
Exploring Motion Information for Distractor Suppression in Visual Tracking

Kaiwen Liu1,2 Jin Gao1,2,† Haowei Liu1,2 Liang Li4 Bing Li1,2

Weiming Hu1,2,3

1 National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
2 School of AI, University of Chinese Academy of Sciences

3 CAS Center for Excellence in Brain Science and Intelligence Technology
4 Beijing Institute of Basic Medical Sciences
{liukaiwen2019, liuhaowei2019}@ia.ac.cn

{jin.gao, bli, wmhu}@nlpr.ia.ac.cn, liang.li.brain@aliyun.com

Abstract

In the past few years, Siamese networks have achieved
outstanding improvements in visual object tracking. How-
ever, visual distractors with similar semantics can be easily
misclassified as the target by Siamese networks and may
consequently result in the drift problem. Besides, the Han-
ning window penalty, which is generally used to suppress
distractors, could fail in many challengeable scenes. No-
tably, most failures violate the assumption of motion conti-
nuity. Thus, in this work, we explore motion information to
mitigate the drift problem in visual tracking. First, we in-
troduce a simple linear Kalman filter to predict the bound-
ing box of the target in the current frame, which acts as
a reference for decisions. Second, an IoU-Guided penalty
is assembled in the post-processing to suppress distractors
effectively. It’s worth mentioning that our method is al-
most cost-free. We conduct numerous experimental vali-
dations and analyses of our approach on several challeng-
ing sequences and datasets. Our tracker runs at approxi-
mately 40 fps and performs well on those sequences which
include the Background Clutter attribute. Finally, by simul-
taneously integrating the IoU-Guided penalty and the Han-
ning window penalty with a strong baseline tracker TransT
[7], our method achieves favorable gains by 69.1→71.5,
65.7→66.7, 64.9→65.9 success on OTB-100 [32], LaSOT
[12], NFS [18].

1. Introduction

Generic visual object tracking is a significant and fun-
damental task in computer vision. Given the initial state,
this task involves estimating or predicting the state of the

† Corresponding author.

Figure 1. Drift problem due to ignoring the motion information.
The green bounding boxes imply the target. The orange curves
imply the trajectories of the target. The red bounding boxes imply
the prediction generated based on the motion information. The
blue bounding box implies the wrong decision that violates the as-
sumption of motion continuity. The arrows represent the velocities
of different objects.

target object. Most prior researches concentrate on design-
ing a robust appearance model to differentiate the target and
the background. The two currently dominating paradigms
are Siamese networks [19,28,41] and discriminative appear-
ance models [4, 10]. The former aims at learning to con-
struct a feature embedding space that is optimal for template
matching. The latter focuses on learning robust discrimi-
native features usually equipped with online learning. Al-
though these researches achieve remarkable improvements
on numerous benchmarks, the robustness of the tracking al-
gorithm is still far from perfect, especially on the challenge-
able attributes and the occasions of the open world. For ex-
ample, the drift problem caused by visual distractors with
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similar semantics is a tough nut to crack.
Drifting is a common phenomenon in visual tracking. It

seriously weakens the robustness of the tracking algorithms
and causes continual failures of subsequent frames. Gener-
ally, it may be related to many difficult attributes, such as
illumination variation, background clutter and similar ob-
jects, etc. However, it is worth noting that most drifts es-
sentially violate the assumption of motion continuity. As
demonstrated in Fig 1, the predicted bounding box marked
as blue drifts to the distractor at the 88th frame due to ig-
noring the motion information. If we exploit the motion
information to predict a reference box like the red bound-
ing box in Fig 1, we can select the right target marked as
green and solve the drift problem. Nevertheless, the current
Siamese tracking algorithms have ignored this significant
prior knowledge but adopted a Hanning window penalty as
an implicit spatial constraint.

The Hanning window penalty was first proposed in
SiamFC [2]. It has been generally integrated by most of the
Siamese networks. However, this penalty has the following
disadvantages.

1. The Hanning window penalty passively trusts the
previous prediction but ignores the motion infor-
mation. The maximum of the Hanning window is
fixed at the center of the previously predicted bound-
ing box. When the previous decision actually drifts
to distractors, this penalty is likely to suppress the real
target in the current frame. It would prevent the system
from correcting the output.We name this phenomenon
winner-take-all.

2. The Hanning window penalty only has effects on
constraining the center positions of the regressed
bounding boxes rather than the overlaps (generally
evaluated by IoUs) between the regressed bounding
boxes and the ground truth box. The value of the
Hanning function is determined by the 2D coordinate
(x, y). Thus, it cannot guarantee the motion continuity.

Therefore, we infer that this penalty acts as an implicit
penalty which may not be optimal and may aggravate the
drift problem. Hence, it is natural to raise two correspond-
ing questions:

1. How can we actively exploit motion information to
generate a new reference box rather than use the previ-
ously predicted bounding box?

2. How can we use the reference box to construct an ex-
plicit IoU constraint rather than the implicit center po-
sition constraint?

In this work, we explicitly exploit the motion informa-
tion to construct a direct penalty and mitigate the drift prob-
lem. Firstly, in order to use the motion information to pre-

dict a reference bounding box in the current frame, we ex-
plore two common methods (the Kalman filter and the op-
tical flow). On the one hand, we follow the classical algo-
rithms SORT [3] and DeepSORT [31] in multi-object track-
ing to design our Kalman filter. Notably, We just adopt a
simple linear Kalman filter to predict a reference bounding
box of the target in the current frame. On the other hand, we
follow the previous research MedianFlow [16] based on the
optical flow for prediction. We compare these two methods
and find that the simple linear Kalman filter performs more
effectively than the complicated MedianFlow [16]. Sec-
ondly, in order to construct an explicit spatial constraint,
we use the prediction of the motion model (the Kalman fil-
ter) as a reference box. We calculate the intersection over
union (IoU) between the reference box and all of the re-
gressed bounding boxes exported by the Siamese networks.
We name this novel penalty IoU-Guided Penalty. Then, we
combine the classification scores with the calculated ious
and select the bounding box ranked first as the final predic-
tion. Finally, numerous qualitative and quantitative experi-
ments are organized to verify the effectiveness and univer-
sality of our method. Our method effectively mitigates the
drift problem and performs well on several benchmarks.

The main contributions of this work are threefold.

• We analyze the causes of the drift problem in visual
tracking and the disadvantages of the current Hanning
window penalty.

• We explore and compare two common methods for
motion prediction and select a cost-free scheme to pre-
dict a reference box to approximate the ground truth
box in the current frame.

• We propose a novel IoU-Guided penalty and explore a
suitable way to combine the classification scores with
the calculated ious for the final decision. By integrat-
ing the IoU-Guided penalty into the baseline tracker
TransT [7], it achieves remarkable performance gains
with neglectable time cost running at 40 fps and suc-
cessfully mitigates the drift problem.

2. Related Work
In this section, we review the related work about the drift

problem and distractors in visual object tracking, as well as
introduce the ways to exploit motion information of tradi-
tional methods before deep learning era.

2.1. The Drift Problem and Distractors

In visual tracking, appearance models are the most sig-
nificant components of the whole pipeline. Most prior re-
searches have focused on the design of robust appearance
models and appearance features to locate the target object
in each frame. However, it may be impossible to only use
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Figure 2. Overview of the proposed tracking framework, consisting of an appearance model (top) and a motion model (bottom). The
appearance model may be anchor-based models (SiamRPN++ [19]) or Transformer- based models (TransT [7]). The motion model can be
a linear Kalman filter or MedianFlow [16].

appearance features for decisions, especially when there are
other similar objects in the scene. The two currently domi-
nating paradigms are Siamese networks and discriminative
appearance models. While Siamese networks [2,19,20] ex-
ploit a Hanning window penalty to suppress distractors, dis-
criminative appearance models [4, 10, 14] aim to mitigate
drifting by integrating background information when learn-
ing the target classifier online. Although these methods en-
hance the robustness of the output bounding box, the ca-
pacity for distinguishing different objects is limited. Thus,
a few approaches have been proposed to deal with distrac-
tors. Xiao et al. [33] describe the positions of distractors
and design a few hand-crafted rules to differentiate similar
objects. DaSiamRPN [41] tackles distractors by subtract-
ing corresponding image features from the target template
during online tracking. SiamRCNN [28] refers to the clas-
sical data association ideology of multi-object tracking us-
ing dynamic programming and a hand-crafted association
score to form short tracklets. It also resorts to hard example
mining to improve its robustness. KYS [5] uses a RNN to
transfer information about the scene across frames. It main-
tains learnable state vectors to record the context. Keep-
Track [22] introduces a learnable graph embedding network
that explicitly associates target candidates from frame to
frame. In contrast, we describe motion information to pre-
dict a reference bounding box for decisions.

2.2. Motion Information in Tracking

In visual tracking before deep learning era, motion mod-
els [36] act as important prior constraints and enhance the
robustness of the output in many constrained scenes. Be-
sides, estimating the trajectory and the state of the target
object is another vital process. In Point Tracking, the deter-

ministic methods [27] use qualitative motion heuristics to
constrain the correspondence problem while the statistical
correspondence methods [6] use the state space approach to
model the object properties such as position, velocity, and
acceleration. In Kernel Tracking [9, 24, 26], the object mo-
tion is generally in the form of parametric motion (transla-
tion, conformal, affine, etc.) or the dense flow field com-
puted in subsequent frames. In Silhouette Tracking [1, 15],
the object state is defined in terms of the shape and the mo-
tion parameters of the contour. Moreover, the Kalman fil-
ter has been extensively used in the vision community for
tracking. SORT [3] and DeepSORT [31] describe a linear
Kalman filter to predict the bounding box of the target ob-
ject and use it as a reference to finish object association. In
addition, the optical flow is another regular method to build
the correspondence of pixels across frames. In this work,
we use these two regular methods to achieve our goal, pre-
dicting the motion of the target object.

By the way, there are two similar works [30, 40] that at-
tempt to integrate the Kalman filter with Siamese networks.
However, these works concentrate on croping a more ap-
propriate searching window rather than selecting the best
sample when using motion information. Meanwhile, our
method performs better with strong universality.

3. Methodology

Here, we describe our tracking approach, which actively
exploits the motion information to predict a reference box
and uses it to construct a novel IoU-Guided penalty. Firstly,
we introduce the pipeline of our tracking method. Secondly,
in order to predict a reference box, we explore two common
motion methods (the Kalman filter and MedianFlow [16]
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based on the optical flow). We compare these two methods
and summarize the differences between them. Finally, we
analyze the disadvantages of the current Hanning window
penalty and propose a novel IoU-Guided penalty to better
exploit the predicted reference box and construct an explicit
spatial constraint.

3.1. Overview

Firstly, we give an overview of our tracking pipeline,
which is shown in Fig 2. The submodule in the red dashed
box is the same as typical Siamese Tracking algorithms. We
employ a Siamese network to extract appearance features
and export the classification scores map and correspond-
ing regression boxes. The Siamese network may not be re-
stricted to a specific architecture. We name this characteris-
tic model-free. Besides, The submodule in the blue dashed
box is the core motion module which can be set as one of
the above modules, the Kalman filter or MedianFlow [16].
The output of the motion module is a reference bounding
box. Then, we use it to calculate IoUs with the regression
bounding boxes exported by the appearance model. We
combine the IoUs with the classification scores and select
the maximum value together with its corresponding regres-
sion bounding box as the final prediction. In the end, we
use the final output bounding box to update the state of the
target which is a vital step for the motion model. Notably,
our method works with no need for training. Both the
motion model and the IoU-Guided penalty act as an effec-
tive post-processing to suppress distractors.

3.2. Motion Model

Secondly, in order to answer the first question men-
tioned in the Introduction, we introduce two common mo-
tion methods, the Kalman filter and MedianFlow [16].

The Kalman filter is an efficient recursive filter, which
can estimate the state of a dynamic system with noise.
We follow SORT [3] and DeepSORT [31], assume that
the state noise has a Gaussian distribution and describe
a linear Kalman filter to predict the next state. The
state of the target is modelled as eight dimensional vector
[x, y, γ, h, ẋ, ẏ, γ̇, ḣ] that contains the bounding box center
position [x, y], aspect ratio γ, height h, and their respective
velocities in image coordinates. The typical Kalman filter
contain two steps, Predict and Update.

Predict:

1. Extrapolate the state.
x̂n+1,n = Fx̂n,n

2. Extrapolate the uncertainty.
Pn+1,n = FPn,nF

T +Q

x̂n+1,n represents the predicted state vector about the
reference bounding box. F represents the state transition

matrix. Q represents the process noise uncertainty. P im-
plies the uncertainty of the state.

Update:

1. Compute the Kalman Gain.
Kn = Pn,n−1H

T(HPn,n−1H
T +Rn)

−1

2. Update the measurement.
x̂n,n = x̂n,n−1 +Kn(zn −Hx̂n,n−1)

3. Update the uncertainty.
Pn,n = (I−KnH)Pn,n−1(I−KnH)T

+KnRnK
T
n

zn represents the final bounding box which is deter-
mined by our method. Kn represents the Kalman Gain. H
implies the observation matrix. R implies the measurement
uncertainty. These above-mentioned two steps are running
iteratively. Although assuming simple linear property, the
filter has acceptable prediction accuracy and can stabilize
the prediction. Notably, the Kalman filter predicts the refer-
ence box as a whole. By contrast, MedianFlow [16] predicts
the reference box based on the pixels rather than a whole
box.

MedianFlow [16] is a classical tracker based on optical
flow which has been incorporated in the OpenCV tracking
library. The well-known TLD [17] tracking algorithm em-
ploys MedianFlow as its base tracker. Given a pair of im-
ages It, It+1, and a bounding box bt, this tracker outputs the
predicted bounding box in frame t+ 1. Concretely, a set of
points is initialized on a rectangular grid within the bound-
ing box bt. These points are marked as reference points and
tracked using the Lucas-Kanade optical flow method which
generates the new predictions. Then, we calculate FB er-
rors and NCC errors used in MedianFlow [16] as a quality
indicator and filter out 50% of the worst predictions. The
remaining predictions are used to estimate the displacement
of the bounding box. Estimation of the bounding box dis-
placement from these predictions is performed naively us-
ing median over each spatial dimension.

In summary, the Kalman filter can model the motion pat-
tern based on the motion history and estimate the state of the
target as a whole even if with noise. By contrast, Median-
Flow [16] can predict the displacement based on the motion
of the pixels. It only requires two adjacent frames, an initial
box and reference points as inputs but may fail due to some
noise. Both of these two methods can exploit the motion
information to generate a reference box.

3.3. IoU-Guided Penalty

After generating a reference bounding box, there re-
mains the second question mentioned in the section 1. It is
worth noting that the intersection over union (IoU) acts as
a significant indicator which has been widely ignored dur-
ing inference. When training Siamese networks, the regres-
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Figure 3. Hanning window penalty located at the purple center
of the reference box. The magenta point implies the center of the
search region. The dark blue box is the reference box. The three
orange boxes centered at the red square are corresponding to three
aspect ratios in anchor-based tracking algorithms. The red and
black squares represent two different positions that possess iden-
tical Hanning window penalty scores but different IoUs with the
reference box.

sion losses are always formulated using the IoU between the
predicted bounding box and the ground-truth bounding box.
However, there is only a fixed Hanning window penalty to
suppress distractors during inference. The formula of the
Hanning function is demonstrated below:

h(u) =

[
0.5− 0.5cos

(
2πu

M − 1

)]
w(x, y) = h(x) · h(y)
∀0 ≤ x, y ≤ M − 1

M represents the output size of the final feature map. (x, y)
represents the coordinate in this feature map. Apparently,
this function only has effects on constraining the center po-
sitions of the regressed bounding boxes rather than the IoU
with the reference box. In order to demonstrate the draw-
backs of the Hanning window penalty, we visualize it in
Fig 3. The dark blue dashed box refers to the reference
bounding box. In anchor- based Siamese methods, the three
orange dashed boxes are corresponding to three different
aspect ratios centered at p1. Apparently, these three bound-
ing boxes possess different IoUs with the reference box but
identical Hanning penalty scores. Besides, the red square
p1 and the black square p2 represent two positions which
have an identical penalty score. In TransT [7], the regressed
bounding boxes centered at p1 and p2 probably possess dif-
ferent IoUs with the reference box.

Based on the above observation, we conclude that the
Hanning window penalty is an indirect way to build the
spatial constraint. It cannot evaluate and distinguish the re-
gressed bounding boxes with different IoUs but identical
penalty scores. Therefore, it is natural to use IoUs to con-

struct the spatial constraint. Concretely, we calculate IoUs
between the reference box and all of the regressed boxes ex-
ported by Siamese networks. Besides, we use the results as
a new penalty score and name our novel spatial constraint
IoU-Guided Penalty. In Experiments, we verify the effec-
tiveness of our new penalty for solving the drift problem
and suppressing distractors.

4. Experiments
4.1. Implementation Details

We adopt the anchor-based tracker SiamRPN++ [19] or
the Transformer-based tracker TransT [7] as the appearance
model due to their outstanding performances. The appear-
ance model is fixed and only the Hanning window penalty is
changed. We copy the parameters of the Kalman filter from
DeepSORT [31]. For MedianFlow [16], we set the window
size as 3, the pyramid levels as 5. Our method works with
no need for training.

4.2. Schemes for Generation and Combination

Firstly, in order to generate the reference bounding box
mentioned above, we adopt and compare four different
methods named Prev, KF, FlowKF, FlowPrev. Prev means
using the last previous final output box as the current refer-
ence box. KF implies using a linear Kalman filter to predict
the reference box. FlowKF means using MedianFlow [16]
for prediction and switching to KF when failed. FlowPrev
implies using MedianFlow [16] for prediction and switch-
ing to Prev when failed. Meanwhile, in order to combine
the calculated ious with the classification scores, we explore
three different ways named Add, Multiply, NonLinear re-
spectively.

• Add: (1− w)× s+ w × ious

• Multiply: s× ious

• NonLinear: ious+ s× (2− s)

s represents the classification score and ious represents the
calculated ious. w represents the weight of the calculated
ious and is set to 0.5. The NonLinear function changes
more smoothly than the Multiply style which can reserve
more proposals with high ious.

Then, we use TransT as the base model and compare dif-
ferent combinations between the ways to generate the refer-
ence box and the ways to combine the calculated ious with
the classification scores. The results are shown in Table 1.
On the one hand, KF surprisingly achieves the best perfor-
mance even if we only adopt a simple linear Kalman fil-
ter. By contrast, FlowKF and FlowPrev perform unsatis-
factorily even if with complicated designs. We infer that
the inferior performance of MedianFlow [16] results from
the drastic motion of the camera or the target and it would
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Table 1. Exploring the best scheme. The different columns rep-
resent different ways to generate the reference box. The different
rows represent different ways to combine the classification scores
with the IoU-Guided scores. The values in this table represents the
AUC scores on OTB-100 [32].

Method Prev KF FlowKF FlowPrev

Add 0.694 0.709 0.690 0.693

Multiply 0.694 0.691 0.680 0.685

Nonlinear 0.678 0.681 0.688 0.689

cause a lot of failures. Moreover, MedianFlow [16] essen-
tially cannot model the long-term motion pattern. On the
other hand, the simplest scheme Add surpasses others ap-
parently. We infer that weighted summation is suitable to
build the spatial constraint but multiplication and nonlin-
ear operation weaken the importance of the classification
scores.

In summary, we select the KF to predict the reference
box and the weighted summation Add as the final scheme.

4.3. Effectiveness and Universality

Secondly, we compare four penalty methods, Np, Han-
ning, HanningWM, and our novel IoU-Guided penalty re-
spectively. Np means that the original Hanning window
penalty is removed. It acts as a baseline about penalty
methods. HanningWM is another penalty that we fix the
Hanning window at the center position predicted by the
Kalman filter. For our IoU-Guided penalty, we select the
best scheme determined in the above section. Then, we
compare these four methods on LaSOT [12] and OTB-100
[32] using SiamRPN++ [19] and TransT [7] respectively.
As shown in Table 2, SiamRPN++ [19] with IoU-Guided
penalty increases 8.8% relatively compared with no penalty
on OTB-100 [32]. Besides, TransT [7] with IoU-Guided
penalty increases about 4% relatively on OTB-100 [32] and
LaSOT [12]. Notably, our IoU-Guided penalty achieves the
best AUC and precision score when based on TransT [7].

Figure 4. Visualization of results comparison on Background Clut-
ters attribute, OTB-100 [32]

Table 2. Comparison of four different penalty methods. Dc
implies whether to apply distance constraints like Hanning win-
dow. Mo implies whether to apply the motion model. Ic implies
whether to apply IoU constraints.

Base Penalty Dc Mo Ic
OTB-100 LaSOT

Succ. Prec. Succ. Prec.

SR
PN

++

Np 0.643 0.833 0.498 0.492

Hanning ! 0.696 0.905 0.495 0.488

HanningWM ! ! 0.660 0.860 0.504 0.497
IoU-Guided∗ ! ! 0.700 0.905 0.499 0.493

Tr
an

sT

Np 0.679 0.873 0.628 0.668

Hanning ! 0.691 0.893 0.649 0.690

HanningWM ! ! 0.700 0.906 0.650 0.690

IoU-Guided∗ ! ! 0.709 0.917 0.654 0.691

The results can verify the effectiveness and universality of
our method on the one hand.

On the other hand, in order to verify the effectiveness of
our IoU-Guided penalty for solving the drift problem, we
compare the calculated IoUs with different penalty meth-

Figure 5. Comparisons of four different penalty methods on the
Crowds of OTB-100 [32]. Only the IoU-Guided penalty can al-
ways track the target. The other methods fail since the 40th frame.
The yellow box in the bottom left image is the ground-truth box.
The red, blue, green and dashed black boxes correspond to the
items in the legend demonstrated in the top figure.
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ods on the Crowds sequence of OTB-100 [32] and visualize
them in Fig 5. The IoU-Guided penalty can always track the
target even if there are many distractors. On the contrary,
other methods fail since the 40th frame due to distractors
and drift to a distant position which violates the assump-
tion of motion continuity. Meanwhile, we compare these
four methods on the specific Background Clutters attribute
on OTB-100 [32] and demonstrate the results in Fig 4. The
IoU-Guided penalty surpasses other methods apparently.

4.4. Comparison with Baseline and State-of-the-art

Finally, we combine the IoU-Guided penalty with the
Hanning window penalty as the final constraint and com-
pare the performance on several benchmark datasets with
the baseline which only exploits the Hanning window
penalty. As shown in Table 3, the combination of the IoU-
Guided penalty and the Hanning window penalty achieves
the best performance and runs at approximately 40 fps,
which explicitly satisfies the requirement of real-time track-
ing. We infer that the combination can simultaneously
constrain the spatial distance and the overlap between
the reference bounding box and all the regression boxes.
Meanwhile, our tracker with IoU-Guided penalty based on
TransT [7] performs well on three benchmarks, achieving
an AUC score of 71.5% on OTB-100 [32], 66.7% on NFS
[18] and 65.9% on LaSOT [12]. The results are demon-
strated in Table 3.

5. Conclusion

In this work, we explore the motion information to mit-
igate the drift problem in visual tracking. Qualitative and
quantitative analyses imply that the typical Hanning win-
dow penalty may not be the optimal penalty style to act as
the spatial constraint. We demonstrate the disadvantages
of the Hanning window penalty and propose a novel IoU-
Guided penalty based on the prediction of the motion. We
find that the prediction of a linear Kalman filter can sur-
prisingly improve the performance. Notably, our method is
cost-free, model-free and with no need for training. Mean-
while, we believe that the post-processing is too simple
to throughly solve the drift problem. In future work, we
will explore more effective post-processing methods (e.g.
RNN), stabilize the output bounding box and improve the
accuracy.
Acknowledgment This work was supported by the
National Key R&D Program of China (Grant No.
2018AAA0102802, 2018AAA0102800), the Natural Sci-
ence Foundation of China (Grant No. U2033210,
62172413, 61972394, 62036011, 62192782, 61721004),
the Key Research Program of Frontier Sciences, CAS
(Grant No. QYZDJ-SSW-JSC040), the China Postdoctoral
Science Foundation (Grant No. 2021M693402). Jin Gao

Table 3. Result comparisons on three tracking benchmarks. The
red and blue indicate performances ranked at the first and second
places.

Method
OTB-100 [32] LaSOT [12] NFS30 [18]

Succ. Prec. Succ. Prec. Succ.

SiamFC [2] 58.7 77.2 33.6 33.9 -

MDNet [23] 67.8 90.9 39.7 37.3 -

ECO [11] 69.1 91.0 32.4 30.1 -

VITAL [25] 69.1 91.7 39.0 36.0 -

GradNet [21] 63.9 86.1 36.5 35.1 -

SiamDW [38] 67.4 90.5 38.4 35.6 -

SiamRPN++ [19] 69.6 92.3 49.6 49.1 -

ATOM [10] 66.7 87.9 51.5 50.5 59.0

DiMP [4] 68.6 89.9 56.9 56.7 62.0

SiamFC++ [34] 68.3 91.2 54.3 54.7 -

MAMLTrack [29] 71.2 92.6 52.3 53.1 -

SiamAttn [35] 71.2 92.6 56.0 - -

SiamCAR [13] - - 50.7 51.0 -

SiamBAN [8] 69.6 91.0 51.4 52.1 59.4

KYS [5] 69.5 91.0 55.4 55.8 63.5

Ocean [39] 67.2 90.2 52.6 52.6 -

SiamRCNN [28] 70.1 89.1 64.8 72.2 63.9

AutoMatch [37] 71.4 92.6 58.3 59.9 -

TransT [7] (base) 69.1 89.3 64.9 69.0 65.7

Ours (40fps) 71.5 92.3 65.9 70.2 66.7
∆ +2.4% +3% +1.0% +1.2% +1.4%

was also supported in part by the Youth Innovation Promo-
tion Association, CAS.

References
[1] Marcelo Bertalmio, Guillermo Sapiro, and Gregory Randall.

Morphing active contours. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(7):733–737, 2000. 3

[2] Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea
Vedaldi, and Philip H. S. Torr. Fully-convolutional siamese
networks for object tracking, June 2016. 2, 3, 7

[3] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and
Ben Upcroft. Simple online and realtime tracking. In 2016
IEEE international conference on image processing (ICIP),
pages 3464–3468. IEEE, 2016. 2, 3, 4

[4] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu
Timofte. Learning discriminative model prediction for track-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 6182–6191, 2019. 1, 3, 7

[5] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu
Timofte. Know your surroundings: Exploiting scene infor-

1930



mation for object tracking, Mar. 2020. 3, 7
[6] Ted J Broida and Rama Chellappa. Estimation of object mo-

tion parameters from noisy images. IEEE transactions on
pattern analysis and machine intelligence, (1):90–99, 1986.
3

[7] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang,
and Huchuan Lu. Transformer tracking, 2021. 1, 2, 3, 5, 6, 7

[8] Zedu Chen, Bineng Zhong, Guorong Li, Shengping Zhang,
and Rongrong Ji. Siamese box adaptive network for visual
tracking. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 6668–6677,
2020. 7

[9] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer.
Kernel-based object tracking. IEEE Transactions on pattern
analysis and machine intelligence, 25(5):564–577, 2003. 3

[10] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and
Michael Felsberg. Atom: Accurate tracking by overlap max-
imization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4660–
4669, 2019. 1, 3, 7

[11] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and
Michael Felsberg. Eco: Efficient convolution operators
for tracking. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 6638–6646,
2017. 7

[12] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia
Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling.
Lasot: A high-quality benchmark for large-scale single ob-
ject tracking. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5374–
5383, 2019. 1, 6, 7

[13] Dongyan Guo, Jun Wang, Ying Cui, Zhenhua Wang, and
Shengyong Chen. Siamcar: Siamese fully convolutional
classification and regression for visual tracking. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 6269–6277, 2020. 7

[14] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge
Batista. High-speed tracking with kernelized correlation fil-
ters. IEEE transactions on pattern analysis and machine in-
telligence, 37(3):583–596, 2014. 3

[15] Michael Isard and Andrew Blake. Condensa-
tion—conditional density propagation for visual tracking.
International journal of computer vision, 29(1):5–28, 1998.
3

[16] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas.
Forward-backward error: Automatic detection of tracking
failures. In 2010 20th international conference on pattern
recognition, pages 2756–2759. IEEE, 2010. 2, 3, 4, 5, 6

[17] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas.
Tracking-learning-detection. IEEE transactions on pattern
analysis and machine intelligence, 34(7):1409–1422, 2011.
4

[18] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva
Ramanan, and Simon Lucey. Need for speed: A benchmark
for higher frame rate object tracking. In Proceedings of the
IEEE International Conference on Computer Vision, pages
1125–1134, 2017. 1, 7

[19] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing,
and Junjie Yan. Siamrpn++: Evolution of siamese vi-
sual tracking with very deep networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4282–4291, 2019. 1, 3, 5, 6, 7

[20] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.
High performance visual tracking with siamese region pro-
posal network. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
8971–8980, Salt Lake City, UT, USA, 2018. IEEE. 3

[21] Peixia Li, Boyu Chen, Wanli Ouyang, Dong Wang, Xiaoyun
Yang, and Huchuan Lu. Gradnet: Gradient-guided network
for visual object tracking. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 6162–
6171, 2019. 7

[22] Christoph Mayer, Martin Danelljan, Danda Pani Paudel, and
Luc Van Gool. Learning target candidate association to keep
track of what not to track, Mar. 2021. 3

[23] Hyeonseob Nam and Bohyung Han. Learning multi-domain
convolutional neural networks for visual tracking. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 4293–4302, 2016. 7

[24] Jianbo Shi et al. Good features to track. In 1994 Proceedings
of IEEE conference on computer vision and pattern recogni-
tion, pages 593–600. IEEE, 1994. 3

[25] Yibing Song, Chao Ma, Xiaohe Wu, Lijun Gong, Linchao
Bao, Wangmeng Zuo, Chunhua Shen, Rynson WH Lau,
and Ming-Hsuan Yang. Vital: Visual tracking via adver-
sarial learning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8990–8999,
2018. 7

[26] Hai Tao, Harpreet S Sawhney, and Rakesh Kumar. Object
tracking with bayesian estimation of dynamic layer represen-
tations. IEEE transactions on pattern analysis and machine
intelligence, 24(1):75–89, 2002. 3

[27] Cor J Veenman, Marcel JT Reinders, and Eric Backer. Re-
solving motion correspondence for densely moving points.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 23(1):54–72, 2001. 3

[28] Paul Voigtlaender, Jonathon Luiten, Philip H.S. Torr, and
Bastian Leibe. Siam r-cnn: Visual tracking by re-detection.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020. 1, 3, 7

[29] Guangting Wang, Chong Luo, Xiaoyan Sun, Zhiwei Xiong,
and Wenjun Zeng. Tracking by instance detection: A meta-
learning approach. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
6288–6297, 2020. 7

[30] Youming Wang and Xiaoyang Mu. Dynamic siamese net-
work with adaptive kalman filter for object tracking in com-
plex scenes. IEEE Access, 8:222918–222930, 2020. 3

[31] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple
online and realtime tracking with a deep association metric.
In 2017 IEEE international conference on image processing
(ICIP), pages 3645–3649. IEEE, 2017. 2, 3, 4, 5

[32] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object
tracking: A benchmark. In Proceedings of the IEEE con-

1931



ference on computer vision and pattern recognition, pages
2411–2418, 2013. 1, 6, 7

[33] Jingjing Xiao, Linbo Qiao, Rustam Stolkin, and Aleš
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