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Abstract

This work focuses on improving the Conv-GRU-based op-
tical flow update within a DROID-SLAM framework. Prior
optical flow models typically follow a UNet or coarse-to-fine
architecture in order to extract long-range cross-correlation
and context cues. This helps flow estimation in the presence
of large motion and challenging image regions, e.g., texture-
less regions. We propose modifications to the Conv-GRU
module which follows the rationale of these prior models
by integrating (Atrous) Spatial Pyramid Pooling and global
self-attention into the Conv-GRU block. By enlarging the
receptive field through the aforementioned modifications,
the model is able to integrate information from a larger
context window, thus improving the robustness even when
given inputs that comprise challenging image regions. We
show empirically through extensive experiments the gain in
accuracy through these modifications.

1. Introduction

Simultaneous Localization and Mapping (SLAM)
through visual sensors has been a long-studied research
topic with potential applications in robotics [21, 22, 26], au-
tonomous driving [18], and AR [25]. Visual-SLAM methods
generally follow a bundle-adjustment (BA) approach whose
objective is to find an optimal set of poses and pixel depths
that minimizes the geometric error of matched image key-
points [5, 32, 34] or the photometric error from the raw
pixel intensities [1, 15, 16]. However, issues may arise when
the image lacks distinct keypoints or when the photometric
consistency assumption is not met.

With the advent of deep learning techniques in achieving
state-of-the-art results in many vision tasks, interests begin to
emerge for applying deep models in order to tackle the afore-
mentioned issues. However, unlike many other vision tasks,
the nature of the SLAM problem comprises geometric for-
mulation, which is rather difficult for deep neural networks
to model [61] compared to classical geometric modeling.

Recently, researchers began taking the direction of incorpo-
rating deep learning and classical solutions together [9, 45].
In particular, DROID-SLAM [48] proposed a full SLAM
solution that integrates deep learning based optical flow esti-
mation into a dense geometric BA formulation to solve for
image poses and depths.

The optical flow formulation used in DROID-SLAM is
based on the RAFT model [47], which iteratively updates the
flow estimates across adjacent frames using a Convolution-
based GRU [8]. RAFT samples from pre-computed cross-
correlation values representing pixel similarities between
neighboring frames and use Conv-GRU to compute the up-
date to its hidden states. These cross-correlation values are
computed at multiple pyramid levels, allowing the model to
cover a wider spatial range of optical flow and thus, improv-
ing the performance in the presence of large motion. While
the cross-correlation allows the model to attend to a larger
motion of the target images, the Conv-GRU update operation
is only performed via a small convolution layer in a window
of size 3×3, thereby not exploiting the context cues from
a larger window within the query image itself. This could
lead to the difficulty of the model in images that contains
challenging image regions, e.g., textureless regions.

The advantage of RAFT lies in its iterative updates that
are performed at a high resolution, in doing so, keeping the
information of smaller objects intact. In contrast, many pre-
vious deep optical models follow a UNet [13, 37] or coarse-
to-fine [35,43] architectures, which allows for aggregation of
the global contexts of the source in addition to covering large
motion. However, these methods display poor performance
for small objects and object boundaries due to the loss of
information in the coarser stages. We are motivated by these
works to get the best of both worlds in order to improve the
Conv-GRU updates implemented within RAFT.

In this work, we propose modifications to the Conv-GRU
cell and study the impact on the DROID-SLAM performance.
We modify the 3×3 convolution using (atrous) spatial pyra-
mid pooling (SPP) to compute the GRU hidden states up-
dates. This enables the optical flow update to integrate from
a large receptive field, thereby utilizing neighboring con-
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text cues. More recently, Transformers have even been used
to allow the model to attend to all the pixels in the source
and target image to make flow predictions [56]. Inspired
by this, we also propose the use of self-attention to allow
Conv-GRU updates that attend to the global features. We
empirically show that the improved receptive field of the
model consistently improves the DROID-SLAM algorithm.

2. Related Works

2.1. SLAM

Modern Visual odometry (VO) and SLAM have evolved
from filter-based approaches [10, 30] toward optimization-
based methods [16, 25, 31, 33]. The optimization typi-
cally involves a bundle-adjustment (BA) of image points
and poses. In geometric BA [5, 32, 34], optimization is
performed over the reprojection error of points correspon-
dences, commonly obtained via keypoint detector-descriptor
scheme [3, 28, 38]. On the other hand, the photometric BA
approach directly minimizes the photometric error between
adjacent images [1, 15, 16].

With the success of deep-learning in many vision tasks [7,
20, 36], research toward a deep-learning-based full SLAM
system is also being actively explored. As keypoint de-
tection has proven successful in classical geometric BA,
many research focused on constructing feature detection
deep networks [11, 14, 58, 59] to be combined with clas-
sical approaches. These learned keypoint features show a
more robust feature correspondence matching compared to
their handcrafted counterparts. The recent surge in the adop-
tion of Transformers [50] based methods towards vision
tasks [6,12,27] have also sparked recent research which uses
Graph Neural Networks [39] and Transformers [44, 56] for
correspondence search. In particular, LoFTR and COTR use
Transformers to attend to self and cross features globally
without explicitly extracting feature keypoints. As their ap-
proach eliminates the keypoints extraction step, matching
can be performed even in images with low-texture areas by
exploiting global image contexts.

The early end-to-end deep-learning approach formulates
the problem as a regression problem which takes as input a
pair of images and outputs a 6-dimensional vector represent-
ing the Euler angles and translation of the relative pose be-
tween the two images [24, 49]. This approach lacks geomet-
rical constraints, limiting the model’s ability to generalize to
unseen scenes compared to classical methods. Following the
classical photometric BA, feature-metric optimization has
been explored for localization [40,51–53] as well as BA [45].
These methods perform optimization, which minimizes a
learned feature map and displays better generalization abil-
ity. Recently, DROID-SLAM [48] performed geometric BA
on point correspondences that are iteratively computed by

RAFT [47] based optical flow. The iterative updates of the
optical flow correspondences assist the BA in converging
toward the optimal solution.

2.2. Optical Flow

Optical flow is deeply related to the keypoint correspon-
dence search task, and we discuss its recent deep learning
based development. The early models [13, 23] based them-
selves on the UNet [37] architecture. Typical of many cor-
respondence search tasks [2, 29], correlation layer is also
incorporated in order to extract similarity values between
candidate pixel correspondences. To reduce the computa-
tional cost, follow-up works construct models that performs
computation in a coarse-to-fine approach [35, 43]. This
allows optical flow computation in the presence of large
motion, which is then hierarchically refined to a higher reso-
lution. Such approaches also enable the network to aggregate
information from a larger effective receptive field at lower
resolutions. However, the flow output of these types of mod-
els is suspect to missing details of small objects. RAFT [47]
takes a different approach and uses Convolution GRU to
imitate iterative optimization of the flow prediction. In this
work, we take inspiration from earlier work to enlarge the
Conv-GRU receptive field to integrate from larger context
cues.

3. Method

3.1. Preliminaries

As this work is based on the recent DROID-SLAM [48]
method, we briefly review the relevant components in this
section. DROID-SLAM is a deep-learning based SLAM
method that performs geometric bundle adjustment by us-
ing optical flow between frames that is iteratively updated.
The optical flow updates are built on top of a RAFT [47]
framework, which utilizes GRU blocks [8] to imitate an
optimization-based update. Given a query frame and a neigh-
boring frame of interest, feature maps of each frame are
extracted by using a siamese convolutional neural network
with shared weights. Full correlation volume between all
pixel pairs C ∈ RH×W×H×W is then constructed using the
extracted feature maps. Next, average pooling is performed
to obtain a 4-level correlation volume pyramid in order to in-
crease the cross-frame correlation receptive field. In DROID-
SLAM, this is computed between all connected frames in a
frame graph.

At update step k, the current estimates for inverse pixel
depths of the query frame and relative pose is used to com-
pute the flow fk, which gives the estimated coordinates u′

of the corresponding points in the target frame. Correlation
values around the neighborhood N(u′) of this point are then
sampled from the correlation volume pyramid. The update
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Figure 1. (a) The Conv-GRU used in DROID-SLAM. To increase the receptive field of the GRU-cell, we propose (b) (A)SPP and (c) global self-attention
modification to the Conv-GRU.

input is computed using 3×3 convolution layer as

FI = gc(I)

xk = [Conv3×3(CN ,WC),Conv3×3( fk,Wf ),FI ]
(1)

where FI is a context feature map computed from the input
query image. [·, ·] represents the concatenation of feature
maps. The GRU update of the hidden state is computed as:

zk = σ(Conv3×3([hk−1,xk],Wz))

rk = σ(Conv3×3([hk−1,xk],Wr))

h̃k = tanh(Conv3×3([rk ⊙hk−1,xk],Wh))

hk = (1− zk)⊙hk−1 + zk ⊙ h̃k

(2)

where σ is a sigmoid activation, and

h0 = gh(I) (3)

is simply computed from the source image using CNN. The
updated hidden state is used as inputs to CNN subnetworks
that predict the residual flow

fk+1 = fk +Conv3×3(hk) (4)

as well as the importance weights of each pixel, both of
which are used as input into a geometric bundle adjustment
module that optimizes for an updated depth and relative pose
estimates.

As the correlation values CN is obtained from 4-level
pyramid volumes, this update computation utilizes a large
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receptive field of cross-correlation information. However,
the subsequent operation aggregates local information via
a 3× 3 kernel sized convolutional layers. This limits the
spatial receptive field to capture the contextual cues from the
query image. Fig. 1 (a) illustrates this process.

3.2. (A)SPP Conv-GRU

Context cues of the image has often been shown to benefit
deep vision models in many tasks. In the optical flow prob-
lem, image contexts are especially helpful in image regions
where matching values may be erroneous, such as in regions
with repeated textures or textureless regions. Many deep
optical flow models have a larger effective receptive field
through UNet style architecture or a coarse-to-fine refine-
ment design.

We explore the use of Spatial Pyramid Pooling (SPP) [19,
60] to increase the spatial receptive field of the Conv-GRU.
Specifically, we modify the update candidate h̃k of Eq. (2)
as

sk = Conv1×1([rk ⊙hk−1,xk])

h̃k = SPP(sk)+ sk
(5)

The SPP module splits the feature map into multiple
branches that resize the input into different scales (Fig. 1
(b)). We use average pooling to resize the feature maps into
(1,1/2,1/4,1/8) the scale of the input resolution. Each fea-
ture map is then aggregated via a 3× 3 convolution layer
and bilinearly interpolated to the original resolution. They
are then concatenated and passed into a 1× 1 convolution
layer. A residual connection [20] is incorporated in Eq. (5)
to aid gradient flow. We also experimented with the Atrous
variant [7] of SPP, wherein dilated convolution is applied
to replace the above pooling and upsampling steps. Instead
of resizing the input features, 4 branches of convolutional
filters, each having a dilation rate of (1,1/2,1/4,1/8) are
applied.

3.3. Self-attention Conv-GRU

Inspired by the success of recent correspondence search
works by using Transformers to attend to global features [44,
56], we investigate attention-based updates of the Conv-
GRU. We are only interested in applying self-attention to
improve the effective receptive field within the query image
itself. The candidate update value can be computed as

sk = Conv1×1([rk ⊙hk−1,xk]+ pe)

h̃k = Att(sk)+ sk
(6)

where the self-attention layer Att is computed as

Q = MLP(x),K = MLP(x),V = MLP(x)

Att(x) = MLP(softmax(QKT)V )
(7)

Conv-GRU
Name SPP ASPP Self-Attention Strided

DROID
Strided ✓

SPP ✓ ✓
ASPP ✓ ✓

Self-Att ✓ ✓

Table 1. Model Configurations

The self-attention mechanism enables the network to assign
weights to each pixel on the image according to the query
Q and key K (Fig. 1 (c)). Typically, multiple heads of the
above self-attention operations are performed in practice.
In addition, we add positional encoding term pe into the
update input in Eq. (6). The self-attention operation treats
the data as an unordered sequence, so a positional encoding
is necessary to give position cues to the network. In our
implementation, we follow previous works and use a learned
positional encoding [12]. Nevertheless, note that this learned
positional encoding is specific to the image size. To use this
positional encoding during test time, the input image has to
be resized to match the training image size.

3.4. Strided implementation

The proposed (A)SPP and self-attention modifications
into the Conv-GRU block increase the memory consumed
by the model. In our experiments, we use the proposed
modules with a strided implementation of the Conv-GRU
cell to mitigate the issue of memory requirements.

We modify the input to the GRU cell xk (Eq. (1)) using
convolutions with stride s = 2

FIdown = gcdown(I) = Convs=2
3×3(gc(I))

xk = [Convs=2
3×3([CN ,WC),Convs=2

3×3([ fk,Wf ),FIdown ]
(8)

We now have the input to the GRU cell xk at a lower scale.
The following GRU updates then follow Eq. (2), with the hid-
den state in Eq. (2) computed at a downsampled resolution
as well:

h0down = Convs=2
3×3(gh(I)) (9)

This allows the update operations with a reduced overall
memory requirement of the system while also increasing
the effective receptive field. As the hidden states are now
represented at a lower resolution, we upsample the hidden
states via bilinear interpolation followed by a 1× 1 con-
volution prior to the residual flow and importance weight
computations.

4. Experiments
4.1. Experiment Configuration

We are interested in empirically evaluating the effective-
ness of the discussed Conv-GRU modifications toward the
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ATE
Validation set DROID Strided SPP ASPP Self-Att

abandonedfactory/Easy/P011 2.32 0.13 0.34 0.11 0.13
abandonedfactory/Hard/P011 1.45 0.22 7.30 0.07 0.24

abandonedfactory night/Easy/P013 0.02 0.46 1.38 0.64 0.04
abandonedfactory night/Hard/P014 0.30 0.10 1.96 1.19 0.17

amusement/Easy/P008 0.16 0.16 0.08 0.32 0.29
amusement/Hard/P007 0.06 0.06 0.14 0.19 0.07
carwelding/Easy/P007 0.03 0.05 0.04 0.04 0.03
endofworld/Easy/P009 0.06 0.32 0.04 0.05 0.24

gascola/Easy/P008 0.29 0.45 0.21 0.22 0.64
gascola/Hard/P009 0.43 0.51 0.39 0.68 0.80
hospital/Easy/P036 0.01 0.03 0.32 0.02 0.01
hospital/Hard/P049 0.04 0.01 0.02 0.01 0.01

japanesealley/Easy/P007 0.02 0.06 0.02 0.04 0.03
japanesealley/Hard/P005 0.01 0.01 0.01 0.01 0.02
neighborhood/Easy/P021 0.20 0.47 2.18 0.49 0.66
neighborhood/Hard/P017 0.06 0.05 0.27 0.04 0.03

ocean/Easy/P013 0.19 0.17 0.16 0.10 0.11
ocean/Hard/P009 1.56 0.67 0.49 0.61 0.74
office2/Easy/P011 0.02 0.02 0.01 0.02 0.02
office2/Hard/P010 0.09 0.16 0.05 0.05 0.05
office/Hard/P007 0.00 0.01 0.01 0.01 0.01

oldtown/Easy/P007 0.17 1.60 0.25 0.32 0.30
oldtown/Hard/P008 17.26 4.62 9.93 3.20 3.13

seasidetown/Easy/P009 0.11 0.09 0.12 0.08 0.07
seasonsforest/Easy/P011 0.35 0.39 0.25 0.38 0.32
seasonsforest/Hard/P006 0.29 0.13 0.19 0.12 0.24

seasonsforest winter/Easy/P009 0.26 0.08 0.50 0.49 0.41
seasonsforest winter/Hard/P018 3.49 0.84 1.57 0.42 1.00

soulcity/Easy/P012 0.32 0.15 0.06 0.13 0.15
soulcity/Hard/P009 0.29 0.22 0.17 0.15 0.43

westerndesert/Easy/P013 0.23 0.33 0.31 0.50 0.52
westerndesert/Hard/P007 0.38 0.45 0.25 0.27 0.16

Avg 0.95 0.41 0.91 0.34 0.35

Table 2. ATE RMSE on the TartanAir validation set. Bold: Best, Red: Worst.

MH000 MH001 MH002 MH003 MH004 MH005 MH006 MH007 Avg
ORB-SLAM [31] 1.30 0.04 2.37 2.45 X X 21.47 2.73 -

DeepV2D [46] 6.15 2.12 4.54 3.89 2.71 11.55 5.53 3.76 5.03
TartanVO [54] 4.88 0.26 2.00 0.94 1.07 3.19 1.00 2.04 1.92

DROID-SLAM [48] 0.08 0.05 0.04 0.02 0.01 1.31 0.30 0.07 0.24
DROID 0.06 0.17 0.05 0.05 1.93 1.37 0.38 0.16 0.52
Stride 0.14 0.05 0.06 0.02 1.78 0.93 0.37 0.26 0.45
SPP 0.41 0.11 0.02 0.05 0.19 1.57 0.29 1.30 0.49

ASPP 0.12 0.04 0.03 0.02 2.22 2.64 0.37 0.15 0.70
Self-Att 0.35 0.05 0.06 0.04 1.29 0.56 0.48 0.21 0.38

Table 3. ATE RMSE on the TartanAir test set. Bold: Best, Red: Worst.

performance of DROID-SLAM. We re-train the original
DROID-SLAM model and train a set of models that have
the proposed changes integrated. We perform experiments
on five with the configurations as shown in Table 1. We also
carefully designed the discussed modifications with minimal
change to the number of layers and number of parameters

to make for a fair comparison. Note that due to memory
limitations of the hardware, all the proposed modifications
are incorporated within a strided implementation. In our
experiments, we observe the memory consumption of the
original DROID-SLAM during training exceeds ∼23GB,
whereas the strided implementation only consumes roughly
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MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203 Avg

D
ee

p

DeepFactors [9] 1.587 1.479 3.139 5.331 4.002 1.520 0.679 0.900 0.876 1.905 1.021 2.040
DeepV2D [46] 0.739 1.144 0.752 1.492 1.567 0.981 0.801 1.570 0.290 2.202 2.743 1.298
TartanVO [54] 0.639 0.325 0.550 1.153 1.021 0.447 0.389 0.622 0.433 0.749 1.152 0.680

D3VO & DSO [57] - - 0.08 - 0.09 - - 0.11 - 0.05 0.19 -

C
la

ss
ic

al

ORB-SLAM [31] 0.071 0.067 0.071 0.082 0.060 0.015 0.020 X 0.021 0.018 X -
DSO [15] 0.046 0.046 0.172 3.810 0.110 0.089 0.107 0.903 0.044 0.132 1.152 0.601
SVO [17] 0.100 0.120 0.410 0.430 0.300 0.070 0.210 X 0.110 0.110 1.080 -
DSM [62] 0.039 0.036 0.055 0.057 0.067 0.095 0.059 0.076 0.056 0.057 0.784 0.126

ORB-SLAM3 [5] 0.016 0.027 0.028 0.138 0.072 0.033 0.015 0.033 0.023 0.029 X -
DROID-SLAM [48] 0.013 0.014 0.022 0.043 0.043 0.037 0.012 0.020 0.017 0.013 0.014 0.022

DROID 0.027 0.014 0.023 0.048 4.189 0.036 0.018 0.085 0.016 0.011 0.032 0.409
Strided 0.016 0.013 0.022 0.051 0.044 0.034 0.011 0.070 0.016 0.009 0.015 0.027

SPP 0.014 0.013 0.024 0.045 0.046 0.036 0.014 0.086 0.014 0.037 0.042 0.034
ASPP 0.019 0.013 0.024 0.047 0.041 0.035 0.012 0.036 0.014 0.089 0.014 0.031

Self-Att 0.013 0.013 0.023 0.047 0.046 0.035 0.012 0.066 0.015 0.019 0.014 0.028

Table 4. ATE RMSE on the EuRoC datasets. Bold: Best, Red: Worst.

(a) (b) (c)

Figure 2. Estimated trajectory of self-attention based model and ATE against the ground truth reference in EuRoC MH 05 difficult, VH 01 difficult, and
VH 02 difficult image sets.

∼19GB of memory per batch. Additionally, we perform
experiments with only a single attention head for the self-
attention Conv-GRU as the memory consumption restricts
us from implementing multi-head attention.

We conducted training based on the publicly available
official DROID-SLAM [48] codes. Training is done with 2
RTX-3090 GPUs with a batch size of 2, each with 7 adjacent
frames. The images are resized to 384×512 resolution. 15
update iterations is performed during training. We follow the
DROID-SLAM system at test time using our trained model
weights.

Training is performed on the monocular images from
the synthetic TartanAir dataset [55], which is split into
training and validation split. The models are trained for
120k iterations. Each model takes approximately 2.5 days to
train. Using the trained models, we conduct evaluations on
the TartanAir validation and official test sets, EuRoC [4],
and TUM-RGBD [42] datasets. The RMSE of the Absolute
Trajectory Error (ATE) [42] is used to evaluate the accuracy
of the computed trajectory. Evaluation is performed on the
full camera trajectory.

4.2. TartanAir [55]

TartanAir is a synthetic SLAM dataset collected using the
AirSim [41] interface, containing challenging scenes with
dynamic objects as well as light and weather variations.

For each model, we conduct evaluations on the validation
set after epoch 50k,100k, and 120k training iterations. We
select the best-performing model and present the ATE in
Table 2. The TartanAir validation set covers a wide range
of scenarios and difficulties. We mark the best performing
values in each set with bold and the worst-performing ones
with red. Interestingly, through these tests, we found the
strided implementation of the DROID-SLAM to produce a
more consistent performance across the different scenarios
within the validation set when compared to the original im-
plementation. The ATE of the original DROID fluctuates
and occasionally shows a significant error. In addition, the
inclusion of (A)SPP and self-attention into the model also
improves the robustness in many scenarios, displaying the
best overall average ATE.
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360 desk desk2 floor plant room rpy teddy xyz Avg
ORB-SLAM2 [32] X 0.071 X 0.023 X X X X 0.010 -
ORB-SLAM3 [5] X 0.017 0.210 X 0.034 X X X 0.009 -

DeepV2D [46] 0.243 0.166 0.379 1.653 0.203 0.246 0.105 0.316 0.064 0.375
DeepFactors [9] 0.159 0.170 0.253 0.169 0.305 0.364 0.043 0.601 0.035 0.233

DROID-SLAM [48] 0.111 0.018 0.042 0.021 0.016 0.049 0.026 0.048 0.012 0.038
DROID 0.081 0.019 0.029 0.021 0.019 0.052 0.022 0.031 0.010 0.032
Strided 0.175 0.018 0.037 0.024 0.024 0.058 0.023 0.045 0.010 0.046

SPP 0.177 0.019 0.030 0.057 0.135 0.048 0.021 0.029 0.009 0.058
ASPP 0.153 0.018 0.034 0.021 0.020 0.617 0.024 0.042 0.010 0.104

Self-Att 0.156 0.019 0.031 0.021 0.018 0.053 0.023 0.038 0.010 0.041

Table 5. ATE RMSE of monocular methods on the TUM-RGBD datasets. Bold: Best, Red: Worst.

(a) (b) (c)

Figure 3. Estimated trajectory of self-attention based model and ATE against the ground truth reference in TUM-RGBD plant, room, and teddy image sets.

We present the ATE of the models in the ‘hard‘ subset
of the official test split of the TartanAir dataset in Table 3.
Additionally, we also show the ATE of recent SoTA models
as well as the official DROID-SLAM (trained for 250k itera-
tions) for comparison. Here, we observe the self-attention
based DROID-SLAM to yield the lowest overall error. Al-
though the self-attention based model doesn’t show the best
performance in many sequences, we found some of the other
models to struggle in ‘MH004‘ and ‘MH005‘ sequence and
displays huge error. This indicates that global self-attention
improves the robustness of the model under challenging
scenarios.

4.3. EuRoC [4]

We test the models in other datasets to evaluate the cross-
domain capability of the models. EuRoC is a real-world
dataset collected by micro-aerial-vehicle (MAV) capturing
industrial environments. Table 4 presents the ATE values
on the EuRoC sub-sequences. Again, we also present the
other SoTA models and the original DROID-SLAM results
as a comparison. In this dataset, we didn’t see improve-
ment in a having larger receptive field over the base strided
implementation. Fig. 2 shows the plotted trajectory of the
self-attention based model in the difficult EuRoC scenarios.

4.4. TUM-RGBD [42]

TUM-RGBD is a real-world dataset collected by hand-
held cameras that capture indoor environments. Although
the data contains RGB-D images, we conduct evaluations in
monocular settings. Table 5 presents the ATE values on the
TUM-RGBD subsequences. In this data, we found the origi-
nal DROID-SLAM to perform best compared to the modified
models. This could be due to the heavier motion blur and
rolling shutter artifacts that are present in this data. In such a
scenario, the original DROID model can utilize more precise
image data compared to the strided implementation. How-
ever, we again observe that the global self-attention based
model improves upon the standard strided implementation.
We present the plotted trajectory of the self-attention based
model in selected scenarios of the TUM-RGBD dataset.

4.5. Discussion

In most of the datasets, we observe self-attention based
Conv-GRU to provide the most robust performance. How-
ever, we also note that our training is performed with a small
batch size of 2 due to resources limitation, whereas the origi-
nal DROID-SLAM conducted their training with a batch size
of 4. The smaller batch size can potentially lead to noisier op-
timization during training, which may result in inconsistent
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models. Additionally, the model can be trained for longer
to account for this, just as the original DROID-SLAM was
trained for 250k iterations.

Overall, we can observe consistent improvements in the
proposed Conv-GRU variants over the standard Conv-GRU.
A satisfactory level of accuracy was also obtained with the
strided implementation along with the reduction in memory
consumption, potentially enabling the model to be deployed
in a smaller embedded platform in the future. We display
visualization outputs in Fig. 4. Further experiments could
be conducted to integrate a small-sized UNet inside Conv-
GRU. This enables the neural network to obtain the benefit
of both the UNet-based architecture of previous optical flow
models, as well as the high-resolution iterative updates of
the Conv-GRU.

While this work focused on the effect of the proposed
modifications on the DROID-SLAM model, further analysis
of its impact on the RAFT performance in the optical flow
task should also be conducted.

5. Conclusions

In this work, we propose spatial pyramid pooling and
global self-attention to be integrated into the Conv-GRU
update block of DROID-SLAM. These modifications allow
the model to aggregate context cues from a larger effec-
tive receptive field, allowing the model to infer optical flow
updates even in challenging image regions. We showed em-
pirically in our experiments the improvement in accuracy of
the DROID-SLAM model across multiple datasets. We also
noted potential directions to improve the Conv-GRU module
further and hope that this work will be valuable to future
works.
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[16] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam:
Large-scale direct monocular slam. In European conference
on computer vision, pages 834–849. Springer, 2014.

[17] Christian Forster, Zichao Zhang, Michael Gassner, Manuel
Werlberger, and Davide Scaramuzza. Svo: Semidirect visual
odometry for monocular and multicamera systems. IEEE
Transactions on Robotics, 33(2):249–265, 2016.

[18] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE conference on computer vision and
pattern recognition, pages 3354–3361. IEEE, 2012.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Spatial pyramid pooling in deep convolutional networks for
visual recognition. IEEE transactions on pattern analysis and
machine intelligence, 37(9):1904–1916, 2015.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[21] Sungchul Hong, Antyanta Bangunharcana, Jae-Min Park,
Minseong Choi, and Hyu-Soung Shin. Visual slam-based
robotic mapping method for planetary construction. Sensors,
21(22):7715, 2021.

[22] Sungchul Hong, Pranjay Shyam, Antyanta Bangunharcana,
and Hyuseoung Shin. Robotic mapping approach under
illumination-variant environments at planetary construction
sites. Remote Sensing, 14(4):1027, 2022.

[23] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keu-
per, Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0:
Evolution of optical flow estimation with deep networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2462–2470, 2017.

[24] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet:
A convolutional network for real-time 6-dof camera relocal-
ization. In Proceedings of the IEEE international conference
on computer vision, pages 2938–2946, 2015.

[25] Georg Klein and David Murray. Parallel tracking and map-
ping for small ar workspaces. In 2007 6th IEEE and ACM
international symposium on mixed and augmented reality,
pages 225–234. IEEE, 2007.
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