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Abstract

Cross-view image generation has been recently proposed
to generate images of one view from another dramatically
different view. In this paper, we investigate third-person (ex-
ocentric) view to first-person (egocentric) view image gen-
eration. This is a challenging task since egocentric view
sometimes is remarkably different from exocentric view.
Thus, transforming the appearances across the two views
is a non-trivial task. To this end, we propose a novel Paral-
lel Generative Adversarial Network (P-GAN) with a novel
cross-cycle loss to learn the shared information for generat-
ing egocentric images from exocentric view. We also incor-
porate a novel contextual feature loss in the learning pro-
cedure to capture the contextual information in images. Ex-
tensive experiments on the Exo-Ego datasets [5] show that
our model outperforms the state-of-the-art approaches.

1. INTRODUCTION
Wearable cameras, also known as first-person cameras,

nowadays are widely used in our daily lives since the ap-
pearance of low price but high quality wearable products
such as GoPro cameras. Meanwhile, egocentric (first-
person) vision is also becoming a critical research topic in
the field. As we know, egocentric view have some unique
properties other than exocentric (third-person) view. Tradi-
tional exocentric cameras usually give a wide and global
view of the high-level appearances happened in a video.
However, egocentric cameras can capture the objects and
people at a much finer level of granularity. In the early
egocentric vision studies, researchers [13] found that people
perform different activities or interacting with objects from
a first-person egocentric perspective and seamlessly trans-
fer knowledge between egocentric and exocentric perspec-
tive. Therefore, analyzing the relationship between egocen-
tric and exocentric perspectives is an extremely useful and
interesting topic for image and video understanding. How-
ever, there is few research to address this important problem
in literature.

Recently, Generative Adversarial Networks (GANs) [11]
have been shown effectively in image generation tasks.
Isola et al. [12] propose Pix2Pix adversarial learning frame-
work on paired image generation, which is a supervised
model and uses a conditional GAN framework to learn a
translation function from input to output image domain.
Zhu et al. [45] introduce CycleGAN which develops cycle-
consistency constraint to deal with unpaired image genera-
tion. However, these existing works consider an application
scenario in which the objects and the scenes have a large de-
gree of overlapping in appearance and view. Recently, some
works investigate cross-view image generation problems to
generate a novel scene which is drastically different from a
given scene image. This is a more challenging task since
different views share little overlap information. To tackle
this problem, Regmi and Borji [26] propose X-Fork and X-
Seq GAN-based architecture using an extra semantic seg-
mentation map to facilitate the generation. Moreover, Tang
et al. [35] propose a multi-channel attention selection mod-
ule within a GAN framework for cross-view image genera-
tion. However, these methods are not able to generate sat-
isfactory results due to the drastically differences between
exocentric and egocentric views.

To bridge egocentric and exocentric analaysis, in this pa-
per we propose a novel Parallel GAN (P-GAN) to gener-
ate exocentric images from egocentric view. P-GAN frame-
work is able to automatically learn the shared information
between two parallel generation tasks via a novel cross-
cycle loss and hard-sharing of network layers. We also uti-
lize a novel contextual loss in our objective function to cap-
ture texture information over the entire images. To the best
of our knowledge, we are the first to attempt to incorporate
a parallel generative network for exocentric to egocentric
image translation. The proposed P-GAN is related to Co-
GAN [18] and DualGAN [42]. However, CoGAN and Du-
alGAN have limited ability in generating image pairs with
dramatically different viewpoints. As shown in Fig. 1, our
architecture is designed in a bi-directional parallel fashion
to discover the shared information between egocentric and
exocentric images. Two parallel GANs are trained simulta-
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Figure 1. The pipeline of our P-GAN model. It consists of two parallel generators (G1, G2) and two discriminators (D1, D2). The total
loss contains pairs of L1 loss, contextual loss and adversarial loss.

neously with hard-sharing of certain layers.
In summary, our contributions can be highlighted as fol-

lows:

• A novel P-GAN is proposed to learn the shared infor-
mation between different views simultaneously via a
novel cross-cycle loss.

• A novel contextual feature loss is incorporated in the
training to capture the contextual information.

• Experiments on Exo-Ego dataset show the effective-
ness of our hard-sharing of network layers in multi-
directional parallel generative models. The early ver-
sion of this paper appeared in [17].

2. Related Work
In this section, we review related work about Generative

Adversarial Networks, Egocentric Vision and Synthesis.

2.1. Generative Adversarial Networks (GANs)

Over the last few years, GANs [10] have been shown ef-
fectively in many image generation tasks [12,32,36,45]. For
example, Isola et al. [12] propose Pix2Pix adversarial learn-
ing framework for paired image generation. Zhu et al. [45]
introduce CycleGAN which developed cycle-consistency
constraint to deal with unpaired image generation. How-
ever, these works aim to generate images which have a large
degree of overlapping in the appearance and view with in-
put images. Synthesis is much more challenging when the

generation is conditioned on images with drastically differ-
ent views. Recently, researchers investigate cross-view im-
age generation problems [27]. This is a more challenging
task since different views share little overlap information.
To tackle this problem, Krishna et al. [26] propose X-Fork
and X-Seq GAN-based architecture using an extra seman-
tic map to facilitate generation. Tang et al. [35] propose a
semantic-guided multi-channel attention selection module
within a GAN framework for cross-view image generation.
However, these methods are limited to cross-view image
generation task, they are not able to generate satisfactory
results for cross-view video generation.

2.2. Egocentric Vision

Egocentric vision has been recently explored in the com-
puter vision field [1, 7, 8, 21, 24, 25, 37, 43]. Aghazadeh
et al. [1] propose an approach for discovering anomalous
events from videos captured from a small camera attached
to a person’s chest. Fathi et al. [8] introduce a method for
individuating social interactions in first-person videos col-
lected during social events. Some recent works [7, 21, 24,
29,37] have focused on activity analysis considering differ-
ent scenarios (e.g., kitchen, office, home). Xu et al. [41]
propose a semi-Siamese CNN architecture to address the
person-level correspondences across first- and third-person
videos. They formulate the problem as learning a joint em-
bedding space for first- and third-person videos that consid-
ers both spatial- and motion-domain cues.
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2.3. Synthesis

There is few recent work investigate image and video
generation problem [3,6,9,16,30]. TGAN [30] directly gen-
erate video clips from noise by using generative adversarial
networks. MoCoGAN [39] employ unsupervised adversar-
ial training to decompose motion and content to control the
image-to-video generation. Pan et al. [22] work on video-
to-video translation to generate a sequence of frames from
a sequence of aligned semantic representations. Some re-
cent works such as RecycleGAN [2] and Vid2Vid [40] learn
mapping between different videos and transferred motion
between faces and from poses to body, respectively. Frame-
works [18, 23, 38, 44] propose image generation networks
for 3D view synthesis.

However, existing frameworks on image/video genera-
tion require the input and output image/video scenes sharing
the similar architecture, which were insufficient for cross-
view image and video generation. Particularly, exocentric
to egocentric cross-view image/video generation has not yet
been studied in literature yet. Our method investigates both
cross-view generation and image/video generation in the
exocentric to egocentric perspective setting, which is more
challenging than various image/video generation problems.
To the best of our knowledge, this is the first attempt in lit-
erature.

3. Parallel GANs
In this section, we address the problem of generating im-

ages across two drastically different views, namely top-ego
view and side-ego view. We show the details of our network
architectures which captured the shared information in two
different viewpoints.

3.1. Network Architecture

Cross-view exocentric to egocentric image synthesis is a
challenging task, because these two views have little over-
lapping in image appearance. Most existing works on cross-
view image synthesis are based on GANs. A traditional
GAN consists of a generative model and a discriminative
model. The objective of the generative model is to syn-
thesize images resembling real images, while the objective
of the discriminative model is to distinguish real images
from synthesized ones. Both the generative and discrimi-
native models are realized as multi-layer perceptrons. Since
there will be some shared high-level concept information
in a pair of corresponding images between exocentric and
egocentric views, we propose a P-GAN with two GANs
in parallel which is able to learn the shared high-level se-
mantic information among different views. Fig. 1 shows
our framework which contains two generators and two dis-
criminators. A set number of layers from two generators
are shared across P-GAN. We force the first three layers of

two generators to have the identical structure and share the
weights, and the rest layers are task-specific. The experi-
ments show that sharing three layers of generators yield the
best performance.

Particularly, we employ U-Net [28] as the architecture
of our generators G1 and G2. We impose skip connection
strategy from down-sampling path to up-sampling path to
avoid vanishing gradient problem. To learn the shared in-
formation between exocentric and egocentric view, we per-
form hard-sharing in the first three layers of down-sampling
path. We adopt PatchGAN [12] for the discriminator D1

and D2. The feature maps for contextual loss are extracted
by the VGG-19 network pretrained on ImageNet.

3.2. Overall Optimization Objective

The training objective can be decomposed into four main
components which are contextual loss, adversarial loss,
cross-cycle loss and reconstruction loss.

3.2.1 Contextual loss.

Different from the commonly used L1 loss function which
compares pixels at the same spatial coordinates between the
generated image and the target image, we incorporate con-
textual loss in our P-GAN learning framework. The key
idea is to measure similarity between images at the high-
level feature space.

Given a generated fake image I ′ego and a real image
Iego in egocentric view, we obtain a list of VGG-19 [33]
features as Iego={Ii} and I ′ego={I ′j}, where Ii=ψi(Iego),
I ′j=ψ

j(I ′ego), ψ means VGG-19 feature. i, j are i-th and j-
th layer in the network ψ. The similarity between the gener-
ated image I ′ego and the real image Iego in egocentric view
can be defined as follows,

SIi,I′
j
= exp

(
1− 1− dij

minkdik + ζ

)
/h (1)

where dij is the cosine distance between Iego and I ′ego. We
define ζ=1e−5, h=0.5 in our experiments. The similarity
can be normalized as,

S̄ij =
SIi,I′

j∑
k SIi,I′

k

(2)

Then the contextual loss is formulated as follows,

Lcont(Ii, I
′
j) =

1

max(| Iego |, | I ′ego |)
∑
j

max S̄ij (3)

where | · | denotes the numbers of feature maps.

3.2.2 Cross-cycle loss.

As shown in Fig. 1, we employ U-Net [28] as our generators
G1 and G2. Each U-Net contains a down-sampling encoder
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Figure 2. Results generated by different methods on Side2Ego dataset. These samples were randomly selected for visualization purposes.
Columns from left to right are: Input, Pix2pix [12], CycleGAN [45], P-GAN (ours), X-Fork [26], X-Seq [26], SelectionGAN [35], P-GAN
+ Segmentation map (ours), Ground Truth.

EN which is a feature contracting path, and an up-sampling
decoder DE which is a feature expanding path. Inspired by
the U-net properties, we design a novel cross-cycle loss as
follows,

LX(G1, G2) =EIexo,I
′
exo

[∥Iexo −DE2(EN1(Iexo))∥1] +

λ1EIego,I
′
ego

[∥Iego −DE1(EN2(Iego))∥1]
(4)

3.2.3 Adversarial loss.

Recent works [4, 11, 19, 31, 34] have shown that one can
learn a mapping function by tuning a generator and a dis-
criminator in an adversarial way. Assuming we target to
learn a mapping G : Iexo→Iego from input exocentric im-
age Iexo to output egocentric image Iego. The generator G
is trained to produce outputs to fool the discriminator D.
The adversarial loss can be expressed as,

LGAN1
(G1, D1) =EIexo,Iego [logD1(Iexo, Iego)] +

EIexo,I
′
ego

[log(1−D1(Iexo, G1(Iexo)))]

(5)
LGAN2

(G2, D2) =EIego,Iexo
[logD2(Iego, Iexo)] +

EIego,I
′
exo

[log(1−D2(Iego, G2(Iego)))]

(6)
The adversarial loss is the sum of Eq. (5) and Eq. (6).

LGAN = LGAN1
(G1, D1) + λ2LGAN2

(G2, D2) (7)

3.2.4 Reconstruction loss.

The task of the generator is to reconstruct an image as close
as the target image. We use L1 distance in the reconstruc-

tion loss,

Lre(G1, G2) =EIexo,I
′
ego

[∥Iego −DE1(EN1(Iexo))∥1] +

λ3EIego,I
′
exo

[∥Iexo −DE2(EN2(Iego))∥1]
(8)

3.2.5 Overall loss.

The total optimization loss is a weighted sum of the above
losses. Generators G1, G2 and discriminators D1, D2 are
trained in an end-to-end fashion to optimize the following
objective function,

L = LGAN + λ4LX + λ5Lre + λ6Lcont (9)

where λi’s are the regularization parameters.

4. Experimental Results
In this section, we provide detailed experiment setup and

results.

4.1. Datasets

To explore the effectiveness of our proposed P-GAN
model, we compare our model with the state-of-the-art
methods on Exo-Ego dataset [5] which contains two dif-
ferent viewpoint subsets (Side2Ego and Top2Ego). This
dataset is challenging due to two reasons. First, it con-
tains dramatically different indoor and outdoor scenes. Sec-
ond, the dataset is collected simultaneously by an exocentric
camera (side and top view) and an egocentric body-worn
wearable camera. It includes a huge amount of blurred im-
ages for egocentric view. For Side2Ego subset, there are
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Figure 3. Results generated by different methods on Top2Ego dataset. These samples were randomly selected for visualization purposes.
Columns from left to right are: Input, Pix2pix [12], CycleGAN [45], P-GAN (ours), X-Fork [26], X-Seq [26], SelectionGAN [35], P-GAN
+ Segmentation map (ours), Ground Truth.

Table 1. SSIM, PSNR, Sharpness Difference (SD), KL score (KL) and Accuracy of different single-view image generation methods. For
these metrics except KL score, higher is better.

2*Dataset 2*Method 2*SSIM 2*PSNR 2*SD 2*KL Top-1 Top-5
Accuracy (%) Accuracy (%)

3*Top2Ego Pix2pix [12] 0.2514 15.0532 18.1002 62.74 ± 1.78 1.24 1.22 4.21 4.35
CycleGAN [45] 0.2806 15.5486 18.5678 52.09 ± 1.69 2.10 0.99 5.37 2.72

Ours 0.3098 17.0236 18.6043 31.46 ± 1.74 1.81 5.90 5.74 9.17
3*Side2Ego Pix2pix [12] 0.3946 16.0716 19.8664 75.27 ± 2.01 3.20 5.18 8.41 13.30

CycleGAN [45] 0.4017 15.9678 19.7533 62.41 ± 2.41 4.18 7.60 15.62 21.45
Ours 0.4908 17.9951 20.6521 13.92 ± 1.53 16.21 30.80 27.57 46.51

Table 2. SSIM, PSNR, Sharpness Difference (SD), KL score (KL) and Accuracy of different cross-view image generation methods. For
these metrics except KL score, higher is better.

2*Dataset 2*Method 2*SSIM 2*PSNR 2*SD 2*KL Top-1 Top-5
Accuracy (%) Accuracy (%)

4*Top2Ego X-Fork [26] 0.2952 15.8849 18.7349 63.96±1.74 0.8 1.22 3.16 4.08
X-Seq [26] 0.3522 16.9439 19.2733 54.91 ± 1.81 1.07 1.77 4.29 6.94

SelectionGAN [35] 0.5047 22.0244 19.1976 10.07 ± 1.29 8.85 16.55 24.32 33.90
Ours 0.5287 22.2891 19.2389 12.07 ± 1.69 9.76 29.67 24.80 51.79

4*Side2Ego X-Fork [26] 0.4499 17.0743 20.4443 51.20 ± 1.94 4.49 9.76 11.63 19.44
X-Seq [26] 0.4763 17.1462 20.7468 45.10 ± 1.95 6.51 12.70 11.97 19.36

SelectionGAN [35] 0.5128 18.3021 20.9426 7.26 ± 1.27 20.84 37.49 42.51 65.22
Ours 0.5205 19.4521 20.9684 25.25 ± 1.88 20.96 39.08 42.58 66.00

26,764 pairs of images for training and 13,788 pairs for test-
ing. For Top2Ego subset, there are 28,408 pairs for train-
ing and 14,064 pairs for testing. All images are in high-
resolution 1280×720 pixels.

4.2. Experimental Setup

We compare our P-GAN with both single-view image
generation methods [12, 45] and cross-view image gener-
ation methods [26, 35]. We adopt the same experimental
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setup as in [12, 26, 35]. All images are scaled to 256×256.
We enable image flipping and random crops for data aug-
mentation. To compute contextual loss, we follow [20] and
use the VGG-19 network to extract image feature maps pre-
trained on ImageNet. We train 35 epochs with the batch size
of 4. In our experiments, we set λ1=10, λ2=10, λ3=100,
λ4=10, λ5=1, λ6=1 in Eq. (4), (7), (8) and (9), respec-
tively. The state-of-the-art cross-view generation methods,
i.e., X-Fork [26], X-Seq [26] and SelectionGAN [35] uti-
lize segmentation map to facilitate target view image gen-
eration. To compare with these cross-view methods, we
adopt RefineNet [14, 15] to generate segmentation maps on
Side2Ego and Top2Ego subsets as in [26, 35]. The gener-
ated segmentation maps are used as the conditional input of
G1 and G2. The proposed P-GAN is implemented using
PyTorch.

4.3. Evaluation Metrics

We apply metrics such as top-k prediction accuracy and
KL score for evaluations as in [26, 35]. We also employ
pixel-level similarity metrics, i.e., Structural-Similarity
(SSIM), Peak Signal-to-Noise Ratio (PSNR) and Sharpness
Difference (SD). These metrics evaluate the generated im-
ages in a high-level feature space.

4.4. Quantitative Results

The quantitative results are presented in Tables 1 and 2.
We observe that our P-GAN achieves better results than
state-of-the-art methods in most cases. Compared with
single-view image generation methods, our P-GAN outper-
forms Pix2pix [12] and CycleGAN [45]. On the other hand,
we also achieve better results than other cross-view image
generation methods in most metrics while incorporating se-
mantic segmentation map as in the SelectionGAN [35].

4.5. Qualitative Results

Qualitative results are shown in Fig. 2 and Fig. 3. The
results confirm that the proposed P-GAN network has the
ability to transfer the image representations from exocentric
to egocentric view, i.e., objects are in the correct positions
for generated egocentric images. Results show that egocen-
tric images generated by P-GAN are visually much better
compared with other baselines.

5. Conclusions
In this paper, we introduce a novel P-GAN which is able

to learn shared information between cross-view images via
a novel cross-cycle loss for a challenging exocentric to ego-
centric view image generation task. Moreover, we incorpo-
rate a novel contextual feature loss to capture the contextual
information in images. Experimental results demonstrate
that the hard-sharing of network layers in multi-directional

parallel generative models can be used to increase the per-
formance of cross-view image generation.
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