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Abstract

Learning-based trajectory prediction models have en-
countered great success, with the promise of leveraging
contextual information in addition to motion history. Yet, we
find that state-of-the-art forecasting methods tend to overly
rely on the agent’s current dynamics, failing to exploit the
semantic contextual cues provided at its input. To alleviate
this issue, we introduce CAB, a motion forecasting model
equipped with a training procedure designed to promote the
use of semantic contextual information. We also introduce
two novel metrics — dispersion and convergence-to-range
— to measure the temporal consistency of successive fore-
casts, which we found missing in standard metrics. Our
method is evaluated on the widely adopted nuScenes Pre-
diction benchmark as well as on a subset of the most diffi-
cult examples from this benchmark. The code is available
at github.com/valeoai/CAB.

1. Introduction

Autonomous systems require an acute understanding of
other agents’ intention to plan and act safely, and the ca-
pacity to accurately forecast the motion of surrounding
agents is paramount to achieving this [3,4,49]. Historically,
physics-based approaches have been developed to achieve
these forecasts [27]. Over the last years, the paradigm has
shifted towards learning-based models [37,42]. These mod-
els generally operate over two sources of information: (1)
scene information about the agent’s surroundings, e.g. Li-
DAR point clouds [7, 8, 29, 36] or bird-eye-view rasters
[8, 21, 29, 37, 42], and (2) motion cues of the agent, e.g. its
instantaneous velocity, acceleration, and yaw rate [12, 37]
or its previous trajectory [9, 22, 35, 42]. But despite being
trained with diverse modalities as input, we remark that,
in practice, these models tend to base their predictions on
only one modality: the previous dynamics of the agent. In-
deed, trajectory forecasting models obtain very similar per-
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formances when the scene information about the agent’s
surroundings is removed from the input (see section 4). This
phenomenon stems from the very strong auto-correlations
often exhibited in trajectories [6, 10]. For instance, when
a vehicle is driving straight with a constant speed over the
last seconds, situations in which the vehicle keeps driving
straight with a constant speed are overwhelmingly repre-
sented; similarly, if a vehicle starts braking, its future path is
very likely a stopping trajectory. As a consequence, models
tend to converge to a local minimum consisting in forecast-
ing motion based on correlations with the past motion cues
only, failing to take advantage of the available contextual
information [3,11,15,25]. For example, in Figure 1, we ob-
serve that several predictions made by the Trajectron++ [42]
model leave the driveable area which hints that the scene in-
formation was not correctly used by the model.

Such biased models relying too much on motion corre-
lation and ignoring the scene information are unsatisfactory
for several reasons. First, context holds crucial elements to
perform good predictions when the target trajectory is not
an extrapolation of the past motion. Indeed, a biased model
will likely fail to forecast high-level behavior changes (e.g.
start braking), when scene information is especially needed
because of some event occurring in the surroundings (e.g.
front vehicle starts braking). Leveraging context is thus
paramount for motion anticipation, i.e. converging quickly
and smoothly towards the ground truth ahead in time. Fur-
thermore, a biased model has a flawed reasoning because
it bases its predictions on motion signals rather than the
underlying causes contained within the scene environment.
For example, when applied on a vehicle that has started to
decelerate, it will attribute its forecast on the past trajec-
tory (e.g. ‘The car will stop because it has started brak-
ing.’) instead of the underlying reason (e.g. ‘The car will
stop because it is approaching an intersection with heavy
traffic.’) [33, 47]. As a direct consequence, explainability
methods analyzing a biased model can lead to less satisfac-
tory justifications. Overall, it is thus paramount for motion
forecasting algorithms to efficiently leverage the contextual
information and to ground motion forecasts on it.
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(a) CAB (ours) (b) Trajectron++ (c) Trajectron++ (no-context)

Figure 1. Predictions from a) CAB
(ours), b) Trajectron++, and c) Tra-
jectron++ without the context input.
The thickness of trajectories represent
their likelihood. Trajectron++ and its
blind variant have very similar pre-
dictions and they both forecast tra-
jectories that leave the driveable area.
CAB is more consistent with the map.
Sidewalks are in blue, crosswalks in
yellow and driveable areas in red.

In this paper, we propose to equip a motion forecast-
ing model with a novel learning mechanism that encour-
ages predictions to rely more on the scene information, i.e.
a bird-eye-view map of the surroundings and the relation-
ships with neighboring agents. Specifically, we introduce
blind predictions, i.e. predictions obtained with past mo-
tions of the agent only, without any contextual informa-
tion. In contrast, the main model has access to both these
inputs but is encouraged to produce motion forecasts that
are different from the blind predictions, thus promoting the
use of contextual information. Our model is called ‘CAB’
as it raises Context Awareness by leveraging Blind predic-
tions. It is built on the Conditional Variational AutoEncoder
(CVAE) framework, widely used in motion forecasting; in
practice, it is instantiated with the Trajectron++ [42] trajec-
tory forecasting backbone. Specifically, CAB acts on the
probabilistic latent representation of the CVAE and encour-
ages the latent distribution for the motion forecasts to be
different to the latent distribution for the blind predictions.
Additionally, we introduce Reweight, and RUBiZ, two al-
ternative de-biasing strategies that are not specific to proba-
bilistic forecasting models as they rely on loss and gradients
reweighting respectively.

In motion forecast algorithms deployed in real robotic
systems, when successive forecasts are done, it is desirable
to have both a fast convergence towards the ground-truth, as
well as a high consistency of consecutive predictions. Ac-
cordingly, we introduce two novel metrics: convergence-to-
range and dispersion. These metrics aim at providing more
refined measurements of how early models are able to an-
ticipate their trajectory and how stable through time their
successive predictions are.

Overall, our main contributions are as follows.
1. We target the problem of incorporating contextual in-

formation into motion forecasting architectures, as we find
that state-of-the-art models overly rely on motion.

2. We present CAB, an end-to-end learning scheme that
leverages blind predictions to promote the use of context.

3. In addition to standard evaluation practices, we
propose two novel metrics, namely dispersion and
convergence-to-range, that respectively measure the tempo-

ral stability of successive predictions and their spatial con-
vergence speed.

To validate the design of our approach, we conduct ex-
periments on nuScenes [6], a public self-driving car dataset
focused on urban driving. We show that we outperform
previous works [42, 52], as well as the alternative debias-
ing strategies that we propose, inspired by the recent lit-
erature in Visual Question Answering (VQA) and Natural
Language Inference (NLI) [5, 31]. Besides, we use Shap-
ley values to measure the contribution of each modality on
the predictions: this allows us to measure how well a model
can leverage the context input. Lastly, we conduct evalua-
tions on a subset of the most difficult examples of nuScenes
where we find that our approach is better suited to anticipate
high-level behavior changes.

2. Related Work

Motion forecasting models aim to predict the future tra-
jectories of road agents. This prediction is achieved us-
ing information from their current motion such as veloc-
ity, acceleration or previous trajectory, and some contex-
tual elements about the scene. This context can take var-
ious forms, ranging from raw LiDAR point clouds [7, 8,
26, 29, 36, 39, 40] and RGB camera stream [26, 30, 41, 45]
to more semantic representations including High-Definition
maps [3,8,16,17,21,29,37,42,43,51], or detections of other
agents and their motion information [12, 35, 37, 42]. Re-
cent trajectory prediction models are designed to produce
multiple forecasts, attempting to capture the multiplicity of
possible futures [12, 24, 46]. Various learning setups are
explored to train these models: regression in the trajectory
space [9,12,14,20], spatio-temporal occupancy map predic-
tion [3, 16, 17, 43, 49], or probabilistic methods with either
implicit modelling using Generative Adversarial Networks
(GANs) [18, 19, 41, 51], or explicit modelling with Condi-
tional Variational Auto-Encoder (CVAE) [21,26,40,42,44].
Our work is based on this CVAE family of methods, which
not only has provided strong results in motion forecasting
but also structurally defines a separation between high-level
decision and low-level execution of this decision [9].

The difficulty of efficiently leveraging contextual in-
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formation in deep forecasting methods is verified in mo-
tion planning models that suffer from ‘causal confusion’
on the state variable leading to catastrophic motion drift
[11, 13, 15, 25]. Moreover, models’ proclivity to make
reasoning shortcuts and to overlook an informative input
modality is also encountered in other fields that deal with
inputs of different natures, such as medical image pro-
cessing [48], Visual Question Answering (VQA), or Nat-
ural Language Inference (NLI). In VQA, for instance, re-
searchers report that models tend to be strongly biased to-
wards the linguistic inputs and mostly ignore the visual in-
put [1, 2, 5, 34, 38]. For example, the answer to the question
“What color is the banana in the image” will be “Yellow”
90% of the time, and models will ignore the image. To al-
leviate this issue, some recent works propose to explicitly
capture linguistic biases within a question-only branch and
attempt to reduce the impact of these linguistic biases in
the general model, for example through adversarial regular-
ization [38], or with a gradient reweighting strategy during
training [5]. We make a parallel between the current motion
for trajectory forecasting and the linguistic input in VQA.
Also, drawing inspiration from recent de-biasing strategies
used in VQA [5, 31], we propose novel methods for motion
forecasting. To the best of our knowledge, biases and sta-
tistical shortcut on the agent’s dynamics have not yet been
studied in the context of learning-based motion forecasting.

3. Model
The goal is to predict a distribution over possible future

trajectories y = [y1, . . . , yT ] of a moving agent of interest
in a scene, where yt ∈ R2 is the position of the agent t steps
in the future in a bird-eye view, and T is the prediction hori-
zon. To do so, we consider a sequence of sensor measure-
ments X containing motion information (e.g. position, ve-
locity, acceleration) over the H previous steps. Besides, the
context C provides information about the static (e.g. drive-
able area, crosswalks, etc.) and dynamic (e.g. other agents’
motion) surroundings of the agent. In this framework, a
prediction model provides an estimate of p(y|X , C) for any
given input pair (X , C).

3.1. Conditional VAE framework for motion fore-
casting

Following recent works in trajectory forecasting [21, 26,
40, 42, 46, 52], we use the CVAE framework to train our
model for future motion prediction. A CVAE provides an
estimate pΘ(y|X , C) of the distribution of possible trajecto-
ries by introducing a latent variable z ∈ Z that accounts for
the possible high-level decisions taken by the agent:

pΘ(y|X , C) =
∫
z∈Z

pθ (z|X , C) pϕ(y|X , C, z), (1)

where Θ = {θ, ϕ}.

InputBlind input

CVAECVAE

block
gradients Output

Figure 2. Overview of the learning scheme of CAB. CAB em-
ploys a CVAE backbone which produces distributions pθ (z|X , C)
and pΘ(y|X , C) over the latent variable z and the future trajectory.
During training, a blind input X , C̃ is forwarded into the CVAE
and the resulting distribution over z is used to encourage the pre-
diction of the model to be different from the context-agnostic dis-
tribution p(y|X ), thanks to the LCAB-KL loss. Note that the two
depicted CVAEs are identical. The original context C is overlayed
onto the prediction for visualization purposes.

To train the CVAE, we need to estimate the latent vari-
able z corresponding to a given trajectory y. To that end,
we introduce the additional distribution qψ(z|X , C,y).

Distributions pθ (z|X , C), pϕ(y|X , C, z) and
qψ(z|X , C,y) are parameterized by neural networks,
where θ, ϕ and ψ are their respective weights. These
networks are jointly trained to minimize:

Lcvae =
1

N

N∑
i=1

− log pΘ(yi|Xi, Ci)

+ αDKL[qψ (z|Xi, Ci,yi) ∥ pθ (z|Xi, Ci)],

(2)

where the summation ranges over the N training samples
indexed by i, and DKL is the Kullback-Leibler divergence.

3.2. CAB

Using this setup, ideally, the networks would learn to ex-
tract relevant information from both motion and context to
produce the most likely distribution over possible outputs
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y. However, because of the very strong correlation between
X and y in driving datasets, they tend, in practice, to learn
to focus essentially on X and to ignore C when estimating
p(y|X , C). In the worse cases, models can collapse into
estimating simply p(y|X ). Yet, C contains crucial infor-
mation such as road boundaries or pedestrians. Our goal is
then to encourage taking C into account by introducing a
regularization term LCAB to the CVAE objective:

L = Lcvae + LCAB. (3)

The idea of LCAB is to encourage the prediction of the
model to be different from p (y|X ). However, in practice,
we do not have access to this distribution. Instead, we in-
troduce a blind-mode for the CVAE model by simply re-
placing the context input C by a null context C̃. We obtain
pΘ(y|X , C̃), an explicitly flawed model whose predictions
can then be used to steer the learning of the main model
pΘ(y|X , C) away from focusing exclusively on X .

To do so, we would want LCAB to increase
DKL[pΘ(y|X , C)∥ pΘ(y|X , C̃)]. Unfortunately, this
term is intractable in the general case, and computing a
robust Monte-Carlo estimate requires sampling a very large
number of trajectories, which would significantly slow
down the training. Therefore, we simplify the problem by
setting this divergence constraint on the distributions over
z instead of the distributions over y. We thus minimize

LCAB-KL = −DKL[pθ (z|X , C) ∥ pθ(z|X , C̃)] (4)

instead. Following the intuition proposed in [9], the distri-
butions over z model intent uncertainties, whereas distribu-
tions over y merge intent and control uncertainties. In this
case, forcing pθ(z|X , C) and pθ(z|X , C̃) to have a highDKL
explicitly sets this constraint on high-level decisions.

Moreover, to make sure that pΘ(y|X , C̃) is a reasonable
approximation for p(y|X ), we also optimize parameters Θ
for an additional term L̃cvae, which consists in the loss de-
scribed in Equation 2 where each Ci is replaced by C̃.

The final LCAB objective is then

LCAB = λKLLCAB-KL + λL̃cvae, (5)

where λ and λKL are hyper-parameters.
To ensure that the blind distribution focuses solely on

approximating p(y|X ), LCAB-KL is only back-propagated
along pθ(z|X , C) and not along pθ(z|X , C̃). We underline
that LCAB does not introduce extra parameters.

3.3. Instanciation of CAB with Trajectron++

To show the efficiency of CAB, we use Trajectron++
[42], a popular model for trajectory prediction based on
a variant of a CVAE and whose code is freely available.
We first discuss how the loss of Trajectron++ deviates from
standard CVAE, and then present its implementation.

Information Maximizing Categorical CVAE Trajec-
tron++ deviates from the standard CVAE setup in two
notable ways. Firstly, following [50], they include in
the CVAE objective Lcvae a mutual information term
Iq(X , C, z) between the inputs (X , C) and the latent factor
z. Secondly, in Trajectron++, the latent variable z is set as
categorical. The output distribution defined in Equation 1 is
then modeled as a Gaussian mixture with |Z| modes. These
deviations are easily integrated to CAB by adding the same
mutual information term and also setting z as categorical.
As with Gaussian distributions that are often used in the
context of VAEs, theDKL between two categorical distribu-
tions has a differentiable closed-form expression.

Data and implementation in Trajectron++ The dy-
namic history of the agent is a multi-dimensional temporal
signal X = [x–H , ...,x–1,x0], where each vector xj ∈ R8

contains position, velocities, acceleration, heading and an-
gular velocity. This sequence is encoded into a vector
x = fx (X ), where fx is designed as a recurrent neural net-
work. The visual context C is represented by two quantities
that provide external information about the scene. The first
is a bird-eye view image M ∈ {0, 1}h×w×l, constructed
from a high-definition map, where each element M[h,w, l]
encodes the presence or the absence of the semantic class l
at the position (h,w). Classes correspond to semantic types
such as “driveable area”, “pedestrian crossing” or “walk-
way”. This tensor M is processed by a convolutional neu-
ral network to provide m = fm(M) ∈ Rdm . The second
quantity is a vector g ∈ Rdg that encodes the dynamic state
of neighboring agents. We define the context vector c as the
concatenation of m and g.

As discussed here-above, distributions pθ (z|Xi, Ci) and
qψ (z|Xi, Ci,yi) from Equation 2 are set as categorical dis-
tributions, parameterized by the outputs of neural networks
fθ(x, c) and fψ(x, c,y) respectively.

Then, for each z ∈ Z , we have
pϕ(y|x, c, z) = N (µz,Σz), where (µz,Σz) =
fϕ (x, c, z). These Gaussian densities are weighted by
the probabilities of the corresponding z, and summed to
provide the trajectory distribution:

pΘ(y|x, c) =
∑
z∈Z

pθ(z|x, c)pϕ(y|x, c, z). (6)

Interestingly, fϕ is constructed as a composition of two
functions. The first is a neural network whose output
is a distribution over control values for each prediction
timestep. The second is a dynamic integration module that
models temporal coherence by transforming these control
distributions into 2-D position distributions. This design en-
sures that output trajectories are dynamically feasible. For
more details, please refer to [42].
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3.4. Alternative de-biasing strategies

We also propose two alternative de-biaising strategies.
Like CAB, they leverage blind predictions to encourage the
model to use the context. However, unlike CAB that plays
on the specificity of motion forecasting by acting on distri-
bution of the latent representation, these variations are in-
spired by recent models from the VQA and NLI fields.

• Reweight is inspired by the de-biased focal loss pro-
posed in [31]. The importance of training examples is dy-
namically modulated during the learning phase to focus
more on examples poorly handled by the blind model. For-
mally, the model optimizes the following objective:

Lrw =Lcvae + L̃cvae

−
N∑
i=1

σ(− log pΘ(yi|Xi, C̃)) log pΘ(yi|Xi, Ci),
(7)

where σ represents the sigmoid function. Intuitively, sam-
ples that can be well predicted from the blind model, i.e.
low value of σ(− log pΘ(yi|Xi, C̃i)), will see their contribu-
tion lowered and reciprocally, the ones that require contex-
tual information to make accurate forecast, i.e. high value
of σ(− log pΘ(yi|Xi, C̃i)), have an increased weight. Simi-
larly to CAB, we prevent the gradients to flow back into the
blind branch from the loss weight term.

• RUBiZ adjusts gradients instead of sample impor-
tance. It does so by modulating the predictions of the main
model during training to resemble more to predictions of a
blind model. RUBiZ is inspired by RUBi [5], a VQA model
designed to mitigate language bias. Originally designed for
the classification setup, we adapt this de-biasing strategy to
operate over the latent factor z of our model, hence the name
RUBiZ. In practice, given l and l̃ the logits of pθ(z|X , C)
and pθ(z|X , C̃), a new distribution over the latent variable
is obtained as prubiz

θ (z|X , C, C̃) = softmax(σ(l)∗σ(̃l)). This
distribution, when used by the decoder, shifts the output
of the main prediction towards a blind prediction. Con-
sequently, situations where scene information is essential
and past trajectory is not enough have increased gradient,
whereas easy examples that are well predicted by the blind
model have less importance in the global objective.

4. Experiments
4.1. nuScenes Dataset

Our models are trained and evaluated on the driving
dataset nuScenes [6]. It contains a thousand 20-second ur-
ban scenes recorded in Boston and Singapore. Each scene
includes data from several cameras, lidars, and radars, a
high-definition map of the scene, as well as annotations for
surrounding agents provided at 2 Hz. These annotations are
processed to build a trajectory prediction dataset for sur-
rounding agents, and especially for vehicles. Models are

trained and evaluated on the official train/val/test splits from
the nuScenes Prediction challenge, respectively containing
32186 / 8560 / 9041 instances, each corresponding to a spe-
cific agent at a certain time step for which we are given a
2-second history (H = 4) and are expected to predict up to
6 seconds in the future (T = 12).

4.2. Baselines and details

Physics-based baselines We consider four simple physics-
based models, and a Physics oracle, as introduced in [37],
that are purely based on motion cues and ignore contextual
elements. The four physics-based models use the current
velocity, acceleration, and yaw rate and forecast assuming
constant speed/acceleration and yaw/yaw rate. The trajec-
tory predicted by the Physics oracle model is constructed by
selecting the best trajectory, in terms of average point-wise
Euclidean distance, from the pool of trajectories predicted
by the four aforementioned physics-based models. This
Physics Oracle serves as a coarse upper bound on the best
achievable results from a blind model that would be purely
based on motion dynamics and ignores the scene structure.

Learning-based forecasting methods We compare our
debiased models against recently published motion predic-
tion models. CoverNet [37] forwards a rasterized represen-
tation of the scene and the vehicle state (velocity, accelera-
tion, yaw rate) into a CNN and learns to predict the future
motion as a class, which corresponds to a pre-defined tra-
jectory. We re-train the “fixed ϵ = 2” variant, for which
the code is available, to compare it with our models. Tra-
jectron++ [42] is our baseline, which corresponds to re-
moving LCAB in CAB. HalentNet [52] casts the Trajec-
tron++ model as the generator of a Generative Adversarial
Network (GAN) [18]. A discriminator is trained to distin-
guish real trajectories from generated ones and to recognize
which z was chosen to sample a trajectory. It also intro-
duces ‘hallucinated’ predictions in the training, which cor-
respond to predictions with several confounded values of
z. To measure the usefulness of the contextual elements
in these models, we also consider the ‘Trajectron++ (no-
context)’ and ‘HalentNet (no-context)’ variants that simply
discard the map and social interactions from the input of
the respective underlying models. Trajectron++ and Halent-
Net are not evaluated for different temporal horizons on the
nuScenes prediction challenge splits and we thus re-train
them given their respective codebases.

Implementation details We use the ADAM optimizer
[23], with a learning rate of 0.0003. The value of hyper-
parameters λ = 1.0 and λKL = 5.0 are found on the valida-
tion set.
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ADE-ML FDE-ML OffR-ML ADE-f FDE-f OffR-f
Model @1s @2s @3s @4s @5s @6s @1s @2s @3s @4s @5s @6s @6s @6s @6s @6s

Constant vel. and yaw 0.46 0.94 1.61 2.44 3.45 4.61 0.64 1.74 3.37 5.53 8.16 11.21 0.14 - - -
Physics Oracle 0.43 0.82 1.33 1.98 2.76 3.70 0.59 1.45 2.69 4.35 6.47 9.09 0.12 - - -

Covernet, fixed ϵ = 2 0.81 1.41 2.11 2.93 3.88 4.93 1.07 2.35 3.92 5.90 8.30 10.84 0.11 - - -
Trajectron++ (no-context) 0.13 0.39 0.87 1.59 2.56 3.80 0.15 0.86 2.23 4.32 7.22 10.94 0.27 4.46 12.32 0.36

Trajectron++ 0.13 0.39 0.86 1.55 2.47 3.65 0.15 0.87 2.16 4.15 6.92 10.45 0.23 4.15 11.44 0.29
HalentNet (no-context) 0.12 0.38 0.82 1.43 2.21 3.17 0.13 0.85 2.04 3.72 5.92 8.64 0.27 4.13 10.95 0.29

HalentNet 0.14 0.41 0.87 1.51 2.32 3.29 0.17 0.88 2.14 3.91 6.15 8.83 0.28 3.98 10.61 0.25
Reweight 0.13 0.38 0.81 1.42 2.20 3.14 0.15 0.83 2.00 3.69 5.90 8.58 0.17 3.71 9.74 0.19

RUBiZ 0.18 0.42 0.82 1.40 2.14 3.04 0.23 0.84 1.95 3.55 5.65 8.21 0.11 3.68 9.45 0.17
CAB 0.12 0.34 0.73 1.29 2.01 2.90 0.14 0.73 1.81 3.39 5.47 8.02 0.13 3.41 9.03 0.20

Table 1. Trajectory forecasting on the nuScenes Prediction challenge [6]. Reported metrics are the Average/Final Displacement Error
(ADE/FDE), and the Off-road Rate (OffR). Each metric is computed for both the most-likely trajectory (-ML) and the full distribution (-f ).

4.3. Results and standard evaluations

We compare our debiased models to the baselines by
measuring the widely used metrics of displacement and off-
road rate. All models are trained to predict 6 seconds in the
future, and their performance is evaluated for varying tem-
poral horizons (T ∈ {2, 4, 6, 8, 10, 12}). Average Displace-
ment Error (ADE) and Final Displacement Error (FDE)
measure the distance between the predicted and the ground-
truth trajectory, either as an average between each corre-
sponding pair of points (ADE), or as the distance between
final points (FDE). To compute these metrics with CAB, we
sample the most likely trajectory yML by first selecting the
most likely latent factor zML = argmaxz∈Z pθ(z|x, c), and
then computing the mode of the corresponding Gaussian
yML = argmaxy pϕ(y|x, c, zML). To evaluate the quality
of the whole distribution and not just the most-likely tra-
jectory, similarly to [42, 52], we compute metrics ‘ADE-f’
and ‘FDE-f’. They are respectively the average and final
displacement error averaged for 2000 trajectories randomly
sampled in the full distribution predicted by the network
yfull ∼ pΘ(y|x, c). Finally, the ‘off-road rate’ (OffR) is the
rate of future trajectories that leave the driveable area.

In Table 1, we compare the performance of our mod-
els CAB, Reweight and RUBiZ with baselines from the
recent literature. To begin with, we remark that for the
Trajectron++ model, the use of context brings close to no
improvement for predictions up to 4 seconds and a very
small one for 5- and 6-second horizons. Even more sur-
prisingly, the HalentNet (no-context) model which does not
use any information from the surroundings, shows better
ADE-ML and FDE-ML than the regular context-aware Ha-
lentNet model. This supports our claim that the contextual
elements are overlooked by these models and that predic-
tions are mostly done by relying on motion cues. Moreover,
we emphasize that the Physics oracle — which is purely
based on motion dynamics — obtains very strong perfor-
mances (3.70 ADE-ML@6s, 9.09 FDE-ML@6s) as it can
choose the closest trajectory to the ground truth from a va-
riety of dynamics. Its scores approximate upper bounds on

the forecasting abilities of purely motion-based models and
we observe that learning-based methods hardly outperform
this Physics-oracle on long temporal horizons.

On the other hand, we remark that all three of our de-
biaising strategies significantly outperform the Physics or-
acle and previous models on almost all the metrics, both
when looking at the most-likely trajectory as well as the full
future distribution. This validates the idea, shared in our
methods, to enforce the model’s prediction to have a high
divergence with a blind prediction. Indeed, despite opti-
mizing very different objective functions, our Reweight and
RUBiZ and CAB share the idea of a motion-only encoding.
More precisely, at a 6-second horizon, the sample reweight-
ing strategy gives a relative improvement of 16% w.r.t. Tra-
jectron++. The more refined RUBiZ strategy of gradient
reweighting gives a relative improvement of 19% w.r.t. Tra-
jectron++. CAB achieves a 22% relative improvement over
Trajectron++. This indicates that guiding the model’s latent
variable constitutes a better use of blind predictions than
simple example or gradient weightings.

4.4. Further analyses: stability, convergence, Shap-
ley values

We hypothesize that properly leveraging contextual in-
formation has a strong impact on the ability to anticipate
the agent’s intents. Intuitively, for an agent arriving at an
intersection, a model without context will begin predicting
a stopping trajectory only from the moment when this agent
starts to stop, whereas a model with a proper understanding
of contextual information will be able to foresee this be-
havior change ahead in time. Furthermore, improving this
anticipation ability should also help the temporal stability
of the predictions, as unanticipated changes of trajectory
will be less likely. Unfortunately, ADE and FDE metrics
do not explicitly measure the rate of convergence towards
the ground-truth, nor the stability of successive predictions.

Consequently, we introduce two new metrics focusing
on the stability and convergence rate of successive fore-
casts. Instead of classically looking at the T -step forecast
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Figure 3. Visualizations of predicted trajectories and Shapley values. The thickness of lines represent the probability of each trajectory.

Dispersion D ↓ Convergence-to-range C(τ) ↑
Model τ = 20cm τ = 1m τ = 5m

Cst. accel., yaw 6.55 0.44 1.49 3.30
Cst. accel., yaw rate 6.03 0.47 1.58 3.46
Cst. speed, yaw rate 3.42 0.54 1.82 4.15

Cst. vel., yaw 3.33 0.53 1.82 4.16
Physics Oracle 2.99 0.55 1.91 4.38

Covernet, fixed ϵ = 2 4.06 0.15 0.93 3.50
Trajectron++ (no-context) 3.65 1.00 2.11 4.17

Trajectron++ 3.55 0.98 2.11 4.22
Halentnet (no-context) 2.85 1.03 2.28 4.59

Halentnet 3.23 0.90 2.07 4.26
Reweight 3.02 1.03 2.27 4.50

RUBiZ 2.73 0.94 2.31 4.60
CAB 2.61 1.12 2.45 4.74

Table 2. Study of the temporal stability of trajectory predic-
tion, with the Dispersion (D) and Convergence-to-range (C(τ))
metrics. Predictions are made at a 6-second horizon.

yt = [yt1, . . . , y
t
T ] made at a specific time t, we take a

dual viewpoint by considering the consecutive predictions
[yt̂−TT , . . . , yt̂−1

1 ] made for the same ground-truth point ygt
t̂

.
When the agent approaches the timestamp t̂, as t grows,
predictions yt̂−tt will get closer to the ground-truth ygt

t̂
. In

addition to low ADE/FDE scores, it is desirable to have
both (1) a high consistency of consecutive predictions, as
well as (2) a fast convergence towards the ground-truth
ygt
t̂

. Therefore, for a given annotated point at t̂, we define
the dispersion Dt̂ as the standard deviation of the points
predicted by the model for this specific ground-truth point
Dt̂ = STD ( ∥yt̂−tt − ȳt̂∥)t∈J1,T K where ȳt̂ is the barycen-

ter of {yt̂−tt }t∈J1,T K. The global dispersion score D is ob-
tained by averaging these values over all the points in the
dataset. Moreover, we propose the convergence-to-range-τ
metric C(τ)t̂ as the time from which all subsequent predic-
tions fall within a margin τ of the ground-truth ygt

t̂
, where τ

is a user-defined threshold:

Ct̂(τ)=max
{
T ′∈ J1, T K |∀t ≤ T ′, ∥yt̂−tt −ygt

t̂
∥2 ≤ τ

}
.

(8)
In Table 2, we report evaluations of the stability and spa-

tial convergence metrics. First, we observe that previous
learning-based forecasting models have more limited antic-
ipation capacities than the simpler physics-based models,
in terms of both convergence speed (metric C(τ)) and con-
vergence stability (metric D). Consistently to the results
of Table 1, we remark that our de-biased strategies, and es-
pecially our main model CAB, lead to better anticipation
scores as they converge faster towards the ground truth.

In Figure 3, we visualize trajectories generated by
CAB and the baselines Trajectron++ and Trajectron++ (no-
context). We also analyze the contribution brought by each
input of the model. To do so, we estimate the Shapley val-
ues [28] which correspond to the signed contribution of in-
dividual input features on a scalar output, the distance to the
final predicted point in our case. We remark that the Shap-
ley value of the state signal is overwhelmingly higher than
the ones attributed to the map and the neighbors for Tra-
jectron++. This means that the decisions are largely made
from the agent’s dynamics. This can further be seen as sev-
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Model 1% 2% 3% All
Trajectron++ (no-context) 15.80 15.58 14.97 10.94

Trajectron ++ 13.12 12.69 12.25 10.45
HalentNet 14.12 12.83 12.09 8.83
Reweight 14.00 13.30 12.58 8.58

RUBiZ 13.42 12.49 11.64 8.21
CAB 12.13 11.88 11.59 8.02

Table 3. Final Displacement Error FDE@6s on challenging
situations, as defined by Makansi et al. [32]. Results for columns
‘i%’ are averaged over the top i% hardest situations as measured
by the the mismatch between the prediction from a Kalman filter
and the ground-truth.

eral predicted trajectories are highly unlikely futures as they
collide with the other agents and/or leave the driveable area.
Instead, the Shapley values for CAB give much more im-
portance to both the map and the neighboring agents, which
helps to generate likely and acceptable futures.

4.5. Evaluation on hard situations

We verify that the performance boost observed in Ta-
ble 1 does not come at the expense of a performance drop
on difficult yet critical situations. Accordingly, we use re-
cently proposed evaluations [32] as they remark that uncrit-
ical cases dominate the prediction and that complex scenar-
ios cases are at the long tail of the dataset distribution. In
practice, situations are ranked based on how well the fore-
cast made by a Kalman filter fits the ground-truth trajectory.

In Table 3, we report such stratified evaluations, on the
1%, 2%, and 3% hardest situations. Our first observation
is that the overall performance (‘All’) does not necessar-
ily correlate with the capacity to anticipate hard situations.
Indeed, while HalentNet significantly outperfoms Trajec-
tron++ on average, it falls short on the most challenging
cases. Besides, CAB achieves better results than Trajec-
tron++ on the hardest situations (top 1%, 2%, and 3%).
Lastly, while the gap between Trajectron++ and CAB is
only 0.66 point for the 3% of hard examples, it increases
for the top 1% of hardest examples up to 0.99.

In Figure 4, we display some qualitative results we ob-
tain on challenging situations selected among the 1% hard-
est examples. On the left, we observe that the turn is not
correctly predicted by Trajectron++ as it estimates several
possible futures that leave the driveable area. On the right,
the agent of interest has to stop because of stopped agents in
front of it and this behavior is well forecasted by CAB, un-
like Trajectron++ which extrapolates the past and provides
multiple futures colliding into other agents. Overall, the
better use of the context in CAB not only helps on average
situations but also on difficult and potentially critical ones.

Figure 4. Visualizations on challenging situations, as defined
by Makansi et al. [32]. By better leveraging the context, CAB
generates more accurate predictions while Trajectron++ leaves the
driveable area or collides into other agents.

5. Conclusion

We showed that modern motion forecasting models
struggle to use contextual scene information. To address
this, we introduced blind predictions that we leveraged with
novel de-biaising strategies. This results into three mo-
tion forecasting models designed to focus more on con-
text. We show that doing so helps reducing statistical biases
from which learning-based approaches suffer. In particular,
CAB, which is specifically built for probabilistic forecast-
ing models, makes significant improvements in traditional
distance-based metrics. Finally, after introducing new sta-
bility and convergence metrics, we show that CAB shows
better anticipation properties than concurrent methods.
Acknowledgments: We thank Thibault Buhet, Auguste
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