], adaptive gradient clipping [2] with the original hyper-
parameters and a softplus calibration [10] with 8 = 50. We
used the same value of 5-10~* for the weight decay param-
eter for all of the networks.

On top of these tweaks, we found that further dividing
the gradient of each parameter by its norm (therefore do-
ing a normalized gradient descent [3]) helps improving the
results by a very large margin. In practice, we found that
using this simple trick alongside with the structural mod-
ifications of [6] yielded a 10x improvement on the test
loss when compared with the original U-Net trained with
AdamW when trained for the same number of epochs.

3.2. RDE dataset

All of our networks were trained for 50 epochs. We used
a linear warmup [8] following the recommendations of the
original paper and a linear warmdown for the last 14 epochs.
The training dataset contains 50,000 images for training and
12,500 images for testing. No data augmentation was used.
To ensure reproducibility and simplicity we used no fur-
ther trick.

For each network, we tested up to five different learning
rates and kept the one yielding the best results.

Although multiple losses have been proposed in the lit-
erature, we trained all our networks with the Scale-Invariant
loss [1, 4] that we chose for its simplicity.

As the width of our networks is shared across all scales,
we chose the width of each Non-Local U-Net so that its
number of parameters is as close as possible to the baseline
U-Net. We did not evaluate any other commonly-used ar-
chitecture for depth estimation. As they all use a backbone,
the objective of parameters was impossible to reach. All the
experiments were made using a single Tesla V100 32GB
GPU and a batch size of 32.

3.3. Centered Square

For this dataset, we encountered multiple optimization-
related problems. This is due to the fact the dataset only
contains 484 training images. We managed to obtain sta-
ble trainings using the Ranger21 [14] optimizer with the
same linear warmup and linear warmdown as for the RDE
dataset, and we trained for 100 epochs. In particular, the
Ranger21 optimizer features no weight decay and a variant
of the normalized gradient descent. The loss we used was
the MSE and the batch size was 32. We tuned the learning
rate for each configuration but found that 5 - 10~3 consis-
tently yielded the best results.

4. ColorCode

This dataset contains 20,000 training images and 10,000
testing images and therefore, we didn’t encounter any

dadeT) [eao Uy

yoauB|og papaa|

pzogn padnolf g x;
HoRUB POE papau|
pzaos padnolb fx)

WoaUB|og papai|

WoaUB|Rog papaa|

Figure 1: Structure of the layer used at each scale of the Non-Local U-Net, replacing the double convolution of the original
U-Net. This enables the incorporation at each scale of the U-Net of any non-local layer. The local and non-local feature

computations are done in parallel.

optimization-related issue. We trained all the networks with
the optimizer described in Section 3.1. The loss to mini-
mize was the MSE. We used a batch size of 256. We used
the same learning rate scheduling as for the RDE dataset.

To tune the hyper-parameters, we firstly trained the net-
works with learning rates in {1071,5 - 1072,1072,5 -
10’3, 10-3 }. Then, we tested four other learning rates
in-between the learning rates yielding the two best results.
Most of the optimal learning rates found this way were in
the [5 - 1073, 1072] range.

All of the networks used eight heads and a width of 256
and had roughly the same number of parameters.

5. Algorithm for generating RDE

The RDE synthesis algorithm is split into three steps.
First, the rectangles are generated by a set of rules that care-
fully eliminate ambiguous cases. Then, all pairs of poten-
tially intersecting rectangles are compared to each other to
infer if one of them overlaps the other. Finally a depth-
first search algorithm derives the global scene organization
and fixes the unambiguous ground truth, each rectangle re-
ceiving its lowest possible integer rank compatible with all
pairwise overlap observations.

The first algorithm consists in a WHILE loop, randomly
generating coordinates for a candidate rectangle and check-
ing for the following constraints:

- The candidate should not be too small i.e. have at least
a width and height of /10 and H/10 respectively,
where (H, W) is the dimension of the image to be gen-
erated.

- The candidate should not occlude another previously-
generated rectangle too much. This translates to con-
straining the maximum number of pixels belonging to

a given rectangle in each row and column of the image
to be larger than ny;s. We also check for the minimum
number of visible pixels in each row and column and
impose it to be larger than ng,p.

- To avoid the near-ambiguous case where translating a
rectangle by one pixel would change the ground truth,
we check that the candidate does not share a side with
another already-generated rectangle. We also prevent
the case where translating the candidate by one pixel
would result in a side being shared.

- We constrain two parallel sides belonging to two dif-
ferent rectangles to be separated by at least n,, pixels.

- Finally, a T-junction between two rectangles must be
separated by at least n,;s pixels from the closest edge.

All of these constraints ensure the genericity of the scene,
namely that a small perturbation of the rectangles positions
would not alter scene interpretation. If all the conditions
are met, the candidate is added to the list of rectangles. The
loop stops when 7iecrangles (usually 10) have been generated
or after 1000 unsuccessful trials (which happens about once
every 500 runs).

Once the Nyecrangles are generated, we perform a pairwise
comparison of the rectangles. Consider a pair of rectangles
(A, B) where B has been generated before A. If an edge of
A forms the leg of a T-junction with an edge of B and if this
T-junction is not occluded by another successive rectangle,
then B is set to be above A. Then, for each rectangle of the
pair we compute the smallest rectangle that contains all the
visible pixels belonging to it. Let’s call these two rectan-
gles C and D. If C' and D overlap and if there is a pixel
belonging to A in the intersection i.e. if the intersection is
not occluded, A is deduced to be above B.

Then, we consider the one-to-one comparisons as a
graph and do a depth-first search to determine the global
ordering of the square.

Finally, we randomly attribute to each rectangle a color
from a fixed list Of orecrangles distinct colors generated once
and for all by uniformly sampling the hue space. The gener-
ated image is blurred by an antialiasing Gaussian filter with
standard deviation 0.7. The ground truth is normalized to
have values in [0, 1], as per common practice.

Despite the different optimizations, the resulting algo-
rithm is quite slow: approximately eight CPU hours are
required to generate 62,500 image-ground-truth pairs. We
further parallelize this generation using multi-threading on
sixteen CPU cores. The final algorithm takes mere minutes
to generate the entire dataset.

We set H = W = 128, nyjs = Ngyp = Npar = 9. De-
creasing any of the aforementioned parameters amounts to
making the task harder. We could also have chosen to sam-
ple a different set of colors for each samples. This way
the network would have the additional difficulty to learn the
colors from each sample.

6. Bonus: getting your positional encoding to
the next level

Potential sources of improvement The positional encod-
ing described in the paper is, given K € RM*N (Q ¢
RMXN 1/ c RCouXxCin-

K = SOFTMAX y (K1) € RM*N,

Ypos = KPTP € RM*N

where P € RE*¥ is a given positional encoding matrix.
The matrix P is of the form:
P _ cos(wgn) if ¢ = 2k
O Isin(wgn) ife=2k+1"

A first source of improvement can come form a better de-
sign of the family (w)cepi,c /2] as described in the paper.
One can further note that the value C' could be anything.
For instance, we found that in some cases using C' = 1024
improved the performance. We have not used this value in
the paper because it would lead to an unfair comparison be-
tween the different approaches.

Another source of improvement could come from us-
ing two positional encoding matrices Py, P, € R such
that:

Ypos = K P Ps.

For instance, defining

P - {cos(wkn) ife =2k

sin(wyn) ife=2k+1"

ifc =2k

cos(wgn) ifc=2k+1"

Py — {— sin(wgn)

yields a non-isotropic encoding of the relative position of
each pixel. This is not useful for the RDE dataset since the
task is isotropic but could be of help for other tasks. This ap-
proach reassembles [9] but doesn’t introduce any additional
parameter nor computational cost.

How to use heads In order to incorporate heads within
the layer, one has to reshape the matrix P into the size
(h,C/h, N), the tensor K into (h, M /h, N) and compute

(ypos)h,k,n = Kh,k,'rrLPh,c,mPh,c,n7

using Einstein notations.

Two dimensional position encoding Finally, we would
like to sketch the design of a 2D positional encoding fol-
lowing the same requirements. Indeed, multiple online im-
plementations simply do not take into account the heads
that could be used alongside the layer. Given a family
(we)cef1,c/4]- the positional encoding is given by

cos(wgh) ifec =4k
P = sin(wgh) ifc:4k+1‘
"’ cos(wpw) ife=4k+2
sin(wpw) ife=4k+3

When used in conjunction with heads, one would ideally
like to have C'/h to be a multiple of 4.

References

[1] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka.
Adabins: Depth estimation using adaptive bins. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4009—4018, 2021. 2

[2] Andy Brock, Soham De, Samuel L Smith, and Karen Si-
monyan. High-performance large-scale image recognition
without normalization. In International Conference on Ma-
chine Learning, pages 1059-1071. PMLR, 2021. 2

[3] Jorge Cortés. Finite-time convergent gradient flows with ap-
plications to network consensus. Automatica, 42(11):1993—
2000, 2006. 2

[4] Jin Han Lee, Myung-Kyu Han, Dong Wook Ko, and
Il Hong Suh. From big to small: Multi-scale local planar
guidance for monocular depth estimation. arXiv preprint
arXiv:1907.10326, 2019. 2

[5] Yanghao Li, Yuntao Chen, Naiyan Wang, and Zhaoxiang
Zhang. Scale-aware trident networks for object detection.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6054-6063, 2019. 1

[6] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. arXiv preprint arXiv:2201.03545,2022. 1,2

(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

[15]

(16]

(17]

(18]

Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101,2017. 2
Jerry Ma and Denis Yarats. On the adequacy of un-
tuned warmup for adaptive optimization. arXiv preprint
arXiv:1910.04209, 7, 2019. 2

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng
Liu. Roformer: Enhanced transformer with rotary position
embedding. arXiv preprint arXiv:2104.09864, 2021. 4
Qiangian Tong, Guannan Liang, and Jinbo Bi. Calibrating
the adaptive learning rate to improve convergence of adam.
Neurocomputing, 2022. 2

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, L.ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998-6008, 2017. 1
Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and
Chen Change Loy. Edvr: Video restoration with enhanced
deformable convolutional networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 0-0, 2019. 1

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 7794-7803, 2018. 1

Less Wright and Nestor Demeure. Ranger21: a synergistic
deep learning optimizer. arXiv preprint arXiv:2106.13731,
2021. 2

Zeke Xie, Li Yuan, Zhanxing Zhu, and Masashi Sugiyama.
Positive-negative momentum: Manipulating stochastic gra-
dient noise to improve generalization. In International Con-
ference on Machine Learning, pages 11448-11458. PMLR,
2021. 2

Hongwei Yong, Jiangiang Huang, Xiansheng Hua, and Lei
Zhang. Gradient centralization: A new optimization tech-
nique for deep neural networks. In European Conference on
Computer Vision, pages 635-652. Springer, 2020. 2
Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E
Hinton. Lookahead optimizer: k steps forward, 1 step back.
Advances in Neural Information Processing Systems, 32,
2019. 2

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C
Tatikonda, Nicha Dvornek, Xenophon Papademetris, and
James Duncan. Adabelief optimizer: Adapting stepsizes by
the belief in observed gradients. Advances in neural infor-
mation processing systems, 33:18795-18806, 2020. 2

