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1. Unprocessing of sRGB dataset

Our synthetic dataset is synthesized from the REDS
dataset [4]. It consists in clean sRGB videos with real mo-
tion. In order to create the synthetic dataset, we need two
steps: unprocess back sRGB data to the raw domain and
adding realistic noise. In this section, we talk about the un-
processing steps. We follow Brooks et al. [2], with some
modifications to adapt it to our case. First the REDS dataset
is made with 8-bits quantized frames. To reduce the ef-
fect of the quantization we add a quantization noise to each
pixel value sampled from uniform distribution in the range
[−1/2, 1/2]. Originally, the authors of [2] provide the Cam-
era Color Matrix for four different cameras from the Darm-
stadt Noise Dataset (DND) [5]. In our case we want to sim-
ulate a single camera, thus we use only one of them.

The white balance is image dependent and thus invert-
ing it is not straightforward. In [2], the authors estimated
a range of realistic red and blue gains from DND (normal-
ized with respect to the green gain being set to 1). They
found that the red gain gR has to be sampled uniformly in
[1.9, 2.4] and the blue gain gB in the range [1.5, 1.9]. They
also consider a global gain gglobal applied to all channels (to
invert the brightness adjustment in the forward pipeline).
This global gain is sampled from a Gaussian distribution
N (0.8, 0.1). The total per-channel gain for channel c is
then gglobal/gc. Occasionally the global gain can become
greater than 1, which causes saturation later in the pipeline.
This is wanted by Brooks et al. to create highlights and
saturation. However, none of our surrogate datasets con-
tains saturated areas, thus we prevent our per-channel gain
to exceed one by sampling a global gain from a truncated
Gaussian instead, clipping its value to one.

For each experiment, the clean synthetic raw dataset is
tailored to model the surrogate dataset. We use the same
Bayer pattern and we match the ranges of both datasets. For
that purpose, we apply to the synthetic videos an affine tone
mapping that maps the 1% and the 99% percentiles of the
synthetic dataset to those of the surrogate dataset.

The next subsection describes how we generate the noisy

counterpart of the clean raw data.

2. Simulating realistic noise
Let {ui}I be the set of unprocessed clean data and {ṽj}J

be a dataset of real noisy data (the surrogate dataset).
Given the clean data {ui}I we can generate realistic noisy
data {vi}I by applying the heteroscedastic Gaussian noise
model. For that purpose, the steps to follow are:
(1) Estimate from {ṽj}J the parameters a and b of an het-
eroscedastic Gaussian noise model.
(2) Simulate a set of sequences with synthetic noise {vi}I
where each vi = ui + ni with ni ∼ N

(
0,
√
aui + b

)
. The

pairs of sequences ({ui}I , {vi}I) can then be used for train-
ing with supervision.

For addressing the point 1, we used two different strate-
gies. For the Experiment I, we model a camera with a syn-
thetic noise generator [7] and thus we can simulate the ac-
quisition of flat-field images. Contrarily for the Experiment
II and III, we want to model the noise model of a given cam-
era having only a few noisy sequences. We followed two
different methods to evaluate the noise model parameters.
Both are described in the next subsection.

2.1. Noise parameters estimation

Estimation for Experiment I. In Experiment I we use
the noise model introduced in [7], which models extreme
low-light noise as a sum of a Poisson and a Tukey lambda
distributions. In that sense, we have a simulated camera and
the goal is to model its noise by a heteroscedastic Gaussian
model whose variance is σ2(u) = au + b, where u is the
clean frame. To calibrate the a, b parameters, we simulate
the acquisition of flat-field images, which is the usual way
to calibrate signal dependent noise models.

We sample a range of constant patches Pi with intensity
level i. For each patch Pi we generate a noisy patch P̂i us-
ing the Poisson-Tukey lambda noise model and compute the
variance σi of the noisy patches. The parameters a and b are
deduced from the points cloud (i, σi) using the least square
error method. Figure 2 shows a plot of this points cloud and
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Figure 1. Example of actual histogram of the physic-based noise
model ( [7]) and the heteroscedastic Gaussian fitting (the y-axis is
in logarithmic scale).
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Figure 2. Variance of the noise model [7] and the estimated linear
model.
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Figure 3. Difference of the variance of the noise model [7] and the
estimated linear model.

the estimated linear model. The variance estimated from
the Poisson-Tukey lambda noise is (as expected) an affine
function of the intensity, therefore the affine model fits per-
fectly. Figure 3 shows the difference between the actual
variance and the estimated linear model. We can see that the
error is very small relatively to the variance value. The het-
eroscedastic Gaussian model will have the same intensity-
variance curve, but the distributions are very different. Fig-
ure 1 shows the histogram of the variance for a patch of
middle range intensity. The estimated Gaussian distribution

is also displayed. It can be seen that around the mean, the
Poisson-Tukey lambda noise is well approximated by the
Gaussian distribution. However, the Tukey lambda compo-
nent has heavier tails than the Gaussian distribution.

Estimation in the Experiments II and III. In the case of
Experiments II and III, the surrogate datasets consist of real
noisy sequences but cannot generate more samples. Thus
we need to estimate the camera noise level function (NLF)
directly from the real data (SIDD [1] in Experiment II or
CRVD [8] for the Experiment III). For that purpose, we es-
timate the NLF of each frame from each sequence of the
surrogate dataset using the method of Ponomarenko [3, 6].
For each individual noisy frame vi, this method estimates a
set of intensity-variance points which are samples from the
NLF. We gather estimated intensity-variance points of each
frame into a large point cloud. Figure 4 shows this point
cloud for Experiment II (one camera of the SIDD dataset).
We use transparent points, thus the level of opacity gives an
indication of the density in the point cloud. We then fit an
affine model σ2(u) = au+b by minimizing the least square
error.
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Figure 4. Linear model estimation of the noise curve.
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