
Performance Prediction for Semantic Segmentation
by a Self-Supervised Image Reconstruction Decoder

Andreas Bär1 Marvin Klingner1 Jonas Löhdefink1 Fabian Hüger2

Peter Schlicht2 Tim Fingscheidt1

{andreas.baer, m.klingner, j.loehdefink, t.fingscheidt}@tu-bs.de
{fabian.hueger, peter.schlicht}@volkswagen.de

1Technische Universität Braunschweig, Germany 2CARIAD SE, Germany

Abstract

In supervised learning, a deep neural network’s perfor-
mance is measured using ground truth data. In semantic
segmentation, ground truth data is sparse, requires an ex-
pensive annotation process, and, most importantly, it is not
available during online operation. To tackle this problem,
recent works propose various forms of performance pre-
diction. However, they either rely on inference data his-
tograms, additional sensors, or additional training data. In
this paper, we propose a novel per-image performance pre-
diction for semantic segmentation, with (i) no need for addi-
tional sensors (sensor efficiency), (ii) no need for additional
training data (data efficiency), and (iii) no need for a ded-
icated retraining of the semantic segmentation (training ef-
ficiency). Specifically, we extend an already trained seman-
tic segmentation network having fixed parameters with an
image reconstruction decoder. After training and a subse-
quent regression, the image reconstruction quality is evalu-
ated to predict the semantic segmentation performance. We
demonstrate our method’s effectiveness with a new state-of-
the-art benchmark both on KITTI and Cityscapes for image-
only input methods, on Cityscapes even excelling a LiDAR-
supported benchmark.

1. Introduction

Ground truth data for deep neural networks (DNNs) is
expensive, sparsely available for training and test, and typ-
ically not available during operation. In consequence, the
performance of a DNN in operation remains unknown. This
poses a problem, if we consider safety-critical tasks, such as
semantic segmentation for highly automated driving [40],
operating in (adversarially) distorted environments [1,4,20]
or different domains, where DNNs often struggle to per-
form well. The latter issue is typically handled with do-

Input Image Segmentation Reconstruction

Figure 1. General motivation of our approach. Triplets of in-
put image (left), segmentation output (middle) and reconstruction
output (right) under clean conditions (ϵ = 0) as well as perturbed
conditions (FGSM [12], ϵ ∈ {8, 16} · 1

255
) (rows). Observation:

Increasing the distortion strength ϵ leads to both, a decreased seg-
mentation and reconstruction quality in a multi-task network.

main adaptation techniques [5, 28, 45]. The former can
be addressed by increasing the robustness to distorted in-
puts [23], detecting distorted data [3], or eliminating the
distortion [21]. However, there cannot be any guarantees
that DNN performance is always within the bounds for a
safe operation.

A different perspective to this problem is to directly esti-
mate a DNN’s performance. In this paper, instead of assum-
ing a certain performance from the validation in the lab, we
propose to estimate the actual performance of a semantic
segmentation network during inference. Competing works
so far either do not provide a per-image performance esti-
mate [34] or rely on additional sensors [24, 25]. In this pa-
per, we propose a performance prediction for semantic seg-
mentation on a per-image basis, with no need for additional
training data or sensors. For this purpose, we combine se-
mantic segmentation with image reconstruction (cf. Fig. 1),
hypothesizing a correlation between both tasks. Specifi-

4399

cally, we propose to attach an additional performance pre-
diction (based on image reconstruction) to the encoder Eseg

of a trained semantic segmentation network (cf. Fig. 2). The
idea is to derive an mIoU estimate m̂IoU from the differ-
ence of the reconstructed image x̂ and the input image x.
The benefit of attaching the image reconstruction decoder
after training the semantic segmentation network is an un-
changed segmentation performance which is not influenced
by multi-task learning. Moreover, this strategy provides
an approach being highly transferable to other architectures
and tasks, whenever a latent representation can be used to
reconstruct the input.

Our contributions are: (i) a performance prediction for
semantic segmentation based on a self-supervised image
reconstruction decoder, that is (ii) sensor-efficient, as we
only use the input image, (iii) training-efficient, as we only
need to train the additional image reconstruction decoder,
(iv) data-efficient, as the additional parts solely rely on
data the semantic segmentation was trained on, and (v) set-
ting a new state-of-the-art benchmark both on KITTI [11]
and Cityscapes [8] regarding image-only input methods, on
Cityscapes even excelling a LiDAR-supported benchmark.

2. Related Works
Robustness of Semantic Segmentation Models: Deep

neural networks for semantic segmentation [32,40] are vul-
nerable to a variety of input distortions [20] and adver-
sarial examples [1, 15, 38]. This problem can be tackled
from different perspectives, including preprocessing algo-
rithms [4, 6, 7, 13, 21, 31], advanced learning techniques
[9, 18, 19, 23, 36, 37, 44, 48], architectural changes [42], or
detection mechanisms [3, 26, 30, 46, 47]. In this paper, we
evaluate our method using clean and distorted input im-
ages [12,35] from Cityscapes [8] and KITTI [11]. However,
we neither remove the distortion nor robustify the underly-
ing network. Instead, we propose a performance predic-
tion method that rather indicates distorted inputs by a low
performance, and thus, indirectly contributes to detection
mechanisms.

Performance Prediction: The performance of a deep
neural network is evaluated using ground truth data, which
is usually unavailable during inference. Estimating the net-
work output’s uncertainty is a solution to this problem.
Two famous approaches are Monte-Carlo dropout [10] and
deep ensembles [29], both shown to be scalable to semantic
segmentation [14]. Nonetheless, both introduce noticable
computational complexity. A different way of approach-
ing ground truth unavailability during inference is to pre-
dict the current segmentation performance or error. The
latter is addressed by Rottmann et al. [43], who propose
a method for predicting the error of output segments. Our
approach deals with the former, with the closest prior works
in [24,25,34]. The authors of [34] use an autoencoder which

Our Contribution

Semantic
Segmentation

Performance
Prediction

Performance
Evaluation

(lab only!)

(lab & application!)

camera

image
lab data

ground truth
lab data

Figure 2. Performance prediction setting. A trained semantic
segmentation network (with encoder Eseg and decoder Dseg), is
extended by a performance prediction module (cf. Fig. 3 for fur-
ther details). The performance prediction module takes the latent
representation zseg and the camera image x as input and outputs
an estimate m̂IoU (9) w.r.t. the actual mIoU (5). Note that mIoU

relies on ground truth data while m̂IoU does not.

runs in parallel to a trained semantic segmentation during
inference. Their approach, however, is limited to domain
shifts and does not deliver per-image estimates. The au-
thors of [24, 25] propose a multi-task network with an aux-
iliary depth estimation decoder. While their approach de-
livers per-image estimates, they rely on additional LiDAR
data during inference and video data during training.

In contrast, we provide a performance prediction which
(a) yields per-image estimates, (b) relies only on camera
data during inference, and (c) is efficient in terms of training
data and training complexity.

3. Method Description
In this section, we introduce the theoretical background,

our proposed performance prediction framework, and its
configuration.

3.1. Theoretical Background

Let x = (xi,c) ∈ IH×W×C be a normalized image, with
height H , width W , C = 3 color channels, pixel index i ∈
I = {1, ...,H ·W}, color channel index c ∈ C = {1, ..., C},
and I = [0, 1].

Semantic Segmentation: A semantic segmentation net-
work maps the input x to the output y = (yi,s) ∈
IH×W×|S|, with

∑
s∈S yi,s = 1, and class index s ∈ S =

{1, ..., |S|}. Further, yi,s = P (s|i,x) is considered to be
a posterior probability. We can also reformulate the map-
ping into two steps, see Fig. 2. We introduce the latent
representation zseg = Eseg(x), zseg ∈ RH

δ ×W
δ ×C′

, and
the final output y = Dseg(zseg), with Eseg,Dseg being
the semantic segmentation network’s encoder and decoder,
respectively, and δ, C ′ ∈ N being the encoder’s spatial
downsampling factor and number of output feature maps,
respectively. Note that lateral encoder-decoder connections

4400

Performance Prediction

Reconstruction
Quality

Regression

Figure 3. Performance prediction module. The semantic seg-
mentation’s latent representation zseg is fed into an image recon-
struction decoder Drec yielding a reconstruction x̂ of the input x.
Next, the reconstruction quality is measured in terms of PSNR
(7). Finally, mIoU (5) is estimated using a subsequent regression
yielding m̂IoU (9).

are also possible, but we neglect them here for simplicity.
Further, we define y = (yi,s) ∈ {0, 1}H×W×|S|, with∑

s∈S yi,s = 1, to be the one-hot-encoded ground truth se-
mantic segmentation. Tensors y and y are then compared
via the cross-entropy loss

J seg =
1

|I|
∑
i∈I

∑
s∈S

yi,s · log(yi,s), (1)

which is minimized during training.
Input Image Reconstruction: The general work flow

of our image reconstruction is depicted in Fig. 3. An image
reconstruction network maps the latent representation zseg

to the reconstructed image x̂ = Drec(zseg), x̂ ∈ IH×W×C .
Here, Drec represents a reconstruction decoder. The mean
squared reconstruction error

J rec =
1

HWC
∥x− x̂∥22 (2)

serves as a training objective and is minimized.
Input Image Distortion: Let xϵ = (xϵ,i,c) ∈

IH×W×C be a distorted input image and rϵ = (rϵ,i,c) ∈
[−1, 1]H×W×C its respective distortion which is given by
rϵ = xϵ − x. The subscript ϵ refers to the effective distor-
tion strength defined as

ϵ =

√
1

HWC
E (||rϵ||22) (3)

following Klingner et al. [25], with expectation value E(·).
We additionally introduce the target distortion strength ϵ.
The exact difference between target and effective distortion
strength is emphasized in the supplementary material. In
short, ϵ is set to generate a distortion, while ϵ is measured
after distortion generation.

3.2. Performance Prediction Framework

In the following we introduce our performance predic-
tion framework. We start with the additional image recon-

struction decoder, continue by elaborating on the training
process, and end with the explanation of the actual perfor-
mance prediction scheme.

Attaching an Image Reconstruction Decoder: Our
proposed method extends a semantic segmentation network
by a decoder for image reconstruction (cf. Fig. 3). Given
Eseg by the underlying semantic segmentation, we are free
to decide on the decoder architecture Drec. Here, we con-
sider two general architectural design options.

In the first design option for Drec, the semantic segmen-
tation decoder’s architecture Dseg serves as a basis for Drec

(e.g., as done in [24,25,27]). As semantic segmentation de-
coders usually output |S| output feature maps, each repre-
senting a distinct class, we change the decoder’s number of
output feature maps from |S| to C = 3 to deliver an RGB
image in analogy to the input.

The second design option is mirroring the encoder Eseg.
For this purpose, we first rebuild the encoder architecture re-
cursively in a simple fashion. Note that during this process,
the input feature maps and output feature maps of all con-
volutions are flipped. Then, we replace all strided convo-
lutions in the encoder (performing downsampling) by near-
est neighbor upsampling with a subsequent convolution to
avoid checkerboard artifacts [39].

Performing a Sequential Training: As a next step,
both the segmentation and reconstruction tasks need to be
trained. As already pointed out in [24,25], there are various
training strategies for a multi-task network for performance
prediction. Both tasks can be either trained sequentially,
in parallel, or in a hybrid fashion. Parallel training as well
as hybrid training update the encoder weights with gradient
information from both tasks. Preliminary experiments with
our setup showed that semantic segmentation quality does
not benefit from parallel or hybrid reconstruction decoder
training but rather worsens.

Sequential training leaves us with two strategies. In the
first of two stages, we train the shared encoder and segmen-
tation decoder, minimizing (1), and in the second stage we
only train the reconstruction decoder, minimizing (2). The
alternative would be doing it vice versa. As the representa-
tion learned by the encoder plays a crucial role for segmen-
tation performance, we only consider the first strategy. This
training strategy not only ensures a high semantic segmen-
tation quality but also allows adopting arbitrary trained se-
mantic segmentation networks.

Predicting Performance via Regression: The architec-
ture modification and sequential training protocol are com-
pleted by a regression which is obtained after both tasks
have been trained. The performance of the image recon-
struction in terms of peak signal-to-noise ratio PSNR is
evaluated by comparing the image reconstruction x̂ with the
input image x (cf. Fig. 3). Both are available at any time
during inference. Note that this does not hold for seman-

4401

tic segmentation as computing the mean intersection over
union mIoU involves comparing the segmentation output
to its ground truth segmentation. However, if we assume
a correlation between semantic segmentation and image re-
construction (cf. Fig. 1), a regression analysis between both
tasks’ performance metrics can be performed. Specifically,
we want to apply the regression to estimate the semantic
segmentation performance in terms of mean intersection
over union, i.e., m̂IoU , from the peak signal-to-noise ratio
PSNR (cf. Fig. 3). The details of preparing and executing
this regression are explained in the following.

3.3. Configuration of the Performance Prediction

After sequential training of both tasks, the performance
prediction needs to be configured before inference. The pro-
cess is split into three steps: semantic segmentation evalu-
ation, image reconstruction evaluation, and regression cal-
ibration. In addition, we also elaborate on how the quality
of the performance prediction will be reported later on.

Semantic Segmentation Evaluation: A semantic seg-
mentation network is evaluated using the mean inter-
section over union mIoU , see Fig. 2. Class-wise
true positives TPs,ϵ =

∑
n∈N TPn,s,ϵ, false positives

FPs,ϵ =
∑

n∈N FPn,s,ϵ, and false negatives FN s,ϵ =∑
n∈N FN n,s,ϵ are computed over a dataset D yielding

mIoU ϵ =
1

|S|
∑
s∈S

TPs,ϵ

TPs,ϵ + FPs,ϵ + FN s,ϵ
. (4)

The subscript ϵ indicates an average distortion strength
as defined in (3), n ∈ N is an image index from set
N = {1, ..., |D|}, and s ∈ S is a class index from set
S = {1, ..., |S|}. For the regression calibration, we com-
pute the mIoU per image rather than per dataset, yielding

mIoU n,ϵ =
1

|S|
∑
s∈S

TPn,s,ϵ

TPn,s,ϵ + FPn,s,ϵ + FN n,s,ϵ
. (5)

Further, we define the average over images as

mIoU ϵ =
1

|N |
∑
n∈N

mIoU n,ϵ. (6)

Image Reconstruction Evaluation: An image recon-
struction network is evaluated using the peak signal-to-
noise ratio PSNR. In our chosen input space I, this is de-
fined (in dB) as

PSNRn,ϵ = −10 log
(
J rec
n,ϵ

)
, (7)

with its average over images

PSNRϵ =
1

|N |
∑
n∈N

PSNRn,ϵ. (8)

Note that also here we refer to the distortion strength ϵ and
the image index n in the subscripts. Further, J rec

n,ϵ refers to
(2) when a distorted image xn,ϵ is fed to the network.

Regression Calibration: After training, we can cali-
brate our proposed performance prediction by solving a
regression problem [24, 25]. For this, we first generate
mIoU n,ϵ (5) and PSNRn,ϵ (7) for all images with indices
n ∈ N of dataset D. Next, we perform a polynomial re-
gression of order 2 to obtain an mIoU estimate

m̂IoU n,ϵ =
∑
k∈K

θk · PSNRk
n,ϵ, (9)

with regression parameters θk, k ∈ K = {0, 1, 2}. All θk
are optimized using the mean squared error.

Performance Prediction Evaluation: We evaluate our
performance prediction using mainly three metrics: Pearson
correlation, mean absolute error, and mean root squared er-
ror [24, 25]. Considering a dataset D, we generate values
an,ϵ = mIoU n,ϵ and bn,ϵ = PSNRn,ϵ, n ∈ N . Then, the
Pearson correlation is computed via

ρ =

∑
n,ϵ(an,ϵ − µa)(bn,ϵ − µb)√∑

n,ϵ(an,ϵ − µa)2
√∑

n,ϵ(bn,ϵ − µb)2
(10)

with µa = 1
|N ||E|

∑
n,ϵ an,ϵ, µb = 1

|N ||E|
∑

n,ϵ bn,ϵ, ϵ ∈ E ,
set of distortion strengths E , and ρ ∈ [−1, 1]. The special
cases ρ ∈ {0,−1, 1} indicate ‘no correlation’, ‘perfect neg-
ative correlation’, and ‘perfect positive correlation’, respec-
tively. In addition, we define the Pearson correlation under
distortion strength ϵ as

ρϵ =

∑
n(an,ϵ − µa,ϵ)(bn,ϵ − µb,ϵ)√∑

n(an,ϵ − µa,ϵ)2
√∑

n(bn,ϵ − µb,ϵ)2
, (11)

with µa,ϵ =
1

|N |
∑

n an,ϵ, µb,ϵ =
1

|N |
∑

n bn,ϵ.
For both error metrics, we first measure ∆mIoU n,ϵ =

m̂IoU n,ϵ −mIoU n,ϵ over dataset D. Afterwards, we com-
pute the mean absolute error

∆mIoUM =
1

|N ||E|
∑
n∈N

∑
ϵ∈E

∣∣∆mIoU n,ϵ

∣∣ (12)

and the root mean squared error

∆mIoUR =

√
1

|N ||E|
∑
n∈N

∑
ϵ∈E

(
∆mIoU n,ϵ

)2
(13)

of the predicted performance.

4. Experimental Setup
In the following, we introduce our employed datasets

and network architectures, as well as training and eval-
uation details. All experiments are performed using
PyTorch [41] and a single NVIDIA GTX 1080Ti.

4402

Table 1. Datasets and subsets we used in our experiments.

Dataset
Official

Images
Math.

Subset Symbol

Cityscapes [8] (CS)
train 2,975 DCS

train

val
59 DCS

val

441 DCS
test

Kitti [11] (KIT) train
50 DKIT

val

150 DKIT
test

Employed Datasets: As shown in Tab. 1, we train our
models on the Cityscapes [8] training set (DCS

train) and report
results on both Cityscapes validation set and KITTI 2015
Stereo [11] training set. We further split the Cityscapes val-
idation set into a validation (DCS

val , road scenes captured in
Lindau, Germany) and test (DCS

test, road scenes captured in
Frankurt/Münster, Germany) subsplit [2,3]. We do the same
for the KITTI training set, this time in an alpha-numerical
fashion, yielding DKIT

val and DKIT
test (as used in [24, 25]).

Network Architecture: We deploy SwiftNet18 [40]
as semantic segmentation architecture, using a ResNet18
[17] encoder with the SwiftNet segmentation decoder
[40], consisting of a spatial pyramid pooling module [16]
and subsequent upsampling modules with lateral encoder-
decoder connections. This results in 11.8M parameters in
total. Further, we use nearest neighbor upsampling during
training and bilinear upsampling during inference support-
ing reproducibility. For more details on the SwiftNet18,
we point the interested reader to [40].

For the image reconstruction decoder, we follow our two
design options introduced in Section 3.2. For the first de-
sign option, we deploy SwiftNet segmentation decoder
variants [40] with or without lateral encoder-decoder con-
nections or spatial pyramid pooling. For the second de-
sign option, we deploy a mirrored ResNet18 attached
to the encoder output. We experiment with reducing and
increasing the number of residual units (RUs) per block,
yielding a ResNet10 decoder (one RU per block), and a
ResNet26 (three RUs per block) decoder. We also deploy
a mirrored ResNet18 with lateral encoder-decoder con-
nections, which we dub ResNet18L. Here, we simply add
the pre-activated outputs of the encoder residual blocks [40]
to the inputs of respective decoder residual blocks.

Training Details: We train the SwiftNet18 for 200
epochs on DCS

train with a batch size of 12. For the
ImageNet-pretrained ResNet18 and the randomly initial-
ized SwiftNet segmentation decoder, the model param-
eters are optimized using the Adam optimizer [22] with a
weight decay of 2.5 · 10−5 and 10−4, respectively, and a
cosine annealing learning rate [33], starting at 10−4 and
4 · 10−4, respectively, and finishing at 10−7 and 10−6, re-
spectively. After training the SwiftNet18, all parameters

Table 2. mIoU ϵ=0 [%] (4), mIoU ϵ=0 [%] (6), and PSNRϵ=0

[dB] (8) of SwiftNet18 and attached SwiftNet-based,
ResNet18-based, or ResNet18L-based reconstruction decoder
reported under clean conditions (ϵ = 0) on DCS

val , DCS
test, DKIT

val , and
DKIT

test . Note that only DCS
train is used as training set. Best image

reconstruction results in boldface.

Metric Rec. Dec. DCS
val DCS

test DKIT
val DKIT

test

mIoU ϵ=0 - 65.02 72.95 43.12 39.46
mIoU ϵ=0 - 49.37 61.41 36.04 34.18

PSNRϵ=0

SwiftNet 29.86 29.39 20.31 20.60
ResNet18 21.52 20.64 13.90 13.87
ResNet18L 31.80 31.42 20.69 21.26

are fixed and the image reconstruction decoder with ran-
domly initialized weights is trained for further 10 epochs
with a batch size of 8. Here, we apply the same optimizer
and learning rate settings as for the segmentation decoder.

Evaluation & Regression Details: We evaluate our
method on clean and distorted versions of DCS

val , DCS
test,

DKIT
val , and DKIT

test , mainly reporting the Pearson correla-
tion (10) of mIoU n,ϵ (5) and PSNRn,ϵ (7). The regres-
sion is calibrated with clean and distorted versions of DCS

val

or DKIT
val , using (9). The clean conditions are simulated

using the original data. The distorted conditions are sim-
ulated using either Gaussian noise, salt-and-pepper noise,
FGSM [12], or PGD [35] (40 iterations with step size of
2

255) applied with various target distortion strengths ϵ ∈
E = {0.25, 0.5, 1, 2, 4, 8, 12, 16, 20, 24, 28, 32} · 1

255 fol-
lowing [24,25]. FGSM and PGD are optimized to maximize
(1). In total we create 4 · |E| = 48 distorted datasets in addi-
tion to their clean origin. More details about the distortion
settings can be found in the supplementary material.

5. Experimental Results

A high correlation ρ (10) is an indicator for a reliable
regression and thus performance prediction. Therefore, in
the following experimental evaluations, we will concentrate
on ρ (10) rather than on predicting m̂IoU n,ϵ (9) in the first
place. Finally, in the last paragraph, we will also discuss
the quality of m̂IoU n,ϵ in terms of ∆mIoUM (12) and
∆mIoUR (13) and compare our approach to the closest
prior art [24, 25].

5.1. First Analysis on Task Performances

Clean Data: The focus of this work is performance pre-
diction. However, for completeness, we also provide results
regarding actual performance and discuss them briefly. We
first take a look at the clean performance on DCS

val , DCS
test,

DKIT
val , and DKIT

test of a SwiftNet18 with either a plain
SwiftNet-based or ResNet18-based reconstruction de-

4403

0 10 20 30

Effective distortion strength ε (·255)

10

20

30

40

50

m
Io

U
ε

[%
]

Gaussian
S&P
FGSM
PGD

Gaussian
S&P
FGSM
PGD

(a) SwiftNet18-based segmentation

0 10 20 30

Effective distortion strength ε (·255)

15

20

25

30

P
S

N
R
ε

[d
B

]

Gaussian
S&P
FGSM
PGD

Gaussian
S&P
FGSM
PGD

(b) SwiftNet-based reconstruction

0 10 20 30

Effective distortion strength ε (·255)

14

16

18

20

22

P
S

N
R
ε

[d
B

]

Gaussian
S&P
FGSM
PGD

Gaussian
S&P
FGSM
PGD

(c) ResNet18-based reconstruction

Figure 4. mIoU ϵ (6) [%] and PSNRϵ (8) [dB] under various ϵ (3) on DCS
val . Note, each curve point also represents a distinct ϵ ∈ E . Results

are reported for (a) SwiftNet18-based segmentation, (b) SwiftNet-based reconstruction, and (c) ResNet18-based reconstruction.

Table 3. Correlation ρ (10) of SwiftNet18 segmentation and
various attached SwiftNet-based reconstruction decoder vari-
ants. Results are reported under various input conditions on DCS

val

and on DKIT
val . Note that only DCS

train is used as training set. ‘Lat.’
refers to lateral skip connections from encoder to decoder [40],
‘SPP’ refers to spatial pyramid pooling [16, 40], and ‘all’ refers to
all data used for ρ computation. Best variant on each dataset in
bold, second best underlined.

Eval on Lat. SPP Clean FGSM PGD Gaussian S&P all

DCS
val

0.19 0.77 0.78 0.70 0.78 0.76
✓ 0.20 0.77 0.79 0.70 0.77 0.76

✓ -0.01 0.88 0.85 0.83 0.86 0.85
✓ ✓ -0.01 0.88 0.84 0.83 0.85 0.84

DKIT
val

-0.29 0.68 0.72 0.46 0.64 0.65
✓ -0.38 0.62 0.65 0.35 0.56 0.58

✓ -0.42 0.79 0.77 0.67 0.79 0.75
✓ ✓ -0.43 0.79 0.76 0.66 0.81 0.75

coder. Results in terms of mIoU ϵ=0 (4), mIoU ϵ=0 (6), and
PSNRϵ=0 (8) are listed in Tab. 2. In terms of PSNRϵ=0,
the SwiftNet-based reconstruction decoder (design op-
tion 1) is superior to the ResNet18-based reconstruction
decoder (design option 2). As a first hypothesis, we ex-
plain this by the additional lateral encoder-decoder connec-
tions in a SwiftNet-based reconstruction decoder, which
can be expected to support the task of image reconstruc-
tion. This is confirmed by showing improved results with
ResNet18L—a ResNet18-based reconstruction decoder
with additional lateral encoder-decoder connections.

Distorted Data: Next, we take a closer look at mIoU ϵ

(6) and PSNRϵ (8) on DCS
val under various input distortions

and (mean) effective distortion strengths ϵ (3). We again
use a SwiftNet18 with either a SwiftNet-based or
ResNet18-based reconstruction decoder. The results are

depicted in Fig. 4, with mIoU ϵ being plotted in Fig. 4a and
PSNRϵ being plotted in Figs. 4b and 4c for SwiftNet-
based and ResNet18-based reconstruction, respectively.
We observe that both mIoU ϵ (Fig. 4a) and PSNRϵ (Figs. 4b
and 4c) drop with increasing ϵ. This indicates an exist-
ing correlation between mIoU ϵ, mIoU n,ϵ and PSNRϵ,
PSNRn,ϵ and that this correlation is present regardless of
the underlying image reconstruction architecture. Further,
the mIoU ϵ curves (cf. Fig. 4a) are more spread than the
PSNRϵ ones (cf. Figs. 4b and 4c), the latter even show-
ing intersections. Accordingly, we conclude mIoU ϵ heav-
ily depends on both distortion type and ϵ, while PSNRϵ

more or less only depends on ϵ. Next, we will analyze, if
one of our two design options is superior in terms of ρ (10).

5.2. Pearson Correlation, Architectural Aspects

As concerns Pearson correlation ρ (10), we first inves-
tigate different architectural aspects of the reconstruction
decoder. Remember that we aim at a high ρ such that we
can estimate mIoU n,ϵ from PSNRn,ϵ. For this analysis,
we deploy SwiftNet decoder variants and ResNet de-
coder variants. We first take a look at the SwiftNet de-
coder on DCS

val (cf. Tab. 3, upper half). It can be observed
that incorporating lateral encoder-decoder connections im-
proves the ρ (cf. Tab. 3, Lat., rows 1 & 2 vs. rows 3 &
4), while the effect of spatial pyramid pooling is negligi-
ble (cf. Tab. 3, SPP, rows 2 & 4 vs. rows 1 & 3). Fur-
ther, while lateral encoder-decoder connections improve ρ
on distorted images (cf. Tab. 3, e.g., FGSM, rows 1 & 2
vs. rows 3 & 4), they completely eliminate a correlation on
clean images (cf. Tab. 3, Clean, rows 1 & 2 vs. rows 3 &
4). This, however, does not pose a problem as in a practi-
cal use case, we could think of a high threshold θ and dis-
card m̂IoU n,ϵ for PSNRn,ϵ > θ as on average with high
PSNRn,ϵ we expect high mIoU n,ϵ (cf. Figs. 4a and 4b).
In numbers, our best SwiftNet decoder model achieves

4404

Table 4. Correlation ρ (10) of SwiftNet18 segmentation and
various attached ResNet-based (RN) and the best SwiftNet-
based (SN) reconstruction decoders from Tab. 3. Results are re-
ported under various input conditions on DCS

val and on DKIT
val . Note

that only DCS
train is used as training set. ‘Block c.’ refers to the

number of residual units in the first up to the fourth ResNet
block [17] and ‘all’ refers to all data used for ρ computation. Best
variant on each dataset in bold, second best underlined.

Eval on Dec. Block c. Clean FGSM PGD Gauss. S&P all

DCS
val

SN - -0.01 0.88 0.85 0.83 0.86 0.85
RN10 1-1-1-1 0.24 0.82 0.82 0.76 0.84 0.81
RN18 2-2-2-2 0.19 0.83 0.82 0.77 0.82 0.81
RN26 3-3-3-3 0.21 0.84 0.83 0.77 0.82 0.82
RN18L 2-2-2-2 0.08 0.88 0.85 0.83 0.86 0.85

DKIT
val

SN - -0.42 0.79 0.77 0.67 0.79 0.75
RN10 1-1-1-1 -0.35 0.67 0.72 0.48 0.64 0.65
RN18 2-2-2-2 -0.35 0.69 0.74 0.50 0.64 0.67
RN26 3-3-3-3 -0.37 0.70 0.74 0.50 0.64 0.67
RN18L 2-2-2-2 -0.42 0.77 0.77 0.65 0.79 0.75

ρ = 0.85 under all distortions and various ϵ by only us-
ing lateral encoder-decoder connections (cf. Tab. 3, row 3).
Next, we take a look at the ResNet (RN) decoder variants
on DCS

val (cf. Tab. 4, upper half) and compare them to the
best SwiftNet (SN) decoder model from Tab. 3. First,
one can see that the SwiftNet decoder model is superior
to the plain ResNet18 (RN18) decoder model in terms
of ρ on distorted images. Second, reducing (cf. Tab. 4,
RN10) or increasing (cf. Tab. 4, RN26) the ResNet de-
coder model parameters does not really have an effect on ρ.
Third, the correlation on clean images of the plain ResNet
decoder models (RN10, RN18, RN26) is better. We hypoth-
esize that this comes from missing lateral encoder-decoder
connections as we observe comparable effects with simi-
lar SwiftNet decoder variants (cf. Tab. 3, rows 1 & 2
vs. rows 3 & 4). This is confirmed by the results shown
for ResNet18L (RN18L), where we improve upon cor-
relation on distorted data, while worsen upon correlation
on clean data. Further, this variant performs on par with
the best SwiftNet-based reconstruction decoder. We fi-
nally conclude that a SwiftNet18 equipped with either
a SwiftNet-based or a ResNet18-based reconstruction
decoder, both with lateral encoder-decoder connections,
yield the best results. However, while the ResNet18-
based reconstruction decoder has about 11.2M parameters,
the SwiftNet-based one is more efficient with only about
0.95M parameters. Therefore, we will focus the regression
analysis on the SwiftNet-based reconstruction decoder.

5.3. Dataset Transferability

The following experiment series elaborates on the
dataset transferability of our approach. For this, we test the
models trained on Cityscapes on the KITTI dataset. We
first take a look at experiments with the SwiftNet-based
decoder on DKIT

val (Tab. 3, lower half), where we make sev-
eral observations: First, ρ drops noticeably. Second, mod-
els with no lateral encoder-decoder connections have sig-
nificantly lower ρ for Gaussian noise. The strongest drop
is observable with the model which only incorporates spa-
tial pyramid pooling. Last, we observe higher (absolute)
but negative ρ on clean data. Similar observations are made
for the ResNet decoder experiments DKIT

val (Tab. 4, lower
half).

5.4. Regression Analysis

To predict the mean intersection over union we need a
regression model. For this purpose, we take one of our best
models, i.e, SwiftNet18with a SwiftNet-based recon-
struction decoder with lateral encoder-decoder connections
but without spatial pyramid pooling, and perform a regres-
sion analysis on DCS

val according to Section 3.3. We choose
the best SwiftNet-based reconstruction decoder as it per-
forms on par with the best ResNet-based one (cf. Tab. 3,
SN vs. RN18L), while being less complex in terms of model
parameters (0.95M vs. 11.17M). Respective plots can be
seen in Fig. 5. Here, Fig. 5a depicts scatter plots of all
distortions and various ϵ (3), ϵ ∈ E . In addition a re-
spective polynomial regression curve of order 2 is drawn.
Fig. 5b shows scatter plots for FGSM with a closer look
at ϵ. Note that for FGSM we can assume ϵ =̂ ϵ. Consid-
ering Fig. 5a, one can observe that the regression error is
visibly higher with high model performance (upper right)
and decreases with low model performance (lower left). In
addition, the low correlation on clean images from Tabs. 3
and 4 can be qualitatively confirmed. Similar observations
were made in [25]. Taking a closer look at the FGSM scatter
plot in Fig. 5b, we observe the following: The correlation
ρϵ (11) is rather low for individual distortion strengths, e.g.,
ϵ = 2

255 or ϵ = 12
255 . We observed similar effects for the

other distortions. We conclude, the high ρ (10) we observe
in Tabs. 3 and 4 is caused only by the effect that an increas-
ing ϵ (3) leads to decreasing mIoU n,ϵ (5), PSNRn,ϵ (7).
This complements the observations and conclusion derived
from Fig. 4, where we looked at mean values of mIoU n,ϵ

and PSNRn,ϵ that motivated our further analysis.

5.5. State of the Art Comparison

Next, we use the calibrated regression on DCS
val to predict

mIoU n,ϵ on DKIT
test as well as DCS

test. We further use DKIT
val

for calibration to see its effect on testing against DKIT
test . Re-

sults and comparisons to state of the art [24, 25] are re-
ported in Tab. 5 in terms of ρ (9), ∆mIoUM (12), and

4405

5 10 15 20 25 30

PSNRn,ε [dB]

0

20

40

60

80

m
Io

U
n
,ε

[%
]

ε, ε
decrease

Gaussian
S&P
FGSM
PGD
Clean

Gaussian
S&P
FGSM
PGD
Clean

(a) All distortions

5 10 15 20 25 30

PSNRn,ε [dB]

0

20

40

60

80

m
Io

U
n
,ε

[%
]

ε, ε
decrease

ε = 32
255

ε = 28
255

ε = 24
255

ε = 20
255

ε = 16
255

ε = 12
255

ε = 8
255

ε = 4
255

ε = 2
255

ε = 1
255

ε = 0.5
255

ε = 0.25
255

(b) FGSM only

Figure 5. Scatter plots of mIoU n,ϵ (5) and PSNRn,ϵ (7) on clean and distorted images from DCS
val , with ϵ ∈ E as well as various ϵ (3).

(a) FGSM, PGD, Gaussian noise, salt-and-pepper (S&P) noise, and clean, with a respective polynomial regression curve of second order.
(b) Isolated look onto FGSM. Note that for FGSM we can assume ϵ =̂ ϵ (see supplementary material).

Table 5. Metrics ρ (10), ∆mIoUM (12), and ∆mIoUR (13)
for our method and comparable variants from [24, 25]. Our ap-
proaches use DCS

train as training set, while [24, 25] also use video
datasets DCS

vid, DKIT
vid . Results are reported under a mix of input

conditions either on DCS
test (as [24] uses a variant of DCS

test, we mark
the entries with ∗) or DKIT

test . ‘Cal.’ refers to regression calibration.

Eval on Video Cal. on Method ρ ∆mIoUM ∆mIoUR

DCS
test

- DCS
val Ours 0.90 10.12 13.18

DCS
vid DCS

val [24] ∗0.58∗ ∗12.19∗ ∗15.71∗

DKIT
vid DCS

val [24] ∗0.43∗ ∗13.38∗ ∗16.12∗

DKIT
test

- DCS
val Ours 0.73 11.62 14.26

- DKIT
val Ours 0.73 8.00 10.24

DCS
vid DKIT

val [24] 0.54 7.81 9.79
DKIT

vid DKIT
val [24] 0.77 6.01 7.70

DKIT
vid DKIT

val [25] 0.86 4.45 6.16

∆mIoUM (13). Note that our approach is solely trained
on DCS

train while [24,25] need additional video data from ei-
ther Cityscapes DCS

vid or KITTI DKIT
vid . When it comes to

Cityscapes DCS
test (Tab. 5, upper half), we clearly excel state

of the art in all categories. However, we are not able to
excel state of the art on KITTI DKIT

test (Tab. 5, lower half).
We hypothesize that this is due to the domain shift from
Cityscapes to KITTI. This claim is supported by [24], where
we see that through the inclusion of KITTI, the performance
is improved significantly (entry [24] (DCS

vid) vs. [24] (DKIT
vid)

in the lower half of Tab. 5).
Through our experiments we could not only provide a

proof of concept, but also set a new state-of-the-art bench-
mark both on Cityscapes and KITTI for image-only input
methods for segmentation performance prediction. More-
over, we even excel a LiDAR-supported benchmark [24] on
Cityscapes. All this is achieved without additional video

data for training (DCS
vid, DKIT

vid) or LiDAR data during infer-
ence, both, however, needed in [24,25]. We train our image
reconstruction solely on DCS

train and only need the input im-
age to provide a performance estimate m̂IoU n,ϵ (9).

6. Conclusions
In this paper, we proposed a performance prediction for

semantic segmentation by using a self-supervised image re-
construction decoder. Our proposed method is efficient as it
does not rely on additional sensors, additional training data,
or retraining of the semantic segmentation. We set a new
state-of-the-art benchmark both on KITTI and Cityscapes
for image-only input methods, excelling even a LiDAR-
supported benchmark on Cityscapes. We believe that our
proposed method facilitates further research and increases
the awareness for safety in neural network-based highly au-
tomated driving.

Acknowledgment
The research leading to these results is funded by the

German Federal Ministry for Economic Affairs and Climate
Action” within the project “Methoden und Maßnahmen zur
Absicherung von KI basierten Wahrnehmungsfunktionen
für das automatisierte Fahren (KI-Absicherung)”. The au-
thors would like to thank the consortium for the successful
cooperation. Further, the authors gratefully acknowledge
support of this work by Johannes Meyer, Vijesh Vidhani,
and CARIAD SE, Wolfsburg, Germany.

References
[1] Anurag Arnab, Ondrej Miksik, and Philip H. S. Torr. On the

Robustness of Semantic Segmentation Models to Adversar-
ial Attacks. In Proc. of CVPR, pages 888–897, Salt Lake
City, UT, USA, June 2018. 1, 2

4406

[2] Andreas Bär, Fabian Hüger, Peter Schlicht, and Tim Fing-
scheidt. On the Robustness of Redundant Teacher-Student
Frameworks for Semantic Segmentation. In Proc. of CVPR -
Workshops, pages 1380–1388, Long Beach, CA, USA, June
2019. 5

[3] Andreas Bär, Marvin Klingner, Serin Varghese, Fabian
Hüger, Peter Schlicht, and Tim Fingscheidt. Robust Se-
mantic Segmentation by Redundant Networks With a Layer-
Specific Loss Contribution and Majority Vote. In Proc. of
CVPR - Workshops, pages 1348–1358, Seattle, WA, USA,
June 2020. 1, 2, 5

[4] Andreas Bär, Jonas Löhdefink, Nikhil Kapoor, Serin John
Varghese, Fabian Hüger, Peter Schlicht, and Tim Fing-
scheidt. The Vulnerability of Semantic Segmentation Net-
works to Adversarial Attacks in Autonomous Driving: En-
hancing Extensive Environment Sensing. IEEE Signal Pro-
cessing Magazine, 38(1):42–52, Jan. 2021. 1, 2

[5] Jan-Aike Bolte, Markus Kamp, Antonia Breuer, Silviu Ho-
moceanu, Peter Schlicht, Fabian Hüger, Daniel Lipinski, and
Tim Fingscheidt. Unsupervised Domain Adaptation to Im-
prove Image Segmentation Quality Both in the Source and
Target Domain. In Proc. of CVPR - Workshops, pages 1404–
1413, Long Beach, CA, USA, June 2019. 1

[6] Alvin Chan, Yi Tay, and Yew-Soon Ong. What It Thinks Is
Important Is Important: Robustness Transfers Through Input
Gradients. In Proc. of CVPR, pages 332–341, Seattle, WA,
USA, June 2020. 2

[7] Seungju Cho, Tae Joon Jun, Byungsoo Oh, and Daeyoung
Kim. DAPAS : Denoising Autoencoder to Prevent Adver-
sarial attack in Semantic Segmentation. In Proc. of IJCNN,
pages 1–8, Glasgow, UK, July 2020. 2

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The Cityscapes
Dataset for Semantic Urban Scene Understanding. In Proc.
of CVPR, pages 3213–3223, Las Vegas, NV, USA, June
2016. 2, 5

[9] Gianni Franchi, Nacim Belkhir, Mai Lan Ha, Yufei Hu, An-
drei Bursuc, Volker Blanz, and Angela Yao. Robust Seman-
tic Segmentation with Superpixel-Mix. In Proc. of BMVC,
pages 1–16, Virtual Conference, Nov. 2021. 2

[10] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian
Approximation: Representing Model Uncertainty in Deep
Learning. In Proc. of ICML, pages 1050–1059, New York,
NY, USA, June 2016. 2

[11] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision Meets Robotics: The KITTI Dataset. Inter-
national Journal of Robotics Research (IJRR), 32(11):1231–
1237, Aug. 2013. 2, 5

[12] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and Harnessing Adversarial Examples. In Proc.
of ICLR, pages 1–10, San Diego, CA, USA, May 2015. 1, 2,
5

[13] Chuan Guo, Mayank Rana, Moustapha Cissé, and Laurens
van der Maaten. Countering Adversarial Images using Input
Transformations. In Proc. of ICLR, pages 1–12, Vancouver,
BC, Canada, Apr. 2018. 2

[14] Frederik K. Gustafsson, Martin Danelljan, and Thomas B.
Schön. Evaluating Scalable Bayesian Deep Learning Meth-
ods for Robust Computer Vision. In Proc. of CVPR - Work-
shops, pages 1289–1298, Seattle, WA, USA, June 2020. 2

[15] Atiye Sadat Hashemi, Andreas Bär, Saeed Mozaffari, and
Tim Fingscheidt. Transferable Universal Adversarial Pertur-
bations Using Generative Models. arXiv, 2010.14919:1–9,
Oct. 2020. 2

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Spatial Pyramid Pooling in Deep Convolutional Networks
for Visual Recognition. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (TPAMI), 37(9):1904–1916,
Sept. 2015. 5, 6

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In Proc. of
CVPR, pages 770–778, Las Vegas, NV, USA, June 2016. 5,
7

[18] Md Amirul Islam, Matthew Kowal, Konstantinos G. Derpa-
nis, and Neil D. B. Bruce. Feature Binding with Category-
Dependant MixUp for Semantic Segmentation and Adver-
sarial Robustness. In Proc. of BMVC, pages 1–13, Virtual
Conference, Sept. 2020. 2

[19] Christoph Kamann, Burkhard Güssefeld, Robin Hutmacher,
Jan Hendrik Metzen, and Carsten Rother. Increasing the Ro-
bustness of Semantic Segmentation Models with Painting-
by-Numbers. In Proc. of ECCV, pages 369–387, Glasgow,
UK, Aug. 2020. 2

[20] Christoph Kamann and Carsten Rother. Benchmarking the
Robustness of Semantic Segmentation Models. In Proc. of
CVPR, pages 8828–8838, Virtual Conference, June 2020. 1,
2

[21] Nikhil Kapoor, Andreas Bär, Serin Varghese, Jan David
Schneider, Fabian Hüger, Peter Schlicht, and Tim Fing-
scheidt. From a Fourier-Domain Perspective on Adversarial
Examples to a Wiener Filter Defense for Semantic Segmen-
tation. In Proc. of IJCNN, pages 1–8, Virtual Conference,
July 2021. 1, 2

[22] Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. In Proc. of ICLR, pages 1–15, San
Diego, CA, USA, May 2015. 5

[23] Marvin Klingner, Andreas Bär, and Tim Fingscheidt. Im-
proved Noise and Attack Robustness for Semantic Segmen-
tation by Using Multi-Task Training with Self-Supervised
Depth Estimation. In Proc. of CVPR - Workshops, pages
1299–1309, Seattle, WA, USA, June 2020. 1, 2

[24] Marvin Klingner, Andreas Bär, Marcel Mross, and Tim Fing-
scheidt. Improving Online Performance Prediction for Se-
mantic Segmentation. In Proc. of CVPR - Workshops, pages
1–11, Virtual Conference, June 2021. 1, 2, 3, 4, 5, 7, 8

[25] Marvin Klingner and Tim Fingscheidt. Online Performance
Prediction of Perception DNNs by Multi-Task Learning with
Depth Estimation. IEEE Transactions on Intelligent Trans-
portation Systems (T-ITS), 22(7):4670–4683, July 2021. 1,
2, 3, 4, 5, 7, 8

[26] Marvin Klingner, Varun Ravi Kumar, Senthil Yogamani, An-
dreas Bär, and Tim Fingscheidt. Detecting Adversarial Per-
turbations in Multi-Task Perception. arXiv, 2203.01177:1–9,
Mar. 2022. 2

4407

[27] Marvin Klingner, Jan-Aike Termöhlen, Jonas Mikolajczyk,
and Tim Fingscheidt. Self-Supervised Monocular Depth Es-
timation: Solving the Dynamic Object Problem by Semantic
Guidance. In Proc. of ECCV, pages 582–600, Glasgow, UK,
Aug. 2020. 3

[28] Marvin Klingner, Jan-Aike Termöhlen, Jacob Ritterbach,
and Tim Fingscheidt. Unsupervised BatchNorm Adaptation
(UBNA): A Domain Adaptation Method for Semantic Seg-
mentation Without Using Source Domain Representations.
In Proc. of WACV - Workshops, pages 210–220, Waikoloa,
HI, USA, Jan. 2022. 1

[29] Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and Scalable Predictive Uncertainty Es-
timation Using Deep Ensembles. In Proc. of NIPS, pages
6402–6413, Long Beach, CA, USA, Dec. 2017. 2

[30] Jiayang Liu, Weiming Zhang, Yiwei Zhang, Dongdong Hou,
Yujia Liu, Hongyue Zha, and Nenghai Yu. Detection Based
Defense Against Adversarial Examples from the Steganaly-
sis Point of View. In Proc. of CVPR, pages 4825–4834, Long
Beach, CA, USA, June 2019. 2

[31] Zihao Liu, Qi Liu, Tao Liu, Nuo Xu, Xue Lin, Yanzhi Wang,
and Wujie Wen. Feature Distillation: DNN-Oriented JPEG
Compression Against Adversarial Examples. In Proc. of
CVPR, pages 860–868, Long Beach, CA, USA, June 2019.
2

[32] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
Convolutional Networks for Semantic Segmentation. In
Proc. of CVPR, pages 3431–3440, Boston, MA, USA, June
2015. 2

[33] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gra-
dient Descent with Warm Restarts. In Proc. of ICLR, pages
1–16, Toulon, France, Apr. 2017. 5

[34] Jonas Löhdefink, Justin Fehrling, Marvin Klingner, Fabian
Hüger, Peter Schlicht, Nico M. Schmidt, and Tim Fing-
scheidt. Self-Supervised Domain Mismatch Estimation for
Autonomous Perception. In Proc. of CVPR - Workshops,
pages 1359–1368, Seattle, WA, USA, June 2020. 1, 2

[35] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards Deep Learning
Models Resistant to Adversarial Attacks. In Proc. of ICLR,
pages 1–28, Vancouver, BC, Canada, Apr. 2018. 2, 5

[36] Chengzhi Mao, Amogh Gupta, Vikram Nitin, Baishakhi Ray,
Shuran Song, Junfeng Yang, and Carl Vondrick. Multitask
Learning Strengthens Adversarial Robustness. In Proc. of
ECCV, pages 158–174, Virtual Conference, Aug. 2020. 2

[37] Muzammal Naseer, Salman Khan, Munawar Hayat, Fa-
had Shahbaz Khan, and Fatih Porikli. A Self-Supervised
Approach for Adversarial Robustness. In Proc. of CVPR,
pages 262–271, Seattle, WA, USA, June 2020. 2

[38] Federico Nesti, Giulio Rossolini, Saasha Nair, Alessandro
Biondi, and Giorgio Buttazzo. Evaluating the Robustness
of Semantic Segmentation for Autonomous Driving Against
Real-World Adversarial Patch Attacks. In Proc. of WACV,
pages 2280–2289, Waikoloa, HI, USA, Jan. 2022. 2

[39] Augustus Odena, Vincent Dumoulin, and Chris Olah. De-
convolution and Checkerboard Artifacts. Distill, pages 1–1,
Oct. 2016. 3

[40] Marin Ors̆ić, Ivan Kres̆o, Petra Bevandić, and Sinis̆a S̆egvić.
In Defense of Pre-Trained ImageNet Architectures for Real-
Time Semantic Segmentation of Road-Driving Images. In
Proc. of CVPR, pages 12607–12616, Long Beach, CA, USA,
June 2019. 1, 2, 5, 6

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
et al. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Proc. of NeurIPS, pages 8024–
8035, Vancouver, BC, Canada, Dec. 2019. 4

[42] Julien Rebut, Andrei Bursuc, and Patrick Pérez. StyleLess
Layer: Improving Robustness for Real-World Driving. In
Proc. of IROS, pages 8992–8999, Prague, Czech Republic,
Oct. 2021. 2

[43] Matthias Rottmann, Pascal Colling, Thomas Paul Hack,
Robin Chan, Fabian Hüger, Peter Schlicht, and Hanno
Gottschalk. Prediction Error Meta Classification in Semantic
Segmentation: Detection via Aggregated Dispersion Mea-
sures of Softmax Probabilities. In Proc. of IJCNN, pages
1–9, Glasgow, UK, July 2020. 2

[44] Evgenia Rusak, Lukas Schott, Roland S. Zimmermann, Ju-
lian Bitterwolf, Oliver Bringmann, Matthias Bethge, and
Wieland Brendel. A Simple Way to Make Neural Net-
worksRobust Against Diverse ImageCorruptions. In Proc.
of ECCV, pages 53–69, Glasgow, UK, Aug. 2020. 2

[45] Jan-Aike Termöhlen, Marvin Klingner, Leon J. Brettin,
Nico M. Schmidt, and Tim Fingscheidt. Continual Unsu-
pervised Domain Adaptation for Semantic Segmentation by
Online Frequency Domain Style Transfer. In Proc. of ITSC,
pages 2881–2888, Virtual Conference, Sept. 2021. 1

[46] Jinyu Tian, Jiantao Zhou, Yuanman Li, and Jia Duan. Detect-
ing Adversarial Examples from Sensitivity Inconsistency of
Spatial-Transform Domain. In Proc. of AAAI, pages 9877–
9885, Virtual Conference, Feb. 2021. 2

[47] Yingda Xia, Yi Zhang, Fengze Liu, Wei Shen, and Alan
Yuille. Synthesize Then Compare: Detecting Failures and
Anomalies for Semantic Segmentation. In Proc. of ECCV,
pages 145–161, Glasgow, UK, Aug. 2020. 2

[48] Xiaogang Xu, Hengshuang Zhao, and Jiaya Jia. Dynamic
Divide-and-Conquer Adversarial Training for Robust Se-
mantic Segmentation. In Proc. of ICCV, pages 7486–7495,
Virtual Conference, Oct. 2021. 2

4408

